How Voice and Graphics Working Together Enhance the Alexa Experience

Last week, Amazon announced the release of both a redesigned Echo Show with a bigger screen and the Alexa Presentation Language, which enables third-party developers to build “multimodal” skills that coordinate Alexa’s natural-language-understanding systems with on-screen graphics.

Echo in use

One way that multimodal interaction can improve Alexa customers’ experiences is by helping resolve ambiguous requests. If a customer says, “Alexa, play Harry Potter”, the Echo Show screen could display separate graphics representing a Harry Potter audiobook, a movie, and a soundtrack. If the customer follows up by saying “the last one”, the system must determine whether that means the last item in the on-screen list, the last Harry Potter movie, or something else.

Alexa’s ability to handle these types of interactions derives in part from research that my colleagues and I presented earlier this year at the annual meeting of the Association for the Advancement of Artificial Intelligence. In our paper, we consider three different neural-network designs that treat query resolution as an integrated problem involving both on-screen data and natural-language understanding.

We find that they consistently outperform a natural-language-understanding network that uses hand-coded rules to factor in on-screen data. And on inputs that consist of voice only, their performance is comparable to that of a system trained exclusively on speech inputs. That means that extending the network to consider on-screen data does not degrade accuracy for voice-only inputs.

The other models we investigated are derivatives of the voice-only model, so I’ll describe it first.

All of our networks were trained to classify utterances according to two criteria, intent and slot. An intent is the action that the customer wants Alexa to perform, such as PlayAction<Movie>. Slot values designate the entities on which the intents act, such as ‘Harry Potter’-> We have found, empirically, that training a single network to perform both classifications works better than training a separate network for each.

As inputs to the network, we use two different embeddings of each utterance. Embeddings represent words as points in a geometric space, such that strings with similar meanings (or functional roles) are clustered together. Our network learns one embedding from the data on which it is trained, so it is specifically tailored to typical Alexa commands. We also use a standard embedding, based on a much larger corpus of texts, which groups words together according to the words they co-occur with.

The embeddings pass to a bidirectional long short-term memory network. A long short-term memory (LSTM) network processes inputs in order, and its judgment about any given input reflects its judgments about the preceding inputs. LSTMs are widely used in both speech recognition and natural-language processing because they can use context to resolve ambiguities. A bidirectional LSTM (bi-LSTM) is a pair of LSTMs that process an input utterance both backward and forward.

Intent classification is based on the final outputs of the forward and backward LSTMs, since the networks’ confidence in their intent classifications should increase the more of the utterance they see. Slot classification is based on the total output of the LSTMs, since the relevant slot values can occur anywhere in the utterance.

A diagram describing the architectures of all four neural models we evaluated
A diagram describing the architectures of all four neural models we evaluated. The baseline system,which doesn’t use screen information, received only the (a) inputs. The three multimodal neuralsystems received, respectively, (a) and (b); (a), (b), and (c); and (a), (b), and (d).

The data on which we trained all our networks was annotated using the Alexa Meaning Representation Language, a formal language that captures more sophisticated relationships between the parts of an input sentence than earlier methods did. A team of Amazon researchers presented a paper describing the language earlier this year at the annual meeting of the North American chapter of the Association for Computational Linguistics.

The other four models we investigated factored in on-screen content in various ways. The first was a benchmark system that modifies the outputs of the voice-only network according to hand-coded rules.

If, for instance, a customer says, “Play Harry Potter,” the voice-only classifier, absent any other information, might estimate a 50% probability that the customer means the audiobook, a 40% probability that she means the movie, and a 10% probability that she means the soundtrack. If, however, the screen is displaying only movies, our rules would boost the probability that the customer wants the movie.

The factors by which our rules increase or decrease probabilities were determined by a “grid search” on a subset of the training data, in which an algorithm automatically swept through a range of possible modifications to find those that yielded the most accurate results.

The first of our experimental neural models takes as input both the embeddings of the customer’s utterances and a vector representing the types of data displayed on-screen, such as Onscreen_Movie or Onscreen_Book. We assume a fixed number of data types, so the input is a “one-hot” vector, with a bit for each type. If data of a particular type is currently displayed on-screen, its bit is set to 1; otherwise, its bit is set to 0.

The next neural model takes as additional input not only the type of data displayed on-screen but the specific name of each data item — so not just Onscreen_Movie but also ‘Harry Potter’ or ‘The Black Panther’. Those names, too, undergo an embedding, which the network learns to perform during training.

Our third and final neural model factors in the names of on-screen data items as well, but in a more complex way. During training, it uses convolutional filters to, essentially, identify the separate contribution that each name on the screen makes toward the accuracy of the final classification. During operation, it thus bases each of its classifications on the single most relevant name on-screen, rather than all the names at once.

So, in all, we built, trained, and evaluated five different networks: the voice-only network; the voice-only network with hand-coded rules; the voice-and-data-type network; the voice, data type, and data name network; and the voice, data type, and convolutional-filter network.

We tested each of the five networks on four different data sets: slots with and without screen information and intents with and without screen information.

We evaluated performance according to two different metrics, micro-F1 and macro-F1. Micro-F1 scores the networks’ performance separately on each intent and slot, then averages the results. Macro-F1, by contrast, pools the scores across intents and slots and then averages. Micro-F1 gives more weight to intents and slots that are underrepresented in the data, macro-F1 less.

According to micro-F1, all three multimodal neural nets outperformed both the voice-only and the rule-based system across the board. The difference was dramatic on the test sets that included screen information, as might be expected, but the neural nets even had a slight edge on voice-only test sets. On all four test sets, the voice, data type, and data name network achieved the best results.

According to macro-F1, the neural nets generally outperformed the baseline systems, although the voice, data type, and data name network lagged slightly behind the baselines on voice-only slot classification. There was more variation in the top-performing system, too, with each of the three neural nets achieving the highest score on at least one test. Again, however, the neural nets dramatically outperformed the baseline systems on test sets that included screen information.

Acknowledgments: Angeliki Metallinou, Rahul Goel

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Bellevue
How do you design and provide right incentives for millions of sellers that inbound and ship billions of customer orders? How do you measure sellers' response to /causal impacts of capacity control policies we implemented at Amazon using the state-of-the-art econometric techniques? How do you optimize Amazon’s third-party supply chain using new ideas never implemented at this scale to benefit millions of customers worldwide? How do you design and evaluate seller assistance to drive their success? If these type of questions get your mind racing, we want to hear from you.Supply Chain Optimization Technologies (SCOT) optimizes Amazon’s global supply chain end to end and build systems to deliver billions of products to our customers’ doorsteps faster every year while saving hundreds of millions of dollars using economics, operational research, machine learning, and scalable distributed software on the Cloud. Fulfillment by Amazon (FBA) is an Amazon service for our marketplace third party sellers, where our sellers leverage our world-class facilities and provide customers Prime delivery promise on all their goods.We are looking for the next outstanding economist to join our interdisciplinary team of data scientists, research scientists, applied scientists, economists. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable extracting insights from observational and experimental data. You translate insights into action through proofs-of-concept and partnerships with engineers and data scientists to productionize. You are excited to learn from and alongside seasoned analysts, scientists, engineers, and business leaders. You are an excellent communicator and effectively translate business ideas and technical findings into business action (and customer delight).Key job responsibilitiesProvide data-driven guidance and recommendations on strategic questions facing the FBA leadershipDesign and implement V0 models and experiments to kickstart new initiatives, thinking, and drive system-level changes across AmazonHelp build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challengesInfluence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.