Digital justice
Credit: Pitiphothivichit / iStock

3 questions about the Amazon–National Science Foundation collaboration on fairness in AI

NSF deputy assistant director Erwin Gianchandani on the challenges addressed by funded projects.

A year ago, Amazon and the National Science Foundation announced a $20 million collaboration to fund academic research on fairness in AI over a three-year period. A month ago, NSF announced the first ten recipients of the program’s grants. Erwin Gianchandani, deputy assistant director for Computer and Information Science and Engineering at NSF, took some time to answer three questions about the program for amazon.science.

1. What is the challenge of fairness in AI?

Four things come to mind.

The first is trying to get to an understanding of what fairness really means. If you think about a mathematical definition of fairness, you could look at two different population types, and you could look at some statistical metric, such as success rate, when you run an algorithm or a classifier on each population. One notion of fairness is that you are trying to ensure that the metric is consistent across both of those population types.

There are other definitions of fairness, though. Philosophers have debated the different notions of fairness for ages. So at the heart of what we’re trying to do with this effort is to better understand what fairness means in the abstract sense so that we can understand how we can design our systems to build fairness into them.

Erwin Gianchandani
Erwin Gianchandani, deputy assistant director for Computer and Information Science and Engineering at NSF.

A second challenge that we’ve identified is who is responsible if you have an AI system that makes unfair decisions. This is where it’s important to think about accountability and how we empower the user of an AI system to have confidence in their ability to take what’s coming out of the AI system and make an informed decision.

You’re trying to provide the user with as much information as possible to minimize the likelihood of unfairness in the outcome — or at least provide an understanding of the types and levels of unfairness that may be inherent to the prediction from the AI system. In other words, this is about trying to present to the end user all of the data that the system used to derive a recommendation to give the user a certain degree of confidence about that recommendation.

A third challenge area that we like to think about is taking this issue of fairness and turning it on its head: how can I harness AI to improve fairness and equity in society? You can think about, for example, equitable distribution of scarce resources like food, of access to health-care, of interventions that might be able to prevent homelessness, and so on. How do we take the vast array of data that are out there and apply AI systems to those data to extract meaningful insights that can allow us to yield improvements in equity in society?

A fourth and final challenge is, how do we construct AI systems so that their benefits are available to everyone? For example, facial-recognition systems should work equally well for people of all races; currently, they do not. Similarly, speech and natural-language systems should work for users from different socioeconomic, ethnic, age, cultural, and geographic groups; that poses significant challenges for current techniques.

2. How do the funded projects address these challenges?

Let me walk through a few examples. Before I do, I want to emphasize that these are just that — examples — and I don’t mean to imply any kind of preference, either toward these funded projects or toward the topics that they are pursuing.

The first challenge is to develop a definition of fairness. One project that we’ve funded in this space is looking at developing a robust theory and methodology for trying to assess and ensure fairness in settings where fairness metrics are currently hard to pin down. You could either specify a particular metric for fairness for a task or domain, or you could look at a particular set of input-output combinations and try to associate fairness characteristics to those.

Take a particular use case, like whether someone has the finances to open a bank account. There might be a set of inputs into the algorithm — one’s monthly or weekly income, current level of debt, and so forth. For every input characteristic or output characteristic, can we define a range within which we feel confident in the accuracy, so that we can essentially try to bound the degree of fairness or unfairness that might exist in that algorithm?

The team of researchers in this case is looking at a particular use case — recidivism in the criminal justice system.

The second challenge is to understand how an AI system produces a given result. We’ve funded a project that is seeking to develop techniques to facilitate better understanding of the entire life cycle of deep neural networks — the preparation of the data, the identification of features, the objectives when it comes to optimization of the system — so that the steps that led to a given output, along with that output, are presented to the user to inform their decision making.

So it’s about really being able to engineer into the outputs a sense of what the system is doing each step of the way so that the human user can see the various decision points. In other words, this is about making it easier to decipher the inner workings of the AI system and, in the process, allowing the user to appreciate any biases.

The third and fourth challenges are somewhat related — harnessing AI to improve equity in society and designing AI systems such that their benefits are equitably available to everyone. One of the projects we’ve funded in this space is looking at racial disparities following cardiac surgery.

We’ve known for quite some time, for example, that certain ethnic groups have higher rates of heart disease than others and are also known to suffer higher rates of postoperative issues — issues that occur after surgical interventions for heart disease. But what we don’t have a sense of is how much of that disparity is due to biological factors, how much of it is due do socioeconomic factors, how much of it is due to the differences in care depending on where people go for treatment, and so on.

We’ve funded a project that is to trying to bring AI tools to a rich electronic-health-record data set to try to understand conceptually and practically the source points for the disparities that we see.

Again, these are just a few examples illustrating the broad research areas, and I expect future awards through this collaboration may be outside these specific topics.

3. What are the advantages of a public-private partnership in addressing these challenges?

We see a significant value proposition in bringing the public and private sectors together.

First, it’s valuable for our academic community to understand the kinds of challenges that industry is seeing. We often call such research “use-inspired”: we have an ability to look at concrete problems and use those to motivate the research questions themselves.

Beyond that, we all know that today’s AI revolution is grounded in large quantities of data that are readily available, along with compute resources to leverage those data sets. In general, access to both of these — for example, access to cloud computing resources — can be really valuable to our academic researchers.

Third, academic researchers benefit from companies’ experience with accelerating the transition of research results out of the laboratory environment and into practice.

Finally, another dimension that’s really important to us is training the next generation of researchers and practitioners. I think we all agree that we’re going to see a real need for competencies in data science, machine learning, and AI across all sectors of our economy. Providing our students who are studying fairness in AI with exposure to industry — to the problems that industry is facing — is a means to nurture the talent that our research ecosystem is going to need going forward. It would be great if some of the students funded on these joint projects benefit from this exposure when they graduate and go on to start their careers.

See a complete list of the projects funded through the new NSF-Amazon collaboration.

Research areas

Related content

US, WA, Seattle
Job description: We are reimagining Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, (Bayesian) time series, macroeconomic, as well as basic familiarity with Matlab, R, or Python is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.
US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
RO, Iasi
Amazon’s mission is to be earth’s most customer-centric company and our team is the guardian of our customer’s privacy. Amazon SDO Privacy engineering operates in Austin – TX, US and Iasi, Bucharest – Romania. Our mission is to develop services which will enable every Amazon service operating with personal data to satisfy the privacy rights of Amazon customers. We are working backwards from the customers and world-wide privacy regulations, think long term, and propose solutions which will assure Amazon Privacy compliance. Our external customers are world-wide customers of Amazon Retail Website, Amazon B2B services (e.g. Seller central, App / Skill Developers), and Amazon Subsidiaries. Our internal customers are services within Amazon who operate with personal data, Legal Representatives, and Customer Service Agents. You can opt-in for being part of one of the existing or newly formed engineering teams who will contribute to Amazon mission to meet external customers’ privacy rights: Personal Data Classification, The Right to be forgotten, The right of access, or Digital Markets Act – The Right of Portability. The ideal candidate has a great passion for data and an insatiable desire to learn and innovate. A commitment to team work, hustle and strong communication skills (to both business and technical partners) are absolute requirements. Creating reliable, scalable, and high-performance products requires a sound understanding of the fundamentals of Computer Science and practical experience building large-scale distributed systems. Your solutions will apply to all of Amazon’s consumer and digital businesses including but not limited to Amazon.com, Alexa, Kindle, Amazon Go, Prime Video and more. Key job responsibilities As an data scientist on our team, you will apply the appropriate technologies and best practices to autonomously solve difficult problems. You'll contribute to the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. You will collaborate with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. Your work will directly impact the trust customers place in Amazon Privacy, globally.
JP, 13, Tokyo
The JP Economics team is a central science team working across a variety of topics in the JP Retail business and beyond. We work closely with JP business leaders to drive change at Amazon. We focus on solving long-term, ambiguous and challenging problems, while providing advisory support to help solve short-term business pain points. Key topics include pricing, product selection, delivery speed, profitability, and customer experience. We tackle these issues by building novel economic/econometric models, machine learning systems, and high-impact experiments which we integrate into business, financial, and system-level decision making. Our work is highly collaborative and we regularly partner with JP- EU- and US-based interdisciplinary teams. In this role, you will build ground-breaking, state-of-the-art causal inference models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, econometrics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. Contribute to building a strong data science community in Amazon Asia.
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time economics employment at Amazon.
US, CA, Cupertino
We're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect our customers' data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities Deeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community. Engage with our customers to develop understanding of their needs. Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving. Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare. Author papers and present your work internally and externally. Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning. About the team Our small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services. Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale. We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
US, NY, New York
Search Thematic Ad Experience (STAX) team within Sponsored Products is looking for a leader to lead a team of talented applied scientists working on cutting-edge science to innovate on ad experiences for Amazon shoppers!. You will manage a team of scientists, engineers, and PMs to innovate new widgets on Amazon Search page to improve shopper experience using state-of-the-art NLP and computer vision models. You will be leading some industry first experiences that has the potential to revolutionize how shopping looks and feels like on Amazon, and e-commerce marketplaces in general. You will have the opportunity to design the vision on how ad experiences look on Amazon search page, and use the combination of advanced techniques and continuous experimentation to realize this vision. Your work will be core to Amazon’s advertising business. You will be a significant contributor in building the future of sponsored advertising, directly impacting the shopper experience for our hundreds of millions of shoppers worldwide, while delivering significant value for hundreds of thousands of advertisers across the purchase journey with ads on Amazon. Key job responsibilities * Be the technical leader in Machine Learning; lead efforts within the team, and collaborate and influence across the organization. * Be a critic, visionary, and execution leader. Invent and test new product ideas that are powered by science that addresses key product gaps or shopper needs. * Set, plan, and execute on a roadmap that strikes the optimal balance between short term delivery and long term exploration. You will influence what we invest in today and tomorrow. * Evangelize the team’s science innovation within the organization, company, and in key conferences (internal and external). * Be ruthless with prioritization. You will be managing a team which is highly sought after. But not all can be done. Have a deep understanding of the tradeoffs involved and be fierce in prioritizing. * Bring clarity, direction, and guidance to help teams navigate through unsolved problems with the goal to elevate the shopper experience. We work on ambiguous problems and the right approach is often unknown. You will bring your rich experience to help guide the team through these ambiguities, while working with product and engineering in crisply defining the science scope and opportunities. * Have strong product and business acumen to drive both shopper improvements and business outcomes. A day in the life * Lead a multidisciplinary team that embodies “customer obsessed science”: inventing brand new approaches to solve Amazon’s unique problems, and using those inventions in software that affects hundreds of millions of customers * Dive deep into our metrics, ongoing experiments to understand how and why they are benefitting our shoppers (or not) * Design, prototype and validate new widgets, techniques, and ideas. Take end-to-end ownership of moving from prototype to final implementation. * Be an advocate and expert for STAX science to leaders and stakeholders inside and outside advertising. About the team We are the Search thematic ads experience team within Sponsored products - a fast growing team of customer-obsessed engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives to drive value for both our customers and advertisers, through continuous innovation. We focus on new ads experiences globally to help shoppers make the most informed purchase decision while helping shortcut the time to discovery that shoppers are highly likely to engage with. We also harvest rich contextual and behavioral signals that are used to optimize our backend models to continually improve the shopper experience. We obsess about our customers and are continuously seeking opportunities to delight them.
US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.