Alexa at five: Looking back, looking forward

Today is the fifth anniversary of the launch of the Amazon Echo, so in a talk I gave yesterday at the Web Summit in Lisbon, I looked at how far Alexa has come and where we’re heading next.

Poster-captioned.jpg._CB447972009_.jpg
This poster of the original Echo device, signed by the scientists and engineers who helped make it possible, hangs in Rohit's office.

Amazon’s mission is to be the earth’s most customer-centric company. With that mission in mind and the Star Trek computer as an inspiration, on November 6, 2014, a small multidisciplinary team launched Amazon Echo, with the aspiration of revolutionizing daily convenience for our customers using artificial intelligence (AI).

Before Echo ushered in the convenience of voice-enabled ambient computing, customers were used to searches on desktops and mobile phones, where the onus was entirely on them to sift through blue links to find answers to their questions or connect to services. While app stores on phones offered “there’s an app for that” convenience, the cognitive load on customers continued to increase.

Alexa-powered Echo broke these human-machine interaction paradigms, shifting the cognitive load from customers to AI and causing a tectonic shift in how customers interact with a myriad of services, find information on the Web, control smart appliances, and connect with other people.

Enhancements in foundational components of Alexa

In order to be magical at the launch of Echo, Alexa needed to be great at four fundamental AI tasks:

  1. Wake word detection: On the device, detect the keyword “Alexa” to get the AI’s attention;
  2. Automatic speech recognition (ASR): Upon detecting the wake word, convert audio streamed to the Amazon Web Services (AWS) cloud into words;
  3. Natural-language understanding (NLU): Extract the meaning of the recognized words so that Alexa can take the appropriate action in response to the customer’s request; and
  4. Text-to-speech synthesis (TTS): Convert Alexa’s textual response to the customer’s request into spoken audio.

Over the past five years, we have continued to advance each of these foundational components. In both wake word and ASR, we’ve seen fourfold reductions in recognition errors. In NLU, the error reduction has been threefold — even though the range of utterances that NLU processes, and the range of actions Alexa can take, have both increased dramatically. And in listener studies that use the MUSHRA audio perception methodology, we’ve seen an 80% reduction in the naturalness gap between Alexa’s speech and human speech.

Our overarching strategy for Alexa’s AI has been to combine machine learning (ML) — in particular, deep learning — with the large-scale data and computational resources available through AWS. But these performance improvements are the result of research on a variety of specific topics that extend deep learning, including

  • semi-supervised learning, or using a combination of unlabeled and labeled data to improve the ML system;
  • active learning, or the learning strategy where the ML system selects more-informative samples to receive manual labels;
  • large-scale distributed training, or parallelizing ML-based model training for efficient learning on a large corpus; and
  • context-aware modeling, or using a wide variety of information — including the type of device where a request originates, skills the customer uses or has enabled, and past requests — to improve accuracy.

For more coverage of the anniversary of the Echo's launch, see "Alexa, happy birthday" on Amazon's Day One blog.

Customer impact

From Echo’s launch in November 2014 to now, we have gone from zero customer interactions with Alexa to billions per week. Customers now interact with Alexa in 15 language variants and more than 80 countries.

Through the Alexa Voice Service and the Alexa Skills Kit, we have democratized conversational AI. These self-serve APIs and toolkits let developers integrate Alexa into their devices and create custom skills. Alexa is now available on hundreds of different device types. There are more than 85,000 smart-home products that can be controlled with Alexa, from more than 9,500 unique brands, and third-party developers have built more than 100,000 custom skills.

Ongoing research in conversational AI

Alexa’s success doesn’t mean that conversational AI is a solved problem. On the contrary, we’ve just scratched the surface of what’s possible. We’re working hard to make Alexa …

1. More self-learning

Our scientists and engineers are making Alexa smarter faster by reducing reliance on supervised learning (i.e., building ML models on manually labeled data). A few months back, we announced that we’d trained a speech recognition system on a million hours of unlabeled speech using the teacher-student paradigm of deep learning. This technology is now in production for UK English, where it has improved the accuracy of Alexa’s speech recognizers, and we’re working to apply it to all language variants.

LSTMnetworkanimationV3.gif._CB467045280_.gif
In the teacher-student paradigm of deep learning, a powerful but impractically slow teacher model is trained on a small amount of hand-labeled data, and it in turn annotates a much larger body of unlabeled data to train a leaner, more efficient student model.

This year, we introduced a new self-learning paradigm that enables Alexa to automatically correct ASR and NLU errors without any human annotator in the loop. In this novel approach, we use ML to detect potentially unsatisfactory interactions with Alexa through signals such as the customer’s barging in on (i.e., interrupting) Alexa. Then, a graphical model trained on customers’ paraphrases of their requests automatically revises failing requests into semantically equivalent forms that work.

For example, “play Sirius XM Chill” used to fail, but from customer rephrasing, Alexa has learned that “play Sirius XM Chill” is equivalent to “play Sirius Channel 53” and automatically corrects the failing variant.

Using this implicit learning technique and occasional explicit feedback from customers — e.g., “did you want/mean … ?” — Alexa is now self-correcting millions of defects per week.

2. More natural

In 2015, when the first third-party skills began to appear, customers had to invoke them by name — e.g., “Alexa, ask Lyft to get me a ride to the airport.” However, with tens of thousands of custom skills, it can be difficult to discover skills by voice and remember their names. This is a unique challenge that Alexa faces.

To address this challenge, we have been exploring deep-learning-based name-free skill interaction to make skill discovery and invocation seamless. For several thousands of skills, customers can simply issue a request — “Alexa, get me a ride to the airport” — and Alexa uses information about the customer’s context and interaction history to decide which skill to invoke.

Another way we’ve made interacting with Alexa more natural is by enabling her to handle compound requests, such as “Alexa, turn down the lights and play music”. Among other innovations, this required more efficient techniques for training semantic parsers, which analyze both the structure of a sentence and the meanings of its parts.

Alexa’s responses are also becoming more natural. This year, we began using neural networks for text-to-speech synthesis. This not only results in more-natural-sounding speech but makes it much easier to adapt Alexa’s TTS system to different speaking styles — a newscaster style for reading the news, a DJ style for announcing songs, or even celebrity voices, like Samuel L. Jackson’s.

3. More knowledgeable

Every day, Alexa answers millions of questions that she’s never been asked before, an indication of customers’ growing confidence in Alexa’s question-answering ability.

The core of Alexa’s knowledge base is a knowledge graph, which encodes billions of facts and has grown 20-fold over the past five years. But Alexa also draws information from hundreds of other sources.

And now, customers are helping Alexa learn through Alexa Answers, an online interface that lets people add to Alexa’s knowledge. In a private beta test and the first month of public release, Alexa customers have furnished Alexa Answers with hundreds of thousands of new answers, which have been shared with customers millions of times.

4. More context-aware and proactive

Today, through an optional feature called Hunches, Alexa can learn how you interact with your smart home and suggest actions when she senses that devices such as lights, locks, switches, and plugs are not in the states that you prefer. We are currently expanding the notion of Hunches to include another Alexa feature called Routines. If you set your alarm for 6:00 a.m. every day, for example, and on waking, you immediately ask for the weather, Alexa will suggest creating a Routine that sets the weekday alarm to 6:00 and plays the weather report as soon as the alarm goes off.

Earlier this year, we launched Alexa Guard, a feature that you can activate when you leave the house. If your Echo device detects the sound of a smoke alarm, a carbon monoxide alarm, or glass breaking, Alexa Guard sends you an alert. Guard’s acoustic-event-detection model uses multitask learning, which reduces the amount of labeled data needed for training and makes the model more compact.

This fall, we will begin previewing an extended version of Alexa Guard that recognizes additional sounds associated with activity, such as footsteps, talking, coughing, or doors closing. Customers can also create Routines that include Guard — activating Guard automatically during work hours, for instance.

5. More conversational

Customers want Alexa to do more for them than complete one-shot requests like “Alexa, play Duke Ellington” or “Alexa, what’s the weather?” This year, we have improved Alexa’s ability to carry context from one request to another, the way humans do in conversation.

For instance, if an Alexa customer asks, “When is The Addams Family playing at the Bijou?” and then follows up with the question “Is there a good Mexican restaurant near there?”, Alexa needs to know that “there” refers to the Bijou. Some of our recent work in this area won one of the two best-paper awards at the Association for Computational Linguistics’ Workshop on Natural-Language Processing for Conversational AI. The key idea is to jointly model the salient entities with transformer networks that use a self-attention mechanism.

However, completing complex tasks that require back-and-forth interaction and anticipation of the customer’s latent goals is still a challenging problem. For example, a customer using Alexa to plan a night out would have to use different skills to find a movie, a restaurant near the theater, and a ride-sharing service, coordinating times and locations.

We are currently testing a new deep-learning-based technology, called Alexa Conversations, with a small group of skill developers who are using it to build high-quality multiturn experiences with minimal effort. The developer supplies Alexa Conversations with a set of sample dialogues, and a simulator expands it into 100 times as much data. Alexa Conversations then uses that data to train a bleeding-edge deep-learning model to predict dialogue actions, without the need for a priori hand-authored rules.

State_tracking.png._CB438077172_.png
Dialogue management involves tracking the values of "slots", such as time and location, throughout a conversation. Here, blue arrows indicate slots whose values must be updated across conversational turns.

At re:MARS, we demonstrated a new Night Out planning experience that uses Alexa Conversations technology and novel skill-transitioning algorithms to automatically coordinate conversational planning tasks across multiple skills.

We’re also adapting Alexa Conversations technology to the new concierge feature for Ring video doorbells. With this technology, the doorbell can engage in short conversations on your behalf, taking messages or telling a delivery person where to leave a package. We’re working hard to bring both of these experiences to customers.

What will the next five years look like?

Five years ago, it was inconceivable to us that customers would be interacting with Alexa billions of times per week and that developers would, on their own, build 100,000-plus skills. Such adoption is inspiring our teams to invent at an even faster pace, creating novel experiences that will increase utility and further delight our customers.

1. Alexa everywhere

The Echo family of devices and Alexa’s integration into third-party products has made Alexa a part of millions of homes worldwide. We have been working arduously on bringing the convenience of Alexa, which revolutionized daily convenience in homes, to our customers on the go. Echo Buds, Echo Auto, and the Day 1 Editions of Echo Loop and Echo Frames are already demonstrating that Alexa-on-the-go can simplify our lives even further.

With greater portability comes greater risk of slow or lost Internet connections. Echo devices with built-in smart-home hubs already have a hybrid mode, which allows them to do some spoken-language processing when they can’t rely on Alexa’s cloud-based models. This is an important area of ongoing research for us. For instance, we are investigating new techniques for compressing Alexa’s machine learning models so that they can run on-device.

The new on-the-go hardware isn’t the only way that Alexa is becoming more portable. The new Guest Connect experience allows you to log into your Alexa account from any Echo device — even ones you don’t own — and play your music or preferred news.

2. Moving up the AI stack

Alexa’s unparalleled customer and developer adoption provides new challenges for AI research. In particular, to further shift the cognitive load from customers to AI, we must move up the AI stack, from predictions (e.g., extracting customers’ intents) to more contextual reasoning.

One of our goals is to seamlessly connect disparate skills to increase convenience for our customers. Alexa Conversations and the Night Out experience are the first steps in that direction, completing complex tasks across multiple services and skills.

To enable the same kind of interoperability across different AIs, we helped found the Voice Interoperability Initiative, a consortium of dozens of tech companies uniting to promote customer choice by supporting multiple, interoperable voice services on a single device.

Alexa will also make better decisions by factoring in more information about the customer’s context and history. For instance, when a customer asks an Alexa-enabled device in a hotel room “Alexa, what are the pool hours?”, Alexa needs to respond with the hours for the hotel pool and not the community pool.

We are inspired by the success of learning directly from customers through the self-learning techniques I described earlier. This is an important area where we will continue to incorporate new signals, such as vocal frustration with Alexa, and learn from direct and indirect feedback to make Alexa more accurate.

3. Alexa for everyone

As AI systems like Alexa become an indispensable part of our social fabric, bias mitigation and fairness in AI will require even deeper attention. Our goal is for Alexa to work equally well for all our customers. In addition to our own research, we’ve entered into a three-year collaboration with the National Science Foundation to fund research on fairness in AI.

We envision a future where anyone can create conversational-AI systems. With the Alexa Skills Kit and Alexa Voice Service, we made it easy for developers to innovate using Alexa’s AI. Even end users can build personal skills within minutes using Alexa Skill Blueprints.

We are also thrilled with the Alexa Prize competition, which is democratizing conversational AI by letting university students perform state-of-the-art research at scale. University teams are working on the ultimate conversational-AI challenge of creating socialbots that can converse coherently and engagingly for 20 minutes with humans on a range of current events and popular topics”.

The third instance of the challenge is under way, and we are confident that the university teams will continue to push boundaries — perhaps even give their socialbots an original sense of humor, by far one of the hardest AI challenges.

Together with developers and academic researchers, we’ve made great strides in conversational AI. But there’s so much more to be accomplished. While the future is difficult to predict, one thing I am sure of is that the Alexa team will continue to invent on behalf of our customers.

Research areas

Related content

US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, NY, New York
The Ads Measurement Science team in the Measurement, Ad Tech, and Data Science (MADS) team of Amazon Ads serves a centralized role developing solutions for a multitude of performance measurement products. We create solutions which measure the comprehensive impact of advertiser's ad spend, including sales impacts both online and offline and across timescales, and provide actionable insights that enable our advertisers to optimize their media portfolios. We also own the science solutions for AI tools that unlock new insights and automate high-effort customer workflows, such as custom query and report generation based on natural language user requests. We leverage a host of scientific technologies to accomplish this mission, including Generative AI, classical ML, Causal Inference, Natural Language Processing, and Computer Vision. As an Applied Scientist on the team, you will lead measurement solutions end-to-end from inception to production. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. Key job responsibilities - Leverage deep expertise in one or more scientific disciplines to invent solutions to ambiguous ads measurement problems - Disambiguate problems to propose clear evaluation frameworks and success criteria - Work autonomously and write high quality technical documents - Implement a significant portion of critical-path code, and partner with engineers to directly carry solutions into production - Partner closely with other scientists to deliver large, multi-faceted technical projects - Share and publish works with the broader scientific community through meetings and conferences - Communicate clearly to both technical and non-technical audiences - Contribute new ideas that shape the direction of the team's work - Mentor more junior scientists and participate in the hiring process About the team We are a team of scientists across Applied, Research, Data Science and Economist disciplines. You will work with colleagues with deep expertise in ML, NLP, CV, Gen AI, and Causal Inference with a diverse range of backgrounds. We partner closely with top-notch engineers, product managers, sales leaders, and other scientists with expertise in the ads industry and on building scalable modeling and software solutions.
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a highly innovative product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Science manager to join our Applied AI team and lead a cross-functional team of scientists and engineers who work on LLM-based solutions. On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. You will be responsible for leading a cross functional team of scientists and engineer and developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Senior Applied Science Manager who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in leading teams that build highly scalable systems and system design, have excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. Your work will directly impact our customers in the form of novel products and services.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. The Sr. Applied Scientist will be in a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in Natural Language Processing (NLP) or Computer Vision (CV) related tasks. They will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. They will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Their work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve solutions powering customer experience on Alexa+. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership.
US, VA, Arlington
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: - Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) - Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards - Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence - Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity - Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap - Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders - Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, VA, Arlington
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Redmond
Project Kuiper is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Kuiper's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, Santa Clara
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Economist III Job Location: Arlington, Virginia Job Number: AMZ9442487 Position Responsibilities: Develop advanced structural demand and econometric frameworks for products and services in Amazon Devices. Create and drive the scientific roadmap for the team, and influence partner science teams. Drive cross-functional collaboration with scientists, engineers, and business leaders to integrate economic insights into strategic decision-making processes and shape future initiatives. Communicate insights in writing and verbally, to senior leaders on Product and Finance teams within the company. Actively mentor junior scientists on advanced econometric techniques. Position Requirements: Ph.D. or foreign equivalent degree in Economics or a related field and three years of research or work experience in the job offered or a related occupation. Must have three years of research or work experience in the following skill(s): (1) working with and using econometrics (including with program evaluation, forecasting, time series, panel data, or high dimensional problems), economic theory, and quantitative methods; and (2) building statistical models using R, Python, STATA, or a related software. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $159,200/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000