Context-Aware Deep-Learning Method Boosts Alexa Dialogue System’s Ability to Recognize Conversation Topics by 35%

Conversational-AI systems have traditionally fallen into two categories: goal-oriented systems, which help users fulfill requests, and chatbots, which carry on informative or entertaining conversations.

Recently, the two areas have begun to converge, but separately or together, they both benefit from accurate “topic modeling”. Identifying the topic of a particular utterance can help goal-oriented systems route requests more accurately and keep chatbots’ comments relevant and engaging. Accurate topic tracking has also been shown to be strongly correlated with users’ subjective assessments of the quality of chatbot conversations.

In a paper we’re presenting at this year’s IEEE Spoken Language Technologies conference, we describe a system that uses two additional sources of information to determine the topic of a given utterance: the utterances that immediately preceded it and its classification as a “dialogue act”. Factoring that information in improves the accuracy of the system’s topic classification by 35%.

We validated our approach using more than 100,000 annotated utterances collected during the 2017 Alexa Prize competition, in which 15 academic research teams deployed experimental Alexa chatbot systems. In addition to generating innovative ideas about system design, the Alexa Prize helps address the chicken-and-egg problem that plagues conversational AI: training quality chatbots depends on realistic interaction data, but realistic interaction data is hard to come by without chatbots that people want to talk to.

Over the years, conversational-AI researchers have developed some standard taxonomies for classifying utterances as dialogue acts such as InformationRequests, Clarifications, or UserInstructions. Dialogue management systems generally use such classifications to track the progress of conversations.

We asked a team of annotators to label the data in our training set according to 14 dialogue acts and 12 topics, such as Politics, Fashion, EntertainmentMovies, and EntertainmentBooks. We also asked them to identify keywords in the utterances that helped them determine topics. For instance, a chatbot’s declaration that “Gucci is a famous brand from Italy” was assigned the topic Fashion, and “Gucci”, “brand”, and “Italy” were tagged as keywords associated with that topic.

We built topic-modeling systems that used three different neural-network architectures. One was a simple but fast network called a deep averaging network, or DAN. Another was a variation on the DAN that learned to predict not only the topics of utterances but also the keywords that indicated those topics. The third was a more sophisticated network called a bidirectional long-short-term-memory network.

Long short-term memory (LSTM) networks process sequential data — such as strings of spoken words — in order, and a given output factors in the outputs that preceded it. LSTMs are widely used in natural-language understanding: the interpretation of the fifth word in a sentence, for instance, will often depend on interpretations of the first four. A bidirectional LSTM (bi-LSTM) network is one that runs through the same data sequence both forward and backward.

Inputs to all three networks consist of a given utterance, its dialogue act classification, and it conversational context. Here, context means the last five turns of conversation, where a turn is a combination of a speaker utterance and a chatbot response. The dialogue act classifications come from a separate DAN model, which we trained using our labeled data.

In the DAN-based topic-modeling system, the first step is to embed the words of the input utterances, both the current utterance and the prior turns of conversation. An embedding is a representation of a word as a point in a high-dimensional space, such that words with similar meanings are grouped together. The DAN produces embeddings of full sentences by simply averaging the embeddings of their words.

The embeddings of the prior turns of conversation are then averaged with each other to produce a single summary embedding, which is appended to the embedding of the current utterance. The combined embedding then passes to a neural network, which learns to correlate embeddings with topic classifications.

DAN_architecture.jpg._CB460793352_.jpg
The DAN architecture

The second system, which uses a modified DAN — or ADAN, for attentional DAN — adds several ingredients to this recipe. During training, the ADAN built a matrix that mapped every word it encountered against each of the 12 topics it was being asked to recognize, recording the frequency with which annotators correlated a particular word with a particular topic. Each word thus had 12 numbers associated with it — a 12-dimensional vector — indicating its relevance to each topic. This matrix, which we call a topic-word attention table, gives the ADAN its name.

During operation, the ADAN embeds the words of the current utterance and the past utterances. Like the DAN, it averages the words of the past utterances, then averages the averages together. But it processes the words of the current utterance separately, adding to the embedding of each the corresponding 12-dimensional topic vector. Each of these combination vectors is also combined with the past-utterance summaries, before passing to the neural network for classification.

ADAN_architecture.jpg._CB460793358_.jpg
The ADAN architecture

The output of the neural network, however, includes not only a prediction of the topic label but also a prediction of which words in the input correspond to that label. Although such keywords were labeled in our data set, we used the labels only to gauge the system’s performance, not to train it. That is, it learned to identify keywords in an unsupervised way.

Because it can identify keywords, the ADAN, unlike the DAN and the bi-LSTM, is “interpretable”: it issues not only a judgment but also an explanation of the basis for that judgment.

We experimented with two different methods of feeding data about prior utterances to the bi-LSTM. With one method, we fed it an averaged embedding of all five prior turns; in the other, we fed it embeddings of the prior turns sequentially. The first method is more efficient, but the second proved to be more accurate.

Bi-LSTM_architecture.jpg._CB460793356_.jpg
The bi-LSTM architecture

We evaluated four different versions of each system: a baseline version, which used only information about the current utterance; a version that added in only prior-turn information; a version that added in only dialogue act information; and a version that added in both.

With all four systems — DAN, ADAN, and the two varieties of bi-LSTM — adding prior-turn information and dialogue act information, both separately and together, improved accuracy over baseline. The bi-LSTM system augmented with both dialogue act and prior-turn information performed best, with an accuracy of 74 percent, up from 55 percent for baseline.

The ADAN had the lowest accuracy scores, but we suspect that its decision model was too complex to learn accurate correlations from the amount of training data we had available. Its performance should improve with more data, and as dialogue systems grow more sophisticated, interpretability may prove increasingly important.

Acknowledgments: Chandra Khatri, Rahul Goel, Angeliki Metanillou, Anushree Venkatesh, Raefer Gabriel, Arindam Mandal

Related content

US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. The Research Science team at Amazon Robotics is seeking interns with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, planning/scheduling, and reinforcement learning. As an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000