Two new papers discuss how Alexa recognizes sounds

Last year, Amazon announced the beta release of Alexa Guard, a new service that lets customers who are leaving the house instruct their Echo devices to listen for glass breaking or smoke and carbon dioxide alarms going off.

At this year’s International Conference on Acoustics, Speech, and Signal Processing, our team is presenting several papers on sound detection. I wrote about one of them a few weeks ago, a new method for doing machine learning with unbalanced data sets.

Today I’ll briefly discuss two others, both of which, like the first, describe machine learning systems. One paper addresses the problem of media detection, or recognizing when the speech captured by a digital-assistant device comes from a TV or radio rather than a human speaker. In particular, we develop a way to better characterize media audio by examining longer-duration audio streams versus merely classifying short audio snippets. Media detection helps filter a particularly deceptive type of background noise out of speech signals.

For our other paper, we used semi-supervised learning to train a system developed from an external dataset to do acoustic-event detection. Semi-supervised learning uses small sets of annotated training data to leverage larger sets of unannotated data. In particular, we use tri-training, in which three different models are trained to perform the same task, but on slightly different data sets. Pooling their outputs corrects a common problem in semi-supervised training, in which a model’s errors end up being amplified.

Our media detection system is based on the observation that the audio characteristics we would most like to identify are those common to all instances of media sound, regardless of content. Our network design is an attempt to abstract away from the properties of particular training examples.

Like many machine learning models in the field of spoken-language understanding, ours uses recurrent neural networks (RNNs). An RNN processes sequenced inputs in order, and each output factors in the inputs and outputs that preceded it.

We use a convolutional neural network (CNN) as feature extractor, and stack RNN layers on top of it. But each RNN layer has only a fraction as many nodes as the one beneath it. That is, only every third or fourth output from the first RNN provides an input to the second, and only every third or fourth output of the second RNN provides an input to the third.

Pyramidal.jpg._CB465895532_.jpg
A standard stack of recurrent neural networks (left) and the “pyramidal” stack we use instead

Because the networks are recurrent, each output we pass contains information about the outputs we skip. But this “pyramidal” stacking encourages the model to ignore short-term variations in the input signal.

For every five-second snippet of audio processed by our system, the pyramidal RNNs produce a single output vector, representing the probabilities that the snippet belongs to any of several different sound categories.

But our system includes still another RNN, which tracks relationships between five-second snippets. We experimented with two different ways of integrating that higher-level RNN with the pyramidal RNNs. In the first, the output vector from the pyramidal RNN simply passes to the higher-level RNN, which makes the final determination about whether media sound is present.

In the other, however, the higher-level RNN lies between the middle and top layers of the pyramidal RNN. It receives its input from the middle layer, and its output, along with that of the middle layer, passes to the top layer of the pyramidal RNN.

contextual_2.jpg._CB465896350_.jpg
In the second of our two contextual models, a high-level RNN (red circles) receives inputs from one layer of a pyramidal RNN (groups of five blue circles), and its output passes to the next layer (groups of two blue circles).

This was our best-performing model. When compared to a model that used the pyramidal RNNs but no higher-level RNN, it offered a 24% reduction in equal error rate, which is the error rate that results when the system parameters are set so that the false-positive rate equals the false-negative rate.

Our other ICASSP paper presents our semi-supervised approach to acoustic-event detection (AED). One popular and simple semi-supervised learning technique is self-training, in which a machine learning model is trained on a small amount of labeled data and then itself labels a much larger set of unlabeled data. The machine-labeled data is then sorted according to confidence score — the system’s confidence that its labels are correct — and data falling in the right confidence window is used to fine-tune the model.

The model, that is, is retrained on data that it has labeled itself. Remarkably, this approach tends to improve the model’s performance.

But it also poses a risk. If the model makes a systematic error, and if it makes it with high confidence, then that error will feed back into the model during self-training, growing in magnitude.

Tri-training is intended to mitigate this kind of self-reinforcement. In our experiments, we created three different training sets, each the size of the original — 39,000 examples — by randomly sampling data from the original. There was substantial overlap between the sets, but in each, some data items were oversampled, and some were undersampled.

We trained neural networks on all three data sets and saved copies of them, which we might call initial models. Then we used each of those networks to label another 5.4 million examples. For each of the initial models, we used machine-labeled data to re-train it only if both of the other models agreed on the labels with high confidence. In all, we retained only 5,000 examples out of the more than five million in the unlabeled data set.

Finally, we used six different models to classify the examples in our test set: the three initial models and the three retrained models. On samples of three sounds — dog sounds, baby cries, and gunshots — pooling the results of all six models led to reductions in equal-error rate (EER) of 16%, 26%, and 19%, respectively, over a standard self-trained model.

Of course, using six different models to process the same input is impractical, so we also trained a seventh neural network to mimic the aggregate results of the first six. On the test set, that network was not quite as accurate as the six-network ensemble, but it was still a marked improvement over the standard self-trained model, reducing EER on the same three sample sets by 11%, 18%, and 6%, respectively.

Acknowledgments: Qingming Tang, Chieh-Chi Kao, Viktor Rozgic, Bowen Shi, Spyros Matsoukas, Chao Wang

About the Author
Senior Speech Scientist in the Alexa Speech Group at Amazon.

Related content

US, WA, Seattle
Job summaryAre you passionate about conducting measurement research and experiments to assess and evaluate talent? Would you like to see your research in products that will drive key talent management behaviors globally to ensure we are raising the bar on our talent? If so, you should consider joining the CXNS team!Amazon CXNS team is an innovative organization that exists to propel Amazon HR toward being the most scientific HR organization on earth. CNXS mission is to use Science to assist and measurably improve every talent decision made at Amazon. CXNS does this by discovering signals in workforce data, infusing intelligence into Amazon’s talent products, and guiding the broader CXNS team to pursue high-impact opportunities with tangible returns. This multi-disciplinary approach spans capabilities, including: data engineering, reporting and analytics, research and behavioral sciences, and applied sciences such as economics and machine learning.In this role, you will support measurement efforts for Amazon Connections (an innovative program that gives Amazonians a confidential and effective way to give feedback on the workplace to help shape the future of the company and improve the employee experience). You will own the research development strategy to evaluate, diagnose, understand, and surface drivers and moderators for key research streams. These include (but are not limited to) attrition, engagement, productivity, diversity, and Amazon culture. You will deep dive and analyze what research should be conducted and to what end, develop hypotheses that can be tested, and support a larger research program to deliver deeper insights that we can surface to leaders on our platform (short term and long).You will use both quantitative and qualitative data as well as conduct research studies to test your hypotheses. You will use a variety of statistical approaches to model and understand behavior. You will develop algorithms and thresholds to surface personalized results to managers/leaders, and partner with machine learning scientists to build these statistical models into production that scales. You will work with an interdisciplinary team of psychologists, economists, ML scientists, UX researchers, engineers, and product managers to inform and build product features to surface deeper people and business insights for our leaders.What you'll do:· Lead a global research strategy to drive more effective decisions and improve the employee experience across all of Amazon· Execute a scalable global content development and research strategy Amazon-wide· Conduct psychometrics analyses to evaluate integrity and practical application of content· Identify research streams to evaluate how to mitigate or remove sources of measurement error· Partner closely and drive effective collaborations across multi-disciplinary research and product teams· Manage full life cycle of large scale research programs (Develop strategy, gather requirements, execute, and evaluate)This person will possess knowledge of different assessment approaches to evaluate performance, a strong psychometrics background, scientific survey methodology, and computing various content validity analyses.
US, WA, Seattle
Job summaryWW Installments is one of the fastest growing businesses within Amazon and we are looking for an Economist to join the team. This group has been entrusted with a massive charter that will impact every customer that visits Amazon.com. We are building the next generation of features and payment products that maximize customer enablement in a simple, transparent, and customer obsessed way. Through these products, we will deliver value directly to Amazon customers improving the shopping experience for hundreds of millions of customers worldwide. Our mission is to delight our customers by building payment experiences and financial services that are trusted, valued, and easy to use from anywhere in any way.Economists at Amazon are solving some of the most challenging applied economics questions in the tech sector. Amazon economists apply the frontier of economic thinking to market design, pricing, forecasting, program evaluation, online advertising and other areas. Our economists build econometric models using our world class data systems, and apply economic theory to solve business problems in a fast-moving environment. A career at Amazon affords economists the opportunity to work with data of unparalleled quality, apply rigorous applied econometric approaches, and work with some of the most talented applied econometricians in the trade.As the Economist within WW Installments, you will be responsible for building long-term causal inference models and experiments. These analysis represent a core capability for WW Installments and businesses across Amazon. Your work will directly impact customers by influencing how objective functions are designed and which inputs are consumed for modeling. You will work across functions including machine learning, business intelligence, data engineering, software development, and finance to induce data driven decisions at every level of the organization.Key job responsibilitiesThis role will be responsible for:• Developing a causal inference and experimentation roadmap for the WW Installments Competitive Pricing team.• Apply expertise in causal and econometric modeling to develop large-scale systems that are deployed across Amazon businesses.• Identify business opportunities, define and execute modeling approach, then deliver outcomes to various Amazon businesses with an Amazon-wide perspective for solutions.• Lead the project plan from a scientific perspective on product launches including identifying potential risks, key milestones, and paths to mitigate risks• Own key inputs to reports consumed by VPs and Directors across Amazon.• Identifying new opportunities to influence business strategy and product vision using causal inference.• Continually improve the WW Installments experimentation roadmap automating and simplifying whenever possible.• Coordinate support across engineers, scientists, and stakeholders to deliver analytical projects and build proof of concept applications.• Work through significant business and technical ambiguity delivering on analytics roadmap across the team with autonomy.
US, WA, Seattle
Job summaryWW Installments is one of the fastest growing businesses within Amazon and we are looking for an Applied Scientist to join the team. This group has been entrusted with a massive charter that will impact every customer that visits Amazon.com. We are building the next generation of features and payment products that maximize customer enablement in a simple, transparent, and customer obsessed way. Through these products, we will deliver value directly to Amazon customers improving the shopping experience for hundreds of millions of customers worldwide. Our mission is to delight our customers by building payment experiences and financial services that are trusted, valued, and easy to use from anywhere in any way.As an Applied Scientist within WW Installments, you will be responsible for building machine learning models and pipelines with direct customer impact. These models represent a core capability for WW Installments and businesses across Amazon. Your work will directly impact customers by influencing how they interact with financing options to make purchases. You will work across functions including data engineering, software development, and business to induce data driven decisions at every level of the organization.Key job responsibilitiesThis role will be responsible for:• Developing production machine learning models and pipelines for the WW Installments Competitive Pricing team that directly impact customers.• Apply expertise in machine learning to develop large-scale production systems that are deployed across Amazon businesses.• Identify business opportunities, define and execute modeling approach, then deliver outcomes to various Amazon businesses with an Amazon-wide perspective for solutions.• Lead the implementation of production ML from a scientific perspective including identifying potential risks, key milestones, and paths to mitigate risks.• Identifying new opportunities to influence business strategy and product vision using data science and machine learning.• Continually improve the WW Installments ML roadmap automating and simplifying whenever possible.• Coordinate support across engineers, scientists, and stakeholders to deliver ML pipelines, analytics projects, and build proof of concept applications.• Work through significant business and technical ambiguity delivering on analytics roadmap across the team with autonomy.
US, WA, Seattle
Job summaryWW Installments is one of the fastest growing businesses within Amazon and we are looking for a Data Scientist to join the team. This group has been entrusted with a massive charter that will impact every customer that visits Amazon.com. We are building the next generation of features and payment products that maximize customer enablement in a simple, transparent, and customer obsessed way. Through these products, we will deliver value directly to Amazon customers improving the shopping experience for hundreds of millions of customers worldwide. Our mission is to delight our customers by building payment experiences and financial services that are trusted, valued, and easy to use from anywhere in any way.As a Data Scientist within WW Installments, you will be responsible for building machine learning models and pipelines with direct customer impact. These models represent a core capability for WW Installments and businesses across Amazon. Your work will directly impact customers by influencing how they interact with financing options to make purchases. You will work across functions including data engineering, software development, and business to induce data driven decisions at every level of the organization.Key job responsibilitiesThis role will be responsible for:• Developing machine learning models and pipelines for the WW Installments Competitive Pricing team.• Apply expertise in machine learning to develop large-scale systems that are deployed across Amazon businesses.• Identify business opportunities, define and execute modeling approach, then deliver outcomes to various Amazon businesses with an Amazon-wide perspective for solutions.• Lead the project plan from a scientific perspective on product launches including identifying potential risks, key milestones, and paths to mitigate risks.• Own key inputs to reports consumed by VPs and Directors across Amazon.• Identifying new opportunities to influence business strategy and product vision using data science and machine learning.• Continually improve the WW Installments ML roadmap automating and simplifying whenever possible.• Coordinate support across engineers, scientists, and stakeholders to deliver ML pipelines, analytics projects, and build proof of concept applications.• Work through significant business and technical ambiguity delivering on analytics roadmap across the team with autonomy.
US, CA, Palo Alto
Job summaryAmazon is the 4th most popular site in the US (http://www.alexa.com/topsites/countries/US). Our product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on a new AI-first initiative to re-architect and reinvent the way we do search through the use of extremely large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced Machine Learning (ML) on very large scale datasets, specifically through the use of aggressive systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge ML solutions and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include:· Can a focus on compilers and custom hardware help us accelerate model training and reduce hardware costs?· Can combining supervised multi-task training with unsupervised training help us to improve model accuracy?· Can we transfer our knowledge of the customer to every language and every locale ? The Search Science team is looking for a Senior Applied Science Manager to drive roadmap on making large business impact through application of Deep Learning models via close collaboration with partner teams. The team also has a focus on technology solution for deep-learning based embedding generation, sensitive data ingestion and applications, data quality measurement, improvement, data bias identification and reduction to achieve model fairness.Success in this role will require the courage to chart a new course. You will manage your own team to understand all aspects of the customer journey. You and your team will inform other scientists and engineers by providing insights and building models to help improving training data quality and reducing bias. The research focus includes but not limited to Natural Language Processing, recommendation, applications relevant to Amazon buyers, sellers and more. You will be working with cutting edge technologies that enable big data and parallelizable algorithms. You will play an active role in translating business and functional requirements into concrete deliverables and working closely with software development teams to put solutions into production.
US, WA, Seattle
Job summaryAmazon EC2 provides cloud computing which forms the foundation for the majority of AWS services, as well as a large portion of compute use cases for businesses and individuals around the world. A critical factor in the continued success of EC2 is the ability to provide reliable and cost effective computing. The EC2 Fleet Health and Lifecycle (EC2 FHL) organization is responsible for ensuring that the global EC2 server fleet continues to raise the bar for reliability, security, and efficiency. We are looking for seasoned engineering leaders with passion for technology and an entrepreneurial mindset. At Amazon, it is all about working hard, having fun and making history. If you are ready to make history, we want to hear from you!Come join a brand new team, EC2 Health Analytics, under EC2 Foundational Technology, to solve complex cutting-edge problems to power a faster, more robust and performant EC2 of tomorrow. The charter of our team is to improve customer experience on the EC2 fleet by analyzing hundreds of signals and driving next-generation detection and remediation tools. We apply Machine Learning to predict outcomes and optimize decisions that improve customer experience and operational efficiency. As an Applied Scientist in the EC2 Health Analytics team, you will join an industry-leading engineering team solving challenging problems at massive scale.· Build a world-class forecasting platform that scales to handling billions of time series data in real time.· Drive fleet utilization improvement where each 1% means tens of millions of additional free cash flow.· Automate tactical and strategic capacity planning tools to optimize for service availability and infrastructure cost.· Build recommendation algorithms for improving the AWS customer experience.· · Reduce dependence on manual troubleshooting for deep-dives.What you will learn:· State-of-the-art analytics and forecasting methodologies.· Application of machine learning to large-scale data sets.· · Product recommendation algorithms.· Resource management and admission control for the Cloud.· The internals of all AWS services.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Palo Alto
Job summaryThe Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, the Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide.
US, WA, Bellevue
Job summaryThe primary mission of ADECT Monitoring team is to protect customer trust and improve customer experience with Alexa skills and devices. As part of this role, you will build models to improve customer’s experience on Alexa. The team uses various signals to ensure that customers get delightful experiences. This could be through experience improvements or ensuring that only high quality experiences reach customers. We use a lot of data along with multiple approaches such as machine learning and other algorithmic approaches to solve challenges that customers face interacting with Alexa. The ideal candidate will be an expert in the areas of data science, machine learning and statistics, having hands-on experience with multiple improvement initiatives as well as balancing technical and business judgment to make the right decisions about technology, models and methodologies. This involves building conversation arbitration models, which validate conversation quality and metrics to measure and continuously improve on it. These are some of the challenges that have not been solved in the industry before. The candidate needs experience with data science / business intelligence, analytics, and reporting systems while striving for simplicity, and demonstrating significant creativity and high judgment backed by statistical proof. The candidate is also expected to take these models into production, so they need to have some experience with software systems as well. There will be guidance provided on the software front though.
US, WA, Bellevue
Job summaryThe primary mission of ADECT Monitoring team is to protect customer trust and improve customer experience with Alexa skills and devices. The team uses various signals to ensure that customers get delightful experiences. This could be through experience improvements or ensuring that only high quality experiences reach customers. We use a lot of data along with multiple approaches such as machine learning and other algorithmic approaches to solve challenges that customers face interacting with Alexa. The ideal candidate will be an expert in the areas of data science, machine learning and statistics, having hands-on experience with multiple improvement initiatives as well as balancing technical and business judgment to make the right decisions about technology, models and methodologies. As part of this role, you will build models to improve customer’s experience on Alexa. This involves building conversation arbitration models, which validate conversation quality and metrics to measure and continuously improve on it. These are some of the challenges that have not been solved in the industry before. The candidate needs experience with data science / business intelligence, analytics, and reporting systems while striving for simplicity, and demonstrating significant creativity and high judgment backed by statistical proof. The candidate is also expected to work on ML models to improve customer trust. This role will have an opportunity to convert to an Applied Scientist.
US, CA, Sunnyvale
Job summaryAmazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced groundbreaking devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?The Role:As a Design Analysis Engineer, you will be responsible for bringing new product designs through to manufacturing. Thermal and structural engineering contributes unique, in-depth technical knowledge to solve complex engineering problems in concert with multi-disciplinary teams including Industrial Design, Hardware Engineering, and Operations.You will work closely with multi-disciplinary groups including Product Design, Industrial Design, Hardware Engineering, and Operations, to drive key aspects of engineering of consumer electronics products. In this role, you will:· Perform analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques· Strong fundamentals in dynamics with emphasis on system dynamics, mechanism analysis (Multi Body Dynamics analysis) and co-simulation· Develop, analyze and test thermal, acoustic and structural solutions; from concept design, feature development, product architecture, through system validation· Support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques· Use simulation tools like Abaqus, LS-Dyna, Simpack for analysis and design of products· Validate design modifications using simulation and actual prototypes· Use of programming languages like Python and Matlab for analytical/statistical analyses and automation· Establish noise thresholds for usability and compliance requirements· Determine and validate structural performance under use and test conditions· Have strong knowledge of various materials such as heat spreaders solutions to resolve thermal issues, damping materials for noise and vibration suppression· Use various data acquisition systems with thermocouples, accelerometers, strain gauges and IR cameras· Collaborate as part of the device team to iterate and optimize design parameters of enclosures and structural parts to establish and deliver project performance objectives· Design and execute tests using statistical tools to validate analytical models, identify risks and assess design margins· Create and present analytical and experimental results· Develop and apply design guidelines based on project results