Alexa at five: Looking back, looking forward

Today is the fifth anniversary of the launch of the Amazon Echo, so in a talk I gave yesterday at the Web Summit in Lisbon, I looked at how far Alexa has come and where we’re heading next.

Poster-captioned.jpg._CB447972009_.jpg
This poster of the original Echo device, signed by the scientists and engineers who helped make it possible, hangs in Rohit's office.

Amazon’s mission is to be the earth’s most customer-centric company. With that mission in mind and the Star Trek computer as an inspiration, on November 6, 2014, a small multidisciplinary team launched Amazon Echo, with the aspiration of revolutionizing daily convenience for our customers using artificial intelligence (AI).

Before Echo ushered in the convenience of voice-enabled ambient computing, customers were used to searches on desktops and mobile phones, where the onus was entirely on them to sift through blue links to find answers to their questions or connect to services. While app stores on phones offered “there’s an app for that” convenience, the cognitive load on customers continued to increase.

Alexa-powered Echo broke these human-machine interaction paradigms, shifting the cognitive load from customers to AI and causing a tectonic shift in how customers interact with a myriad of services, find information on the Web, control smart appliances, and connect with other people.

Enhancements in foundational components of Alexa

In order to be magical at the launch of Echo, Alexa needed to be great at four fundamental AI tasks:

  1. Wake word detection: On the device, detect the keyword “Alexa” to get the AI’s attention;
  2. Automatic speech recognition (ASR): Upon detecting the wake word, convert audio streamed to the Amazon Web Services (AWS) cloud into words;
  3. Natural-language understanding (NLU): Extract the meaning of the recognized words so that Alexa can take the appropriate action in response to the customer’s request; and
  4. Text-to-speech synthesis (TTS): Convert Alexa’s textual response to the customer’s request into spoken audio.

Over the past five years, we have continued to advance each of these foundational components. In both wake word and ASR, we’ve seen fourfold reductions in recognition errors. In NLU, the error reduction has been threefold — even though the range of utterances that NLU processes, and the range of actions Alexa can take, have both increased dramatically. And in listener studies that use the MUSHRA audio perception methodology, we’ve seen an 80% reduction in the naturalness gap between Alexa’s speech and human speech.

Our overarching strategy for Alexa’s AI has been to combine machine learning (ML) — in particular, deep learning — with the large-scale data and computational resources available through AWS. But these performance improvements are the result of research on a variety of specific topics that extend deep learning, including

  • semi-supervised learning, or using a combination of unlabeled and labeled data to improve the ML system;
  • active learning, or the learning strategy where the ML system selects more-informative samples to receive manual labels;
  • large-scale distributed training, or parallelizing ML-based model training for efficient learning on a large corpus; and
  • context-aware modeling, or using a wide variety of information — including the type of device where a request originates, skills the customer uses or has enabled, and past requests — to improve accuracy.

For more coverage of the anniversary of the Echo's launch, see "Alexa, happy birthday" on Amazon's Day One blog.

Customer impact

From Echo’s launch in November 2014 to now, we have gone from zero customer interactions with Alexa to billions per week. Customers now interact with Alexa in 15 language variants and more than 80 countries.

Through the Alexa Voice Service and the Alexa Skills Kit, we have democratized conversational AI. These self-serve APIs and toolkits let developers integrate Alexa into their devices and create custom skills. Alexa is now available on hundreds of different device types. There are more than 85,000 smart-home products that can be controlled with Alexa, from more than 9,500 unique brands, and third-party developers have built more than 100,000 custom skills.

Ongoing research in conversational AI

Alexa’s success doesn’t mean that conversational AI is a solved problem. On the contrary, we’ve just scratched the surface of what’s possible. We’re working hard to make Alexa …

1. More self-learning

Our scientists and engineers are making Alexa smarter faster by reducing reliance on supervised learning (i.e., building ML models on manually labeled data). A few months back, we announced that we’d trained a speech recognition system on a million hours of unlabeled speech using the teacher-student paradigm of deep learning. This technology is now in production for UK English, where it has improved the accuracy of Alexa’s speech recognizers, and we’re working to apply it to all language variants.

LSTMnetworkanimationV3.gif._CB467045280_.gif
In the teacher-student paradigm of deep learning, a powerful but impractically slow teacher model is trained on a small amount of hand-labeled data, and it in turn annotates a much larger body of unlabeled data to train a leaner, more efficient student model.

This year, we introduced a new self-learning paradigm that enables Alexa to automatically correct ASR and NLU errors without any human annotator in the loop. In this novel approach, we use ML to detect potentially unsatisfactory interactions with Alexa through signals such as the customer’s barging in on (i.e., interrupting) Alexa. Then, a graphical model trained on customers’ paraphrases of their requests automatically revises failing requests into semantically equivalent forms that work.

For example, “play Sirius XM Chill” used to fail, but from customer rephrasing, Alexa has learned that “play Sirius XM Chill” is equivalent to “play Sirius Channel 53” and automatically corrects the failing variant.

Using this implicit learning technique and occasional explicit feedback from customers — e.g., “did you want/mean … ?” — Alexa is now self-correcting millions of defects per week.

2. More natural

In 2015, when the first third-party skills began to appear, customers had to invoke them by name — e.g., “Alexa, ask Lyft to get me a ride to the airport.” However, with tens of thousands of custom skills, it can be difficult to discover skills by voice and remember their names. This is a unique challenge that Alexa faces.

To address this challenge, we have been exploring deep-learning-based name-free skill interaction to make skill discovery and invocation seamless. For several thousands of skills, customers can simply issue a request — “Alexa, get me a ride to the airport” — and Alexa uses information about the customer’s context and interaction history to decide which skill to invoke.

Another way we’ve made interacting with Alexa more natural is by enabling her to handle compound requests, such as “Alexa, turn down the lights and play music”. Among other innovations, this required more efficient techniques for training semantic parsers, which analyze both the structure of a sentence and the meanings of its parts.

Alexa’s responses are also becoming more natural. This year, we began using neural networks for text-to-speech synthesis. This not only results in more-natural-sounding speech but makes it much easier to adapt Alexa’s TTS system to different speaking styles — a newscaster style for reading the news, a DJ style for announcing songs, or even celebrity voices, like Samuel L. Jackson’s.

3. More knowledgeable

Every day, Alexa answers millions of questions that she’s never been asked before, an indication of customers’ growing confidence in Alexa’s question-answering ability.

The core of Alexa’s knowledge base is a knowledge graph, which encodes billions of facts and has grown 20-fold over the past five years. But Alexa also draws information from hundreds of other sources.

And now, customers are helping Alexa learn through Alexa Answers, an online interface that lets people add to Alexa’s knowledge. In a private beta test and the first month of public release, Alexa customers have furnished Alexa Answers with hundreds of thousands of new answers, which have been shared with customers millions of times.

4. More context-aware and proactive

Today, through an optional feature called Hunches, Alexa can learn how you interact with your smart home and suggest actions when she senses that devices such as lights, locks, switches, and plugs are not in the states that you prefer. We are currently expanding the notion of Hunches to include another Alexa feature called Routines. If you set your alarm for 6:00 a.m. every day, for example, and on waking, you immediately ask for the weather, Alexa will suggest creating a Routine that sets the weekday alarm to 6:00 and plays the weather report as soon as the alarm goes off.

Earlier this year, we launched Alexa Guard, a feature that you can activate when you leave the house. If your Echo device detects the sound of a smoke alarm, a carbon monoxide alarm, or glass breaking, Alexa Guard sends you an alert. Guard’s acoustic-event-detection model uses multitask learning, which reduces the amount of labeled data needed for training and makes the model more compact.

This fall, we will begin previewing an extended version of Alexa Guard that recognizes additional sounds associated with activity, such as footsteps, talking, coughing, or doors closing. Customers can also create Routines that include Guard — activating Guard automatically during work hours, for instance.

5. More conversational

Customers want Alexa to do more for them than complete one-shot requests like “Alexa, play Duke Ellington” or “Alexa, what’s the weather?” This year, we have improved Alexa’s ability to carry context from one request to another, the way humans do in conversation.

For instance, if an Alexa customer asks, “When is The Addams Family playing at the Bijou?” and then follows up with the question “Is there a good Mexican restaurant near there?”, Alexa needs to know that “there” refers to the Bijou. Some of our recent work in this area won one of the two best-paper awards at the Association for Computational Linguistics’ Workshop on Natural-Language Processing for Conversational AI. The key idea is to jointly model the salient entities with transformer networks that use a self-attention mechanism.

However, completing complex tasks that require back-and-forth interaction and anticipation of the customer’s latent goals is still a challenging problem. For example, a customer using Alexa to plan a night out would have to use different skills to find a movie, a restaurant near the theater, and a ride-sharing service, coordinating times and locations.

We are currently testing a new deep-learning-based technology, called Alexa Conversations, with a small group of skill developers who are using it to build high-quality multiturn experiences with minimal effort. The developer supplies Alexa Conversations with a set of sample dialogues, and a simulator expands it into 100 times as much data. Alexa Conversations then uses that data to train a bleeding-edge deep-learning model to predict dialogue actions, without the need for a priori hand-authored rules.

State_tracking.png._CB438077172_.png
Dialogue management involves tracking the values of "slots", such as time and location, throughout a conversation. Here, blue arrows indicate slots whose values must be updated across conversational turns.

At re:MARS, we demonstrated a new Night Out planning experience that uses Alexa Conversations technology and novel skill-transitioning algorithms to automatically coordinate conversational planning tasks across multiple skills.

We’re also adapting Alexa Conversations technology to the new concierge feature for Ring video doorbells. With this technology, the doorbell can engage in short conversations on your behalf, taking messages or telling a delivery person where to leave a package. We’re working hard to bring both of these experiences to customers.

What will the next five years look like?

Five years ago, it was inconceivable to us that customers would be interacting with Alexa billions of times per week and that developers would, on their own, build 100,000-plus skills. Such adoption is inspiring our teams to invent at an even faster pace, creating novel experiences that will increase utility and further delight our customers.

1. Alexa everywhere

The Echo family of devices and Alexa’s integration into third-party products has made Alexa a part of millions of homes worldwide. We have been working arduously on bringing the convenience of Alexa, which revolutionized daily convenience in homes, to our customers on the go. Echo Buds, Echo Auto, and the Day 1 Editions of Echo Loop and Echo Frames are already demonstrating that Alexa-on-the-go can simplify our lives even further.

With greater portability comes greater risk of slow or lost Internet connections. Echo devices with built-in smart-home hubs already have a hybrid mode, which allows them to do some spoken-language processing when they can’t rely on Alexa’s cloud-based models. This is an important area of ongoing research for us. For instance, we are investigating new techniques for compressing Alexa’s machine learning models so that they can run on-device.

The new on-the-go hardware isn’t the only way that Alexa is becoming more portable. The new Guest Connect experience allows you to log into your Alexa account from any Echo device — even ones you don’t own — and play your music or preferred news.

2. Moving up the AI stack

Alexa’s unparalleled customer and developer adoption provides new challenges for AI research. In particular, to further shift the cognitive load from customers to AI, we must move up the AI stack, from predictions (e.g., extracting customers’ intents) to more contextual reasoning.

One of our goals is to seamlessly connect disparate skills to increase convenience for our customers. Alexa Conversations and the Night Out experience are the first steps in that direction, completing complex tasks across multiple services and skills.

To enable the same kind of interoperability across different AIs, we helped found the Voice Interoperability Initiative, a consortium of dozens of tech companies uniting to promote customer choice by supporting multiple, interoperable voice services on a single device.

Alexa will also make better decisions by factoring in more information about the customer’s context and history. For instance, when a customer asks an Alexa-enabled device in a hotel room “Alexa, what are the pool hours?”, Alexa needs to respond with the hours for the hotel pool and not the community pool.

We are inspired by the success of learning directly from customers through the self-learning techniques I described earlier. This is an important area where we will continue to incorporate new signals, such as vocal frustration with Alexa, and learn from direct and indirect feedback to make Alexa more accurate.

3. Alexa for everyone

As AI systems like Alexa become an indispensable part of our social fabric, bias mitigation and fairness in AI will require even deeper attention. Our goal is for Alexa to work equally well for all our customers. In addition to our own research, we’ve entered into a three-year collaboration with the National Science Foundation to fund research on fairness in AI.

We envision a future where anyone can create conversational-AI systems. With the Alexa Skills Kit and Alexa Voice Service, we made it easy for developers to innovate using Alexa’s AI. Even end users can build personal skills within minutes using Alexa Skill Blueprints.

We are also thrilled with the Alexa Prize competition, which is democratizing conversational AI by letting university students perform state-of-the-art research at scale. University teams are working on the ultimate conversational-AI challenge of creating socialbots that can converse coherently and engagingly for 20 minutes with humans on a range of current events and popular topics”.

The third instance of the challenge is under way, and we are confident that the university teams will continue to push boundaries — perhaps even give their socialbots an original sense of humor, by far one of the hardest AI challenges.

Together with developers and academic researchers, we’ve made great strides in conversational AI. But there’s so much more to be accomplished. While the future is difficult to predict, one thing I am sure of is that the Alexa team will continue to invent on behalf of our customers.

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning background, to lead the development of industry-leading technology with multimodal systems. As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Do you enjoy solving challenging problems and driving innovations in research? Do you want to create scalable optimization models and apply machine learning techniques to guide real-world decisions? We are looking for builders, innovators, and entrepreneurs who want to bring their ideas to reality and improve the lives of millions of customers. As a Research Science intern focused on Operations Research and Optimization intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes and work with massive datasets. As you navigate through complex algorithms and data structures, you'll find yourself at the forefront of innovation, shaping the future of Amazon's fulfillment, logistics, and supply chain operations. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions. You'll then immerse yourself in a world of data, leveraging your expertise in optimization, causal inference, time series analysis, and machine learning to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Operations Research Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Causal Inference, Time Series, Algorithms and Data Structures, Statistics, Operations Research, Machine Learning, Programming/Scripting Languages, LLMs In this role, you will gain hands-on experience in applying cutting-edge analytical techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights to drive operational excellence, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life Develop and apply optimization, causal inference, and time series modeling techniques to drive operational efficiencies and improve decision-making across Amazon's fulfillment, logistics, and supply chain operations Design and implement scalable algorithms and data structures to support complex optimization systems Leverage statistical methods and machine learning to uncover insights and patterns in large-scale operations data Prototype and validate new approaches through rigorous experimentation and analysis Collaborate closely with cross-functional teams of researchers, engineers, and business stakeholders to translate research outputs into tangible business impact
US, CA, San Francisco
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Must be eligible and available for a full-time (40h/ week) 12 week internship between May 2026 and September 2026. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Unleash Your Potential at the Forefront of AI Innovation At Amazon, we're on a mission to revolutionize the way the world leverages machine learning. Amazon is seeking graduate student scientists who can turn revolutionary theory into awe-inspiring reality. As an Applied Science Intern focused on Information and Knowledge Management in Machine Learning, you will play a critical role in developing the systems and frameworks that power Amazon's machine learning capabilities. You'll be at the epicenter of this transformation, shaping the systems and frameworks that power our cutting-edge AI capabilities. Imagine a role where you develop intuitive tools and workflows that empower machine learning teams to discover, reuse, and build upon existing models and datasets, accelerating innovation across the company. You'll leverage natural language processing and information retrieval techniques to unlock insights from vast repositories of unstructured data, fueling the next generation of AI applications. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Knowledge Graphs and Extraction, Neural Networks/GNNs, Data Structures and Algorithms, Time Series, Machine Learning, Natural Language Processing, Deep Learning, Large Language Models, Graph Modeling, Knowledge Graphs and Extraction, Programming/Scripting Languages In this role, you'll collaborate with brilliant minds to develop innovative frameworks and tools that streamline the lifecycle of machine learning assets, from data to deployed models in areas at the intersection of Knowledge Management within Machine Learning. You will conduct groundbreaking research into emerging best practices and innovations in the field of ML operations, knowledge engineering, and information management, proposing novel approaches that could further enhance Amazon's machine learning capabilities. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.
US, CA, Sunnyvale
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). A day in the life About the team Amazon’s AGI team is focused on building foundational AI to solve real-world problems at scale, delivering value to all existing businesses in Amazon, and enabling entirely new services and products for people and enterprises around the world.
US, WA, Seattle
Revolutionize the Future of AI at the Frontier of Applied Science Are you a brilliant mind seeking to push the boundaries of what's possible with artificial intelligence? Join our elite team of researchers and engineers at the forefront of applied science, where we're harnessing the latest advancements in natural language processing, deep learning, and generative AI to reshape industries and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge technologies such as large language models, transformers, and neural networks. You'll dive deep into complex challenges, fine-tuning state-of-the-art models, developing novel algorithms for named entity recognition, and exploring the vast potential of generative AI. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in statistics, recommender systems, and question answering to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for LLM & GenAI Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA; Pittsburgh, PA. Key job responsibilities We are particularly interested in candidates with expertise in: LLMs, NLP/NLU, Gen AI, Transformers, Fine-Tuning, Recommendation Systems, Deep Learning, NER, Statistics, Neural Networks, Question Answering. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and GenAI. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on recommendation systems, question answering, deep learning and generative AI. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Collaborate with cross-functional teams to tackle complex challenges in natural language processing, computer vision, and generative AI. - Fine-tune state-of-the-art models and develop novel algorithms to push the boundaries of what's possible. - Explore the vast potential of generative AI and its applications across industries. - Attend cutting-edge research seminars and engage in thought-provoking discussions with industry luminaries. - Leverage state-of-the-art computing infrastructure and access to the latest research papers to fuel your innovation. - Present your groundbreaking work and insights to the team, fostering a culture of knowledge-sharing and continuous learning.
US, WA, Seattle
Unlock the Future with Amazon Science! Calling all visionary minds passionate about the transformative power of machine learning! Amazon is seeking boundary-pushing graduate student scientists who can turn revolutionary theory into awe-inspiring reality. Join our team of visionary scientists and embark on a journey to revolutionize the field by harnessing the power of cutting-edge techniques in bayesian optimization, time series, multi-armed bandits and more. At Amazon, we don't just talk about innovation – we live and breathe it. You'll conducting research into the theory and application of deep reinforcement learning. You will work on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. You will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised, semi-supervised and unsupervised learning, reinforcement learning, advanced statistical modeling, and graph models. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Programming/Scripting Languages, Statistics, Reinforcement Learning, Causal Inference, Large Language Models, Time Series, Graph Modeling, Supervised/Unsupervised Learning, Deep Learning, Predictive Modeling In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Reinforcement Learning and Optimization within Machine Learning. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on developing novel RL algorithms and applying them to complex, real-world challenges. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.