Alexa at five: Looking back, looking forward

Today is the fifth anniversary of the launch of the Amazon Echo, so in a talk I gave yesterday at the Web Summit in Lisbon, I looked at how far Alexa has come and where we’re heading next.

Poster-captioned.jpg._CB447972009_.jpg
This poster of the original Echo device, signed by the scientists and engineers who helped make it possible, hangs in Rohit's office.

Amazon’s mission is to be the earth’s most customer-centric company. With that mission in mind and the Star Trek computer as an inspiration, on November 6, 2014, a small multidisciplinary team launched Amazon Echo, with the aspiration of revolutionizing daily convenience for our customers using artificial intelligence (AI).

Before Echo ushered in the convenience of voice-enabled ambient computing, customers were used to searches on desktops and mobile phones, where the onus was entirely on them to sift through blue links to find answers to their questions or connect to services. While app stores on phones offered “there’s an app for that” convenience, the cognitive load on customers continued to increase.

Alexa-powered Echo broke these human-machine interaction paradigms, shifting the cognitive load from customers to AI and causing a tectonic shift in how customers interact with a myriad of services, find information on the Web, control smart appliances, and connect with other people.

Enhancements in foundational components of Alexa

In order to be magical at the launch of Echo, Alexa needed to be great at four fundamental AI tasks:

  1. Wake word detection: On the device, detect the keyword “Alexa” to get the AI’s attention;
  2. Automatic speech recognition (ASR): Upon detecting the wake word, convert audio streamed to the Amazon Web Services (AWS) cloud into words;
  3. Natural-language understanding (NLU): Extract the meaning of the recognized words so that Alexa can take the appropriate action in response to the customer’s request; and
  4. Text-to-speech synthesis (TTS): Convert Alexa’s textual response to the customer’s request into spoken audio.

Over the past five years, we have continued to advance each of these foundational components. In both wake word and ASR, we’ve seen fourfold reductions in recognition errors. In NLU, the error reduction has been threefold — even though the range of utterances that NLU processes, and the range of actions Alexa can take, have both increased dramatically. And in listener studies that use the MUSHRA audio perception methodology, we’ve seen an 80% reduction in the naturalness gap between Alexa’s speech and human speech.

Our overarching strategy for Alexa’s AI has been to combine machine learning (ML) — in particular, deep learning — with the large-scale data and computational resources available through AWS. But these performance improvements are the result of research on a variety of specific topics that extend deep learning, including

  • semi-supervised learning, or using a combination of unlabeled and labeled data to improve the ML system;
  • active learning, or the learning strategy where the ML system selects more-informative samples to receive manual labels;
  • large-scale distributed training, or parallelizing ML-based model training for efficient learning on a large corpus; and
  • context-aware modeling, or using a wide variety of information — including the type of device where a request originates, skills the customer uses or has enabled, and past requests — to improve accuracy.

For more coverage of the anniversary of the Echo's launch, see "Alexa, happy birthday" on Amazon's Day One blog.

Customer impact

From Echo’s launch in November 2014 to now, we have gone from zero customer interactions with Alexa to billions per week. Customers now interact with Alexa in 15 language variants and more than 80 countries.

Through the Alexa Voice Service and the Alexa Skills Kit, we have democratized conversational AI. These self-serve APIs and toolkits let developers integrate Alexa into their devices and create custom skills. Alexa is now available on hundreds of different device types. There are more than 85,000 smart-home products that can be controlled with Alexa, from more than 9,500 unique brands, and third-party developers have built more than 100,000 custom skills.

Ongoing research in conversational AI

Alexa’s success doesn’t mean that conversational AI is a solved problem. On the contrary, we’ve just scratched the surface of what’s possible. We’re working hard to make Alexa …

1. More self-learning

Our scientists and engineers are making Alexa smarter faster by reducing reliance on supervised learning (i.e., building ML models on manually labeled data). A few months back, we announced that we’d trained a speech recognition system on a million hours of unlabeled speech using the teacher-student paradigm of deep learning. This technology is now in production for UK English, where it has improved the accuracy of Alexa’s speech recognizers, and we’re working to apply it to all language variants.

LSTMnetworkanimationV3.gif._CB467045280_.gif
In the teacher-student paradigm of deep learning, a powerful but impractically slow teacher model is trained on a small amount of hand-labeled data, and it in turn annotates a much larger body of unlabeled data to train a leaner, more efficient student model.

This year, we introduced a new self-learning paradigm that enables Alexa to automatically correct ASR and NLU errors without any human annotator in the loop. In this novel approach, we use ML to detect potentially unsatisfactory interactions with Alexa through signals such as the customer’s barging in on (i.e., interrupting) Alexa. Then, a graphical model trained on customers’ paraphrases of their requests automatically revises failing requests into semantically equivalent forms that work.

For example, “play Sirius XM Chill” used to fail, but from customer rephrasing, Alexa has learned that “play Sirius XM Chill” is equivalent to “play Sirius Channel 53” and automatically corrects the failing variant.

Using this implicit learning technique and occasional explicit feedback from customers — e.g., “did you want/mean … ?” — Alexa is now self-correcting millions of defects per week.

2. More natural

In 2015, when the first third-party skills began to appear, customers had to invoke them by name — e.g., “Alexa, ask Lyft to get me a ride to the airport.” However, with tens of thousands of custom skills, it can be difficult to discover skills by voice and remember their names. This is a unique challenge that Alexa faces.

To address this challenge, we have been exploring deep-learning-based name-free skill interaction to make skill discovery and invocation seamless. For several thousands of skills, customers can simply issue a request — “Alexa, get me a ride to the airport” — and Alexa uses information about the customer’s context and interaction history to decide which skill to invoke.

Another way we’ve made interacting with Alexa more natural is by enabling her to handle compound requests, such as “Alexa, turn down the lights and play music”. Among other innovations, this required more efficient techniques for training semantic parsers, which analyze both the structure of a sentence and the meanings of its parts.

Alexa’s responses are also becoming more natural. This year, we began using neural networks for text-to-speech synthesis. This not only results in more-natural-sounding speech but makes it much easier to adapt Alexa’s TTS system to different speaking styles — a newscaster style for reading the news, a DJ style for announcing songs, or even celebrity voices, like Samuel L. Jackson’s.

3. More knowledgeable

Every day, Alexa answers millions of questions that she’s never been asked before, an indication of customers’ growing confidence in Alexa’s question-answering ability.

The core of Alexa’s knowledge base is a knowledge graph, which encodes billions of facts and has grown 20-fold over the past five years. But Alexa also draws information from hundreds of other sources.

And now, customers are helping Alexa learn through Alexa Answers, an online interface that lets people add to Alexa’s knowledge. In a private beta test and the first month of public release, Alexa customers have furnished Alexa Answers with hundreds of thousands of new answers, which have been shared with customers millions of times.

4. More context-aware and proactive

Today, through an optional feature called Hunches, Alexa can learn how you interact with your smart home and suggest actions when she senses that devices such as lights, locks, switches, and plugs are not in the states that you prefer. We are currently expanding the notion of Hunches to include another Alexa feature called Routines. If you set your alarm for 6:00 a.m. every day, for example, and on waking, you immediately ask for the weather, Alexa will suggest creating a Routine that sets the weekday alarm to 6:00 and plays the weather report as soon as the alarm goes off.

Earlier this year, we launched Alexa Guard, a feature that you can activate when you leave the house. If your Echo device detects the sound of a smoke alarm, a carbon monoxide alarm, or glass breaking, Alexa Guard sends you an alert. Guard’s acoustic-event-detection model uses multitask learning, which reduces the amount of labeled data needed for training and makes the model more compact.

This fall, we will begin previewing an extended version of Alexa Guard that recognizes additional sounds associated with activity, such as footsteps, talking, coughing, or doors closing. Customers can also create Routines that include Guard — activating Guard automatically during work hours, for instance.

5. More conversational

Customers want Alexa to do more for them than complete one-shot requests like “Alexa, play Duke Ellington” or “Alexa, what’s the weather?” This year, we have improved Alexa’s ability to carry context from one request to another, the way humans do in conversation.

For instance, if an Alexa customer asks, “When is The Addams Family playing at the Bijou?” and then follows up with the question “Is there a good Mexican restaurant near there?”, Alexa needs to know that “there” refers to the Bijou. Some of our recent work in this area won one of the two best-paper awards at the Association for Computational Linguistics’ Workshop on Natural-Language Processing for Conversational AI. The key idea is to jointly model the salient entities with transformer networks that use a self-attention mechanism.

However, completing complex tasks that require back-and-forth interaction and anticipation of the customer’s latent goals is still a challenging problem. For example, a customer using Alexa to plan a night out would have to use different skills to find a movie, a restaurant near the theater, and a ride-sharing service, coordinating times and locations.

We are currently testing a new deep-learning-based technology, called Alexa Conversations, with a small group of skill developers who are using it to build high-quality multiturn experiences with minimal effort. The developer supplies Alexa Conversations with a set of sample dialogues, and a simulator expands it into 100 times as much data. Alexa Conversations then uses that data to train a bleeding-edge deep-learning model to predict dialogue actions, without the need for a priori hand-authored rules.

State_tracking.png._CB438077172_.png
Dialogue management involves tracking the values of "slots", such as time and location, throughout a conversation. Here, blue arrows indicate slots whose values must be updated across conversational turns.

At re:MARS, we demonstrated a new Night Out planning experience that uses Alexa Conversations technology and novel skill-transitioning algorithms to automatically coordinate conversational planning tasks across multiple skills.

We’re also adapting Alexa Conversations technology to the new concierge feature for Ring video doorbells. With this technology, the doorbell can engage in short conversations on your behalf, taking messages or telling a delivery person where to leave a package. We’re working hard to bring both of these experiences to customers.

What will the next five years look like?

Five years ago, it was inconceivable to us that customers would be interacting with Alexa billions of times per week and that developers would, on their own, build 100,000-plus skills. Such adoption is inspiring our teams to invent at an even faster pace, creating novel experiences that will increase utility and further delight our customers.

1. Alexa everywhere

The Echo family of devices and Alexa’s integration into third-party products has made Alexa a part of millions of homes worldwide. We have been working arduously on bringing the convenience of Alexa, which revolutionized daily convenience in homes, to our customers on the go. Echo Buds, Echo Auto, and the Day 1 Editions of Echo Loop and Echo Frames are already demonstrating that Alexa-on-the-go can simplify our lives even further.

With greater portability comes greater risk of slow or lost Internet connections. Echo devices with built-in smart-home hubs already have a hybrid mode, which allows them to do some spoken-language processing when they can’t rely on Alexa’s cloud-based models. This is an important area of ongoing research for us. For instance, we are investigating new techniques for compressing Alexa’s machine learning models so that they can run on-device.

The new on-the-go hardware isn’t the only way that Alexa is becoming more portable. The new Guest Connect experience allows you to log into your Alexa account from any Echo device — even ones you don’t own — and play your music or preferred news.

2. Moving up the AI stack

Alexa’s unparalleled customer and developer adoption provides new challenges for AI research. In particular, to further shift the cognitive load from customers to AI, we must move up the AI stack, from predictions (e.g., extracting customers’ intents) to more contextual reasoning.

One of our goals is to seamlessly connect disparate skills to increase convenience for our customers. Alexa Conversations and the Night Out experience are the first steps in that direction, completing complex tasks across multiple services and skills.

To enable the same kind of interoperability across different AIs, we helped found the Voice Interoperability Initiative, a consortium of dozens of tech companies uniting to promote customer choice by supporting multiple, interoperable voice services on a single device.

Alexa will also make better decisions by factoring in more information about the customer’s context and history. For instance, when a customer asks an Alexa-enabled device in a hotel room “Alexa, what are the pool hours?”, Alexa needs to respond with the hours for the hotel pool and not the community pool.

We are inspired by the success of learning directly from customers through the self-learning techniques I described earlier. This is an important area where we will continue to incorporate new signals, such as vocal frustration with Alexa, and learn from direct and indirect feedback to make Alexa more accurate.

3. Alexa for everyone

As AI systems like Alexa become an indispensable part of our social fabric, bias mitigation and fairness in AI will require even deeper attention. Our goal is for Alexa to work equally well for all our customers. In addition to our own research, we’ve entered into a three-year collaboration with the National Science Foundation to fund research on fairness in AI.

We envision a future where anyone can create conversational-AI systems. With the Alexa Skills Kit and Alexa Voice Service, we made it easy for developers to innovate using Alexa’s AI. Even end users can build personal skills within minutes using Alexa Skill Blueprints.

We are also thrilled with the Alexa Prize competition, which is democratizing conversational AI by letting university students perform state-of-the-art research at scale. University teams are working on the ultimate conversational-AI challenge of creating socialbots that can converse coherently and engagingly for 20 minutes with humans on a range of current events and popular topics”.

The third instance of the challenge is under way, and we are confident that the university teams will continue to push boundaries — perhaps even give their socialbots an original sense of humor, by far one of the hardest AI challenges.

Together with developers and academic researchers, we’ve made great strides in conversational AI. But there’s so much more to be accomplished. While the future is difficult to predict, one thing I am sure of is that the Alexa team will continue to invent on behalf of our customers.

Research areas

Related content

US, VA, Arlington
Are you looking to work at the forefront of Machine Learning (ML) and Artificial Intelligence (AI)? Would you be excited to apply AI algorithms to solve real world problems with significant impact? The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Senior Data Scientist to help customers implement AI/ML solutions and realize transformational business opportunities. This is a team of scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine-tune the right models, define paths to navigate technical or business challenges, develop scalable solutions and applications, and launch them in production. The team provides guidance and implements best practices for applying AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using AI/ML and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an experienced Senior Data Scientist, you will be responsible for: 1. Lead end-to-end AI/ML and GenAI projects, from understanding business needs to data preparation, model development, solution deployment, and post-production monitoring 2. Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate AI algorithms and build ML systems and operations (MLOps) using AWS services to address real-world challenges 3. Interact with customers directly to understand the business challenges, deliver briefing and deep dive sessions to customers and guide them on adoption patterns and paths to production 4. Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations tailored to technical, business, and executive stakeholders 5. Provide customer and market feedback to product and engineering teams to help define product direction This is a customer-facing role with potential travel to customer sites as needed. About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next-level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Key job responsibilities * Partner with laboratory science teams on design and analysis of experiments * Originate and lead the development of new data collection workflows with cross-functional partners * Develop and deploy scalable bioinformatics analysis and QC workflows * Evaluate and incorporate novel bioinformatic approaches to solve critical business problems About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel sensing and actuation technologies for dexterous manipulation - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, MA, North Reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of systems that: • Enables unprecedented generalization across diverse tasks • Enables contact-rich manipulation in different environments • Seamlessly integrates mobility and manipulation • Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration!
US, WA, Seattle
We are a passionate team applying the latest advances in technology to solve real-world challenges. As a Data Scientist working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. At Amazon, we cultivate an inclusive culture through our Leadership Principles, which emphasize seeking diverse perspectives, continuous learning, and building trust. Our global community includes thirteen employee-led affinity groups with 40,000 members across 190 chapters, showcasing our commitment to embracing differences and fostering continuous learning through local, regional, and global programs. We prioritize work-life balance, recognizing it as fundamental to long-term happiness and fulfillment. Our team is committed to supporting your career development through challenging projects, mentorship opportunities, and targeted training programs that help you reach your full potential. Key job responsibilities Key job responsibilities * Deliver data analyses that optimize overall team process and guide decision-making * Deep dive to understand source of anomalies across a variety of datasets including low-level sequencing read data * Identify key metrics that are drivers to achieve team goals; work with senior stakeholders to refine your results * Use modern statistical methods to highlight insights for predictive & generative ML models and assay process * Perform correlation analysis, significance testing, and simulation on high- and low-fidelity datasets for various types of readouts * Generate reports with tables and visualization that support operational cycle analysis and one-off POC experiments * Collaborate with multi-disciplinary domain experts to support your findings and their experiments * Write well-tested scripts that can be promoted by our software teams to production pipelines * Learn about new statistical methods for our domain and adopt them in your work * Work fluently in SQL and Python. Be skilled in generating compelling visualizations. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
IN, KA, Bengaluru
Amazon is looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. As a Speech and Language Scientist, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in the area of speech and audio understanding technologies including ASR.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.