New speech recognition experiments demonstrate how machine learning can scale

Customer interactions with Alexa are constantly growing more complex, and on the Alexa science team, we strive to stay ahead of the curve by continuously improving Alexa’s speech recognition system.

Increasingly, keeping pace with Alexa’s expanding capabilities will require automating the learning process, through techniques such as semi-supervised learning, which leverages a small amount of annotated data to extract information from a much larger store of unannotated data.

At this year’s International Conference on Acoustics, Speech, and Signal Processing, Alexa senior principal scientist Nikko Strom and I will report what amounts to a large-scale experiment in semi-supervised learning. We developed an acoustic model, a key component of a speech recognition system, using just 7,000 hours of annotated data and 1 million hours of unannotated data. To our knowledge, the largest data set previously used to train an acoustic model was 125,000 hours. In our paper, we describe a number of techniques that, in combination, made it computationally feasible to scale to a dataset eight times that size.

Compared to a model trained only on the annotated data, our semi-supervised model reduces the speech recognition error rate by 10% to 22%, with greater improvements coming on noisier data. We are currently working to integrate the new model into Alexa, with a projected release date of later this year.

As valuable as the model is in delivering better performance, it’s equally valuable for what it taught us about doing machine learning at scale.

Automatic speech recognition systems typically comprise three components: an acoustic model, which translates audio signals into phones, the smallest phonetic units of speech; a pronunciation model, which stitches phones into words; and a language model, which distinguishes between competing interpretations of the same phonetic sequences by evaluating the relative probabilities of different word sequences. Our new work concentrates on just the first stage in this process, acoustic modeling.

To build our model, we turned to a semi-supervised-learning technique called teacher-student training. Using our 7,000 hours of labeled data, we trained a powerful but impractically slow “teacher” network to convert frequency-level descriptions of audio data into sequences of phones. Then we used the teacher to automatically label unannotated data, which we used to train a leaner, more efficient “student” network.

In our experiments, we used a small set of annotated data (green) to train a powerful but inefficient "teacher" model, which in turn labeled a much larger set of unannotated data (red). We then used both datasets to train a leaner, more efficient "student" model.

Both the teacher and the student were five-layer long-short-term-memory (LSTM) networks. LSTMs are common in speech and language applications because they process data in sequence, and the output corresponding to any given input factors in the inputs and outputs that preceded it.

The teacher LSTM is more than three times the size of the student — 78 million parameters, versus 24 million — which makes it more than three times as slow. It’s also bidirectional, which means that it processes every input sequence both forward and backward. Bidirectional processing generally improves an LSTM’s accuracy, but it also requires that the input sequence be complete before it’s fed to the network. That’s impractical for a real-time, interactive system like Alexa, so the student network runs only in the forward direction.

The inputs to both networks are split into 30-millisecond chunks, or “frames”, which are small enough that any given frame could belong to multiple phones. Phones, in turn, can sound different depending on the phones that precede and follow them, so the acoustic model doesn’t just associate each frame with a range of possible phones; it associates it with a range of possible three-phone sequences, or triphones.

In the classification scheme we use, there are more than 4 million such triphones, but we group them into roughly 3,000 clusters. Still, for every frame, the output of the model is a 3,000-dimensional vector, representing the probabilities that the phone belongs to each of the clusters.

Because the teacher is so slow, we want to store its outputs for quick lookup while we’re training the more efficient student. Storing a 3,000-dimensional vector for every frame of audio in the training set is impractical, so we instead keep only the 20 highest probabilities. During training, the student’s goal is to match all 20 of those probabilities as accurately as it can.

The 7,000 hours of annotated data are more accurately labeled than the machine-labeled data, so while training the student, we interleave the two. Our intuition was that if the machine-labeled data began to steer the model in the wrong direction, the annotated data could provide a course correction.

As a corollary, we also increased the model’s learning rate when it was being trained on the annotated data. Essentially, that means that it could make more dramatic adjustments to its internal settings than it could when being trained on machine-labeled data.

Our experiments bore out our intuitions. Interleaving the annotated data and machine-labeled data during training led to a 23% improvement in error rate reduction versus a training regimen that segregated them.

We also experimented with different techniques for parallelizing the training procedure. Optimizing the settings of a neural network is like exploring a landscape with peaks and valleys, except in millions of dimensions. The elevations of the landscape represent the network’s error rates on the training data, so the goal is to find the bottom of one of the deepest valleys.

We were using so much training data that we had to split it up among processors. But the topography of the error landscape is a function of the data, so each processor sees a different landscape.

Historically, the Alexa team has solved this problem through a method called gradient threshold compression (GTC). After working through a batch of data, each processor sends a compressed representation of the gradients it measured — the slopes of the inclines in the error landscape — to all the other processors. Each processor aggregates all the gradients and updates its copy of the neural model accordingly.

We found, however, that with enough processors working in parallel, this approach required the exchange of so much data that transmission time started to eat up the time savings from parallelization. So we also experimented with a technique called blockwise model update filtering (BMUF). With this approach, each processor updates only its own, local copy of the neural model after working through each batch of data. Only rarely — every 50 batches or so — does a processor broadcast its local copy of the model to the other processors, saving a great deal of communication bandwidth.

Where GTC averages gradients, BMUF averages models. But averaging gradients provides an exact solution of the optimization problem, whereas averaging models provides only an approximate solution. We found that, on the same volume of training data, BMUF yielded slightly less accurate models than GTC. But it enabled distribution of the computation to four times as many processors, which means that in a given time frame, it could learn from four times as much data. Or, alternatively, it could deliver comparable performance improvements in one-fourth the time.

We believe that these techniques — and a few others we describe in greater detail in the paper — will generalize to other applications of large-scale semi-supervised learning, a possibility that we have begun to explore in the Alexa AI group.

Acknowledgments: Nikko Strom

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Bellevue
How do you design and provide right incentives for millions of sellers that inbound and ship billions of customer orders? How do you measure sellers' response to /causal impacts of capacity control policies we implemented at Amazon using the state-of-the-art econometric techniques? How do you optimize Amazon’s third-party supply chain using new ideas never implemented at this scale to benefit millions of customers worldwide? How do you design and evaluate seller assistance to drive their success? If these type of questions get your mind racing, we want to hear from you.Supply Chain Optimization Technologies (SCOT) optimizes Amazon’s global supply chain end to end and build systems to deliver billions of products to our customers’ doorsteps faster every year while saving hundreds of millions of dollars using economics, operational research, machine learning, and scalable distributed software on the Cloud. Fulfillment by Amazon (FBA) is an Amazon service for our marketplace third party sellers, where our sellers leverage our world-class facilities and provide customers Prime delivery promise on all their goods.We are looking for the next outstanding economist to join our interdisciplinary team of data scientists, research scientists, applied scientists, economists. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable extracting insights from observational and experimental data. You translate insights into action through proofs-of-concept and partnerships with engineers and data scientists to productionize. You are excited to learn from and alongside seasoned analysts, scientists, engineers, and business leaders. You are an excellent communicator and effectively translate business ideas and technical findings into business action (and customer delight).Key job responsibilitiesProvide data-driven guidance and recommendations on strategic questions facing the FBA leadershipDesign and implement V0 models and experiments to kickstart new initiatives, thinking, and drive system-level changes across AmazonHelp build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challengesInfluence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.