New method for compressing neural networks better preserves accuracy

Neural networks have been responsible for most of the top-performing AI systems of the past decade, but they tend to be big, which means they tend to be slow. That’s a problem for systems like Alexa, which depend on neural networks to process spoken requests in real time.

In natural-language-understanding (NLU) applications, most of a neural network’s size comes from a huge lookup table that correlates input words with “embeddings.” An embedding is a large vector (usually a sequence of 300 numbers) that captures information about a word’s meaning.

In a paper that we and our colleagues are presenting at the 33rd conference of the Association for the Advancement of Artificial Intelligence (AAAI), we describe a new method for compressing embedding tables that compromises the NLU network’s performance less than competing methods do.

In one set of experiments, for instance, we showed that our system could shrink a neural network by 90 percent while reducing its accuracy by less than 1%. At the same compression rate, the best prior method reduced the accuracy by about 3.5%.

The ability to compress NLU models means that, as Alexa learns to perform more and more complex tasks, she can continue to deliver responses in milliseconds. It also means that Alexa’s skill base can continue to expand unfettered. Alexa currently supports more than 70,000 third-party skills, with thousands more being added every month. Compression means that those skills’ NLU models can be stored efficiently.

In our experiments, we used a set of pretrained word embeddings called Glove. Like other popular embeddings, Glove assesses words’ meanings on the basis of their co-occurrence with other words in huge bodies of training data. It then represents each word as a single point in a 300-dimensional space, such that words with similar meanings (similar co-occurrence profiles) are grouped together.

NLU systems often benefit from using such pretrained embeddings, because it lets them generalize across conceptually related terms. (It could, for instance, help a music service learn that the comparatively rare instruction “Play the track ‘Roadrunner’” should be handled the same way as the more common instruction “Play the song ‘Roadrunner”.) But it’s usually possible to improve performance still further by fine-tuning the embeddings on training data specific to the task the system is learning to perform.

In previous work, NLU researchers had taken a huge lookup table, which listed embeddings for about 100,000 words, reduced the dimension of the embeddings from 300 to about 30, and used the smaller embeddings as NLU system inputs.

We improve on this approach by integrating the embedding table into the neural network in such a way that it can use task-specific training data not only to fine-tune the embeddings but to customize the compression scheme as well.

To reduce the embeddings’ dimensionality, we use a technique called singular-value decomposition. Singular-value decomposition (SVD) produces a lower-dimensional projection of points in a higher-dimensional space, kind of the way a line drawing is a two-dimensional projection of objects in three-dimensional space.

Projection.jpg._CB458139085_.jpg
Singular-value decomposition projects high-dimensional data into a lower-dimensional space, much the way a three-dimensional object can be projected onto a two-dimensional plane.
Projection image adapted from Michael Horvath under the CC BY-SA 4.0 license

The key is to orient the lower-dimensional space so as to minimize the distance between the points and their projections. Imagine, for instance, trying to fit a two-dimensional plane to a banana so as to minimize the distance between the points on the banana’s surface and the plane. A plane oriented along the banana’s long axis would obviously work better than one that cut the banana in half at the middle. Of course, when you’re projecting 300-dimensional points onto a 30-dimensional surface the range of possible orientations is much greater.

We use SVD to break our initial embedding matrix into two smaller embedding matrices. Suppose you have a matrix that is 10,000 rows long (representing a lexicon of 10,000 words) and 300 columns wide (representing a 300-dimensional vector for each word). You can break it into two matrices, one of which is 10,000 columns long and 30 columns wide, and the other of which is 30 columns long and 300 columns wide. This results in a reduction of parameters, from 10,000 x 300 to ((10,000 x 30) + (30 x 300)), or almost 90%.

We represent one of these matrices as one layer of a neural network and the second matrix as the layer above it. Between the layers are connections that have associated “weights,” which determine how much influence the outputs of the lower layer have on the computations performed by the higher one. The training process keeps readjusting those weights, trying to find settings that reduce the projection distance still further.

In our paper, we also describe a new procedure for selecting the network’s “learning rate”. The relationship between the weight settings of the entire network and the network’s error rate can be imagined as a landscape with peaks and valleys. Each point in the landscape represents a group of weight settings, and its altitude represents the corresponding error rate.

The goal is to find a group of weights that correspond to the bottom of one of the deepest valleys, but we can’t view the landscape as a whole; all we can do is examine individual points. At each point, however, we can calculate the slope of the landscape, and the standard procedure for training a neural network is to continually examine points that lie in the downhill direction from the last point examined.

Every time you select a new point, the question is how far in the downhill direction to leap, a metric called the learning rate. A recent approach to choosing the learning rate is the cyclical learning rate, which steadily increases the leap length until it hits a maximum, then steadily steps back down to a minimum, then back up to the maximum, and so on, until further exploration no longer yields performance improvements.

We vary this procedure by decreasing the maximum leap distance at each cycle, then pumping it back up and decreasing it again. The idea is that the large leaps help you escape local minima — basins at the tops of mountains rather than true valleys. But tapering the maximum leap distance reduces the chance that when you’ve found a true valley and have started down its slope, you’ll inadvertently leap out of it.

Learning_rate_comparison_(1).jpg._CB458139123_.jpg
A comparison of the learning-rate-selection strategies adopted in the cyclical learning rate (left) and the cyclically annealed learning rate (right).

We call this technique the cyclically annealed learning rate, and in our experiments, we found that it led to better performance than either the cyclical learning rate or a fixed learning rate.

To evaluate our compression scheme, we compared it to two alternatives. One is the scheme we described before, in which the embedding table is compressed before network training begins. The other is simple quantization, in which all of the values in the embedding vector — in this case, 300 — are rounded to a limited number of reference values. So, for instance, the numbers 75, 83, and 87 might all become 80. This can reduce, say, 32-bit vector values to 16 or 8 bits each.

We tested all three approaches across a range of compression rates, on different types of neural networks, using different data sets, and we found that in all instances, our approach outperformed the others.

Acknowledgments: Angeliki Metallinou, Inderjit Dhillon

Related content

US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team