Alexa at five: Looking back, looking forward

Today is the fifth anniversary of the launch of the Amazon Echo, so in a talk I gave yesterday at the Web Summit in Lisbon, I looked at how far Alexa has come and where we’re heading next.

Poster-captioned.jpg._CB447972009_.jpg
This poster of the original Echo device, signed by the scientists and engineers who helped make it possible, hangs in Rohit's office.

Amazon’s mission is to be the earth’s most customer-centric company. With that mission in mind and the Star Trek computer as an inspiration, on November 6, 2014, a small multidisciplinary team launched Amazon Echo, with the aspiration of revolutionizing daily convenience for our customers using artificial intelligence (AI).

Before Echo ushered in the convenience of voice-enabled ambient computing, customers were used to searches on desktops and mobile phones, where the onus was entirely on them to sift through blue links to find answers to their questions or connect to services. While app stores on phones offered “there’s an app for that” convenience, the cognitive load on customers continued to increase.

Alexa-powered Echo broke these human-machine interaction paradigms, shifting the cognitive load from customers to AI and causing a tectonic shift in how customers interact with a myriad of services, find information on the Web, control smart appliances, and connect with other people.

Enhancements in foundational components of Alexa

In order to be magical at the launch of Echo, Alexa needed to be great at four fundamental AI tasks:

  1. Wake word detection: On the device, detect the keyword “Alexa” to get the AI’s attention;
  2. Automatic speech recognition (ASR): Upon detecting the wake word, convert audio streamed to the Amazon Web Services (AWS) cloud into words;
  3. Natural-language understanding (NLU): Extract the meaning of the recognized words so that Alexa can take the appropriate action in response to the customer’s request; and
  4. Text-to-speech synthesis (TTS): Convert Alexa’s textual response to the customer’s request into spoken audio.

Over the past five years, we have continued to advance each of these foundational components. In both wake word and ASR, we’ve seen fourfold reductions in recognition errors. In NLU, the error reduction has been threefold — even though the range of utterances that NLU processes, and the range of actions Alexa can take, have both increased dramatically. And in listener studies that use the MUSHRA audio perception methodology, we’ve seen an 80% reduction in the naturalness gap between Alexa’s speech and human speech.

Our overarching strategy for Alexa’s AI has been to combine machine learning (ML) — in particular, deep learning — with the large-scale data and computational resources available through AWS. But these performance improvements are the result of research on a variety of specific topics that extend deep learning, including

  • semi-supervised learning, or using a combination of unlabeled and labeled data to improve the ML system;
  • active learning, or the learning strategy where the ML system selects more-informative samples to receive manual labels;
  • large-scale distributed training, or parallelizing ML-based model training for efficient learning on a large corpus; and
  • context-aware modeling, or using a wide variety of information — including the type of device where a request originates, skills the customer uses or has enabled, and past requests — to improve accuracy.

For more coverage of the anniversary of the Echo's launch, see "Alexa, happy birthday" on Amazon's Day One blog.

Customer impact

From Echo’s launch in November 2014 to now, we have gone from zero customer interactions with Alexa to billions per week. Customers now interact with Alexa in 15 language variants and more than 80 countries.

Through the Alexa Voice Service and the Alexa Skills Kit, we have democratized conversational AI. These self-serve APIs and toolkits let developers integrate Alexa into their devices and create custom skills. Alexa is now available on hundreds of different device types. There are more than 85,000 smart-home products that can be controlled with Alexa, from more than 9,500 unique brands, and third-party developers have built more than 100,000 custom skills.

Ongoing research in conversational AI

Alexa’s success doesn’t mean that conversational AI is a solved problem. On the contrary, we’ve just scratched the surface of what’s possible. We’re working hard to make Alexa …

1. More self-learning

Our scientists and engineers are making Alexa smarter faster by reducing reliance on supervised learning (i.e., building ML models on manually labeled data). A few months back, we announced that we’d trained a speech recognition system on a million hours of unlabeled speech using the teacher-student paradigm of deep learning. This technology is now in production for UK English, where it has improved the accuracy of Alexa’s speech recognizers, and we’re working to apply it to all language variants.

LSTMnetworkanimationV3.gif._CB467045280_.gif
In the teacher-student paradigm of deep learning, a powerful but impractically slow teacher model is trained on a small amount of hand-labeled data, and it in turn annotates a much larger body of unlabeled data to train a leaner, more efficient student model.

This year, we introduced a new self-learning paradigm that enables Alexa to automatically correct ASR and NLU errors without any human annotator in the loop. In this novel approach, we use ML to detect potentially unsatisfactory interactions with Alexa through signals such as the customer’s barging in on (i.e., interrupting) Alexa. Then, a graphical model trained on customers’ paraphrases of their requests automatically revises failing requests into semantically equivalent forms that work.

For example, “play Sirius XM Chill” used to fail, but from customer rephrasing, Alexa has learned that “play Sirius XM Chill” is equivalent to “play Sirius Channel 53” and automatically corrects the failing variant.

Using this implicit learning technique and occasional explicit feedback from customers — e.g., “did you want/mean … ?” — Alexa is now self-correcting millions of defects per week.

2. More natural

In 2015, when the first third-party skills began to appear, customers had to invoke them by name — e.g., “Alexa, ask Lyft to get me a ride to the airport.” However, with tens of thousands of custom skills, it can be difficult to discover skills by voice and remember their names. This is a unique challenge that Alexa faces.

To address this challenge, we have been exploring deep-learning-based name-free skill interaction to make skill discovery and invocation seamless. For several thousands of skills, customers can simply issue a request — “Alexa, get me a ride to the airport” — and Alexa uses information about the customer’s context and interaction history to decide which skill to invoke.

Another way we’ve made interacting with Alexa more natural is by enabling her to handle compound requests, such as “Alexa, turn down the lights and play music”. Among other innovations, this required more efficient techniques for training semantic parsers, which analyze both the structure of a sentence and the meanings of its parts.

Alexa’s responses are also becoming more natural. This year, we began using neural networks for text-to-speech synthesis. This not only results in more-natural-sounding speech but makes it much easier to adapt Alexa’s TTS system to different speaking styles — a newscaster style for reading the news, a DJ style for announcing songs, or even celebrity voices, like Samuel L. Jackson’s.

3. More knowledgeable

Every day, Alexa answers millions of questions that she’s never been asked before, an indication of customers’ growing confidence in Alexa’s question-answering ability.

The core of Alexa’s knowledge base is a knowledge graph, which encodes billions of facts and has grown 20-fold over the past five years. But Alexa also draws information from hundreds of other sources.

And now, customers are helping Alexa learn through Alexa Answers, an online interface that lets people add to Alexa’s knowledge. In a private beta test and the first month of public release, Alexa customers have furnished Alexa Answers with hundreds of thousands of new answers, which have been shared with customers millions of times.

4. More context-aware and proactive

Today, through an optional feature called Hunches, Alexa can learn how you interact with your smart home and suggest actions when she senses that devices such as lights, locks, switches, and plugs are not in the states that you prefer. We are currently expanding the notion of Hunches to include another Alexa feature called Routines. If you set your alarm for 6:00 a.m. every day, for example, and on waking, you immediately ask for the weather, Alexa will suggest creating a Routine that sets the weekday alarm to 6:00 and plays the weather report as soon as the alarm goes off.

Earlier this year, we launched Alexa Guard, a feature that you can activate when you leave the house. If your Echo device detects the sound of a smoke alarm, a carbon monoxide alarm, or glass breaking, Alexa Guard sends you an alert. Guard’s acoustic-event-detection model uses multitask learning, which reduces the amount of labeled data needed for training and makes the model more compact.

This fall, we will begin previewing an extended version of Alexa Guard that recognizes additional sounds associated with activity, such as footsteps, talking, coughing, or doors closing. Customers can also create Routines that include Guard — activating Guard automatically during work hours, for instance.

5. More conversational

Customers want Alexa to do more for them than complete one-shot requests like “Alexa, play Duke Ellington” or “Alexa, what’s the weather?” This year, we have improved Alexa’s ability to carry context from one request to another, the way humans do in conversation.

For instance, if an Alexa customer asks, “When is The Addams Family playing at the Bijou?” and then follows up with the question “Is there a good Mexican restaurant near there?”, Alexa needs to know that “there” refers to the Bijou. Some of our recent work in this area won one of the two best-paper awards at the Association for Computational Linguistics’ Workshop on Natural-Language Processing for Conversational AI. The key idea is to jointly model the salient entities with transformer networks that use a self-attention mechanism.

However, completing complex tasks that require back-and-forth interaction and anticipation of the customer’s latent goals is still a challenging problem. For example, a customer using Alexa to plan a night out would have to use different skills to find a movie, a restaurant near the theater, and a ride-sharing service, coordinating times and locations.

We are currently testing a new deep-learning-based technology, called Alexa Conversations, with a small group of skill developers who are using it to build high-quality multiturn experiences with minimal effort. The developer supplies Alexa Conversations with a set of sample dialogues, and a simulator expands it into 100 times as much data. Alexa Conversations then uses that data to train a bleeding-edge deep-learning model to predict dialogue actions, without the need for a priori hand-authored rules.

State_tracking.png._CB438077172_.png
Dialogue management involves tracking the values of "slots", such as time and location, throughout a conversation. Here, blue arrows indicate slots whose values must be updated across conversational turns.

At re:MARS, we demonstrated a new Night Out planning experience that uses Alexa Conversations technology and novel skill-transitioning algorithms to automatically coordinate conversational planning tasks across multiple skills.

We’re also adapting Alexa Conversations technology to the new concierge feature for Ring video doorbells. With this technology, the doorbell can engage in short conversations on your behalf, taking messages or telling a delivery person where to leave a package. We’re working hard to bring both of these experiences to customers.

What will the next five years look like?

Five years ago, it was inconceivable to us that customers would be interacting with Alexa billions of times per week and that developers would, on their own, build 100,000-plus skills. Such adoption is inspiring our teams to invent at an even faster pace, creating novel experiences that will increase utility and further delight our customers.

1. Alexa everywhere

The Echo family of devices and Alexa’s integration into third-party products has made Alexa a part of millions of homes worldwide. We have been working arduously on bringing the convenience of Alexa, which revolutionized daily convenience in homes, to our customers on the go. Echo Buds, Echo Auto, and the Day 1 Editions of Echo Loop and Echo Frames are already demonstrating that Alexa-on-the-go can simplify our lives even further.

With greater portability comes greater risk of slow or lost Internet connections. Echo devices with built-in smart-home hubs already have a hybrid mode, which allows them to do some spoken-language processing when they can’t rely on Alexa’s cloud-based models. This is an important area of ongoing research for us. For instance, we are investigating new techniques for compressing Alexa’s machine learning models so that they can run on-device.

The new on-the-go hardware isn’t the only way that Alexa is becoming more portable. The new Guest Connect experience allows you to log into your Alexa account from any Echo device — even ones you don’t own — and play your music or preferred news.

2. Moving up the AI stack

Alexa’s unparalleled customer and developer adoption provides new challenges for AI research. In particular, to further shift the cognitive load from customers to AI, we must move up the AI stack, from predictions (e.g., extracting customers’ intents) to more contextual reasoning.

One of our goals is to seamlessly connect disparate skills to increase convenience for our customers. Alexa Conversations and the Night Out experience are the first steps in that direction, completing complex tasks across multiple services and skills.

To enable the same kind of interoperability across different AIs, we helped found the Voice Interoperability Initiative, a consortium of dozens of tech companies uniting to promote customer choice by supporting multiple, interoperable voice services on a single device.

Alexa will also make better decisions by factoring in more information about the customer’s context and history. For instance, when a customer asks an Alexa-enabled device in a hotel room “Alexa, what are the pool hours?”, Alexa needs to respond with the hours for the hotel pool and not the community pool.

We are inspired by the success of learning directly from customers through the self-learning techniques I described earlier. This is an important area where we will continue to incorporate new signals, such as vocal frustration with Alexa, and learn from direct and indirect feedback to make Alexa more accurate.

3. Alexa for everyone

As AI systems like Alexa become an indispensable part of our social fabric, bias mitigation and fairness in AI will require even deeper attention. Our goal is for Alexa to work equally well for all our customers. In addition to our own research, we’ve entered into a three-year collaboration with the National Science Foundation to fund research on fairness in AI.

We envision a future where anyone can create conversational-AI systems. With the Alexa Skills Kit and Alexa Voice Service, we made it easy for developers to innovate using Alexa’s AI. Even end users can build personal skills within minutes using Alexa Skill Blueprints.

We are also thrilled with the Alexa Prize competition, which is democratizing conversational AI by letting university students perform state-of-the-art research at scale. University teams are working on the ultimate conversational-AI challenge of creating socialbots that can converse coherently and engagingly for 20 minutes with humans on a range of current events and popular topics”.

The third instance of the challenge is under way, and we are confident that the university teams will continue to push boundaries — perhaps even give their socialbots an original sense of humor, by far one of the hardest AI challenges.

Together with developers and academic researchers, we’ve made great strides in conversational AI. But there’s so much more to be accomplished. While the future is difficult to predict, one thing I am sure of is that the Alexa team will continue to invent on behalf of our customers.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques