Leveraging unannotated data to bootstrap Alexa functions more quickly

Developing a new natural-language-understanding system usually requires training it on thousands of sample utterances, which can be costly and time-consuming to collect and annotate. That’s particularly burdensome for small developers, like many who have contributed to the library of more than 70,000 third-party skills now available for Alexa.

One way to make training more efficient is transfer learning, in which a neural network trained on huge collections of previously annotated data is then retrained on the comparatively sparse data in a new area. Last year, my colleagues and I showed that, for low volumes of training data, transfer learning could reduce the error rate of natural-language-understanding (NLU) systems by an average of 14%.

This year, at the 33rd conference of the Association for the Advancement of Artificial Intelligence (AAAI), we will present a method for reducing the error rate by an additional 8% — again, for low volumes of training data — by leveraging millions of unannotated interactions with Alexa.

Using those interactions, we train a neural network to produce “embeddings”, which represent words as points in a high-dimensional space, such that words with similar functions are grouped together. In our earlier paper, we used off-the-shelf embeddings; replacing them with these new embeddings but following the same basic transfer-learning procedure reduced error rates on two NLU tasks.

Our embeddings are based on an embedding scheme called ELMo, or Embeddings from Language Models. But we simplify the network that produces the embeddings, speeding it up by 60%, which makes it efficient enough for deployment in a real-time system like Alexa. We call our embedding ELMoL, for ELMo Light.

Embeddings typically group words together on the basis of their co-occurrence with other words. The more co-occurring words two words have in common, the closer they are in the embedding space. Embeddings thus capture information about words’ semantic similarities without requiring human annotation of training data.

Most popular embedding networks are “pretrained” on huge bodies of textual data. The volume of data ensures that the measures of semantic similarity are fairly reliable, and many NLU systems simply use the pretrained embeddings. That’s what we did in our earlier paper, using an embedding scheme called Fasttext.

We reasoned, however, that requests to Alexa, even across a wide range of tasks, exhibit more linguistic regularities than the more varied texts used to pretrain embeddings. An embedding network trained on those requests might be better able to exploit their regularities. We also knew that we had enough training data to yield reliable embeddings.

ELMo differs from embeddings like Fasttext in that it is context sensitive: with ELMo, the word “bark”, for instance, should receive different embeddings in the sentences “the dog’s bark is loud” and “the tree’s bark is hard”.

To track context, the ELMo network uses bidirectional long short-term memories, or bi-LSTMs. An LSTM is a network that processes inputs in order, and the output corresponding to a given input factors in previous inputs and outputs. A bidirectional LSTM is one that runs through the data both forward and backward.

ELMo uses a stack of bi-LSTMs, each of which processes the output of the one beneath it. But again, because Alexa transactions display more linguistic uniformity than generic texts, we believed we could extract adequate performance from a single bi-LSTM layer, while gaining significant speedups.

ELMoL_network.jpg._CB456417562_.jpg
Our ELMo Light (ELMoL) embedding network uses a bi-directional long short-term memory (grey parallelograms) to predict the next word in an utterance from those that preceded it. "Bi-directional" means that it runs both forward (right arrows) and backward (left arrows), so it also predicts the previous word in an utterance from those that follow it.

In our experiments, we compared NLU networks that used three different embedding schemes: Fasttext, as in our previous paper, ELMo, and ELMoL. As a baseline, we also compared the networks’ performance with that of a network that used no embedding scheme at all.

With the Fasttext network, the embedding layers were pretrained; with the ELMo and ELMoL networks, we trained the embedding layers on 250 million unannotated requests to Alexa. Once all the embeddings were trained, we used another four million annotated requests to existing Alexa services to train each network on two standard NLU tasks. The first task was intent classification, or determining what action a customer wished Alexa to perform, and the second was slot tagging, or determining what entities the action should apply to.

Initially, we allowed training on the NLU tasks to adjust the settings of the ELMoL embedding layers, too. But we found that this degraded performance: the early stages of training, when the network’s internal settings were swinging wildly, undid much of the prior training that the embedding layers had undergone.

So we adopted a new training strategy, in which the embedding layers started out fixed. Only after the network as a whole began to converge toward a solution did we allow slow modification of the embedding layers’ internal settings.

Once the networks had been trained as general-purpose intent classifiers and slot-taggers, we re-trained them on limited data to perform new tasks. This was the transfer learning step.

As we expected, the network that used ELMo embeddings performed best, but the ELMoL network was close behind, and both showed significant improvements over the network that used FastText. Those improvements were greatest when the volume of data for the final retraining — the transfer learning step — was small. But that is precisely the context in which transfer learning is most useful.

When the number of training examples ranged from 100 to 500, the error rate improvement over the FastText network hovered around 8%. At those levels, the ELMo network was usually good for another 1-2% reduction, but it was too slow to be practical in a real-time system.

Acknowledgments: Angeliki Metallinou, Aditya Siddhant

Related content

GB, London
Our team's mission is to improve Shopping experience for customers interacting with Amazon devices via voice. We work with Alexa and multiple other teams to research and develop advanced state-of-the-art speech technologies. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. Key job responsibilities We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech and Language technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech synthesis. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for Speech and Language applications. * Participate in research activities including the application and evaluation of Speech and Language techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: London, GBR
ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Our Prime Air Drone Vehicle Design and Test team within Flight Sciences is looking for an outstanding engineer to help us rapidly configure, design, analyze, prototype, and test innovative drone vehicles. You’ll be responsible for developing, improving, and maintaining a suite of multi-disciplinary optimization (MDO) tools across all aircraft design disciplines. You’ll use these to explore new and novel drone vehicle conceptual designs in both focused and wide open design spaces, with the ultimate goal of meeting our customer requirements. You’ll have the opportunity to prototype vehicle designs and support wind tunnel and other testing of vehicle designs. You will directly support the Office of the Chief Program Engineer, and work closely across all vehicle subsystem teams to ensure integrated designs that meet performance, reliability, operability, manufacturing, and cost requirements. In addition, you’ll own the Flight Sciences assessments and analysis methods for the drone vehicle design as it progresses through later stages of development. About the team Our Flight Sciences Vehicle Design & Test organization includes teams that span the following disciplines: Aerodynamics, Performance, Stability & Control, Configuration & Spatial Integration, Loads, Structures, Mass Properties, Multi-disciplinary Optimization (MDO), Wind Tunnel Testing, Noise Testing, Flight Test Instrumentation, and Rapid Prototyping. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, MA, Boston
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of applied econometrics is necessary, and experience with SQL and Python would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will build data sets and perform applied econometric analysis, collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Boston, MA, USA | Seattle, WA, USA
ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Bellevue
Amazon’s Modeling and Optimization Team (MOP) is looking for a passionate individual with strong optimization and analytical skills to join us in the endeavor of designing and planning the most complex supply chain in the world. The team is responsible for optimizing the global supply chain for Amazon.com and ensuring that the company is able to inbound goods from seller and vendors, transport them to their target fulfillment center, and deliver to our customers as quickly, accurately, and cost effectively as possible. We work on problems ranging from network design to inventory management, in order to support strategic decisions. It is a terrific opportunity to have a direct impact in the business while pushing the boundaries of science. Key job responsibilities We are seeking an experienced scientist who has solid background in Operations Research, Operations Management, Applied Mathematics or other similar domain. In this role, you will develop models and solution algorithms that are innovative and scalable to solve new challenges in the inventory management space. You will collaborate with other scientists across teams to create integrated solutions that improves fulfillment speed, cost, and carbon emission. You have deep understanding of business challenges and provide scientific analysis to support business decision using a range of methodologies. You will also work with engineering teams to identify new data requirements, deploy new models or simplifying existing processes. About the team https://www.aboutamazon.com/news/innovation-at-amazon/how-artificial-intelligence-helps-amazon-deliver We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Santa Clara
Do you wish to create the greatest possible worldwide impact in healthcare? We, at Amazon Health Store Tech, are working towards the best-in-class healthcare storefront to make high-quality healthcare reliable, accessible, and intuitive. Our mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. We are looking to hire and develop subject-matter experts in AI who focus on data analytics, machine learning (ML), natural language understanding (NLP), and deep learning for healthcare. We target high-impact algorithmic unlocks in areas such as natural language understanding (NLU), Foundation Models, Large Language Models (LLMs), document understanding, and knowledge representation systems—all of which are of high-value to our healthcare products and services. If you are a seasoned, hands-on Principal Applied Scientist with a track record of delivering to timelines with high quality, deeply technical and innovative, we want to talk to you. You will bring AI and machine learning advancements to real-time analytics for customer-facing solutions in healthcare. You will explore, innovate, and deliver advanced ML-based technologies that involve clinical and medical data. You are a domain expert in one or more of the following areas: natural language processing and understanding (language models, transformers like BERT, GPT-3, T-5, etc.), Foundation Models and LLMs, deep learning, active learning, reinforcement learning, and bioinformatics. Key job responsibilities As an Principal Applied Scientist, you will take on challenging and ambiguous customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and medical research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to its implementation. A successful candidate has excellent technical depth, scientific vision, great implementation skills, and a drive to achieve results in a collaborative team environment. You should enjoy the process of solving real-world, open-ended problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a fearless disruptor, prolific innovator, and a reputed problem solver—someone who truly enables machine learning and statistics to truly impact the lives and health of millions of customers. You mentor and help develop a team of Applied Scientists and SDEs and work with key leaders to guide this top talent to push the boundary of science and next generation of product. They will lead the technical implementation of our evidence-based retrieval sub-system that ingests, indexes and retrieves relevant data in different forms and from multiple sources given the customer question and context. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA | Seattle, WA, USA
US, WA, Bellevue
Imagine being part of an agile team where your ideas have the potential to reach millions of customers. Picture working on cutting-edge, customer-facing solutions, where every team member is a critical voice in the decision making process. Envision being able to leverage the resources of a Fortune 500 company within the atmosphere of a start-up. Welcome to Amazon’s NCRC team. We solve complex problems in an ambiguous space, focusing on reducing return costs and improving the customer experience. We build solutions that are distributed on a large scale, positively impacting experiences for our customers and sellers. Come innovate with the NCRC team! The Net Cost of Refunds and Concessions (NCRC) team is looking for a Senior Manager Data Science to lead a team of economists, business intelligence engineers and business analysts who investigate business problems, develop insights and build models & algorithms that predict and quantify new opportunity. The team instigates and productionalizes nascent solutions around four pillars: outbound defects, inbound defects, yield optimization and returns reduction. These four pillars interact, resulting in impacts to our overall return rate, associated costs, and customer satisfaction. You may have seen some downstream impacts of our work including Amazon.com customer satisfaction badges on the website and app, new returns drop off optionality, and faster refunds for low cost items. In this role, you will set the science vision and direction for the team, collaborating with internal stakeholders across our returns and re-commerce teams to scale and advance science solutions. This role is based in Bellevue, WA Key job responsibilities * Single threaded leader responsible for setting and driving science strategy for the organization. * Lead and provide coaching to a team of Scientists, Economists, Business Intelligence Engineers and Business Analysts. * Partner with Engineering, Product and Machine Learning leaders to deliver insights and recommendations across NCRC initiatives. * Lead research and development of models and science products powering return cost reduction. * Educate and evangelize across internal teams on analytics, insights and measurement by writing whitepapers, knowledge documentation and delivering learning sessions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA