Scientific frontiers of agentic AI

The language AI agents might speak, sharing context without compromising privacy, modeling agentic negotiations, and understanding users’ commonsense policies are some of the open scientific questions that researchers in agentic AI will need to grapple with.

It feels as though we’ve barely absorbed the rapid development and adoption of generative AI technologies such as large language models (LLMs) before the next phenomenon is already upon us, namely agentic AI. Standalone LLMs can be thought of as “chatbots in a sandbox”, the sandbox being a metaphor for a safe and contained play space with limited interaction with the world beyond. In contrast, the vision of agentic AI is a near (or already here?) future in which LLMs are the underlying engines for complex systems that have access to rich external resources such as consumer apps and services, social media, banking and payment systems — in principle, anything you can reach on the Internet. A dream of the AI industry for decades, the “agent” of agentic AI is an intelligent personal assistant that knows your goals and preferences and that you trust to act on your behalf in the real world, much as you might a human assistant.

Related content
Real-world deployment requires notions of fairness that are task relevant and responsive to the available data, recognition of unforeseen variation in the “last mile” of AI delivery, and collaboration with AI activists.

For example, in service of arranging travel plans, my personal agentic AI assistant would know my preferences (both professional and recreational) for flights and airlines, lodging, car rentals, dining, and activities. It would know my calendar and thus be able to schedule around other commitments. It would know my frequent-flier numbers and hospitality accounts and be able to book and pay for itineraries on my behalf. Most importantly, it would not simply automate these tasks but do so intelligently and intuitively, making “obvious” decisions unilaterally and quietly but being sure to check in with me whenever ambiguity or nuance arises (such as whether those theater tickets on a business trip to New York should be charged to my personal or work credit card).

To AI insiders, the progression from generative to agentic AI is exciting but also natural. In just a few years, we have gone from impressive but glorified chatbots with myriad identifiable shortcomings to feature-rich systems exhibiting human-like capabilities not only in language and image generation but in coding, mathematical reasoning, optimization, workflow planning, and many other areas. The increased skill set and reliability of core LLMs has naturally caused the industry to move “up the stack”, to a world in which the LLM itself fades into the background and becomes a new kind of intelligent operating system upon which all manner of powerful functionality can be built. In the same way that your PC or Mac seamlessly handles myriad details that the vast majority of users don’t (want to) know about — like exactly how and where on your hard drive to store and find files, the networking details of connecting to remote web servers, and other fine-grained operating-system details — agentic systems strive to abstract away the messy and tedious details of many higher-level tasks that, today, we all perform ourselves.

But while the overarching vision of agentic AI is already relatively clear, there are some fundamental scientific and technical questions about the technology whose answers — or even proper formulation — are uncertain (but interesting!). We’ll explore some of them here.

What language will agents speak?

The history of computing technology features a steady march toward systems and devices that are ever more friendly, accessible, and intuitive to human users. Examples include the gradual displacement of clunky teletype monitors and obscure command-line incantations by graphical user interfaces with desktop and folder metaphors, and the evolution from low-level networked file transfer protocols to the seamless ease of the web. And generative AI itself has also made previously specialized tasks like coding accessible to a much broader base of users. In other words, modern technology is human-centric, designed for use and consumption by ordinary people with little or no specialized training.

But now these same technologies and systems will also need to be navigated by agentic AI, and as adept as LLMs are with human language, it may not be their most natural mode of communication and understanding. Thus, a parallel migration to the native language of generative AI may be coming.

What is that native language? When generative AI consumes a piece of content — whether it be a user prompt, a document, or an image — it translates it into an internal representation that is more convenient for subsequent processing and manipulation. There are many examples in biology of such internal representations. For instance, in our own visual systems, it has been known for some time that certain types of inputs (such as facial images) cause specific cells in our brains to respond (a phenomenon known as neuronal selectivity). Thus, an entire category of important images elicits similar neural behaviors.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

In a similar vein, the neural networks underlying modern AI typically translate any input into what is known as an embedding space, which can be thought of as a physical map in which items with similar meanings are placed near each other, and those with unrelated meanings are placed far apart. For example, in an image-embedding space, two photos of different families would be nearer to each other than either would be to a landscape. In a language-embedding space, two romance novels would be nearer to each other than to a car owner’s manual. And hybrid or multimodal embedding spaces would place images of cars near their owner manuals.

Embeddings are an abstraction that provides great power and generality, in the form of the ability to represent not the literal original content (like a long sequence of words) but something closer to its underlying meaning. The price for this abstraction is loss of detail and information. For instance, the embedding of this entire article would place it in close proximity to similar content (for instance, general-audience science prose) but would not contain enough information to re-create the article verbatim. The lossy nature of embeddings has implications we shall return to shortly.

Embeddings are learned from the massive amount of information on the Internet and elsewhere about implicit correspondences. Even aliens landing on earth who could read English but knew nothing else about the world would quickly realize that “doctor” and “hospital” are closely related because of their frequent proximity in text, even if they had no idea what these words actually signified. Furthermore, not only do embeddings permit generative AI to understand existing content, but they allow it to generate new content. When we ask for a picture of a squirrel on a snowboard in the style of Andy Warhol, it is the embedding that lets the technology explore novel images that interpolate between those of actual Warhols, squirrels, and snowboards.

Thus, the inherent language of generative (and therefore agentic) AI is not the sentences and images we are so familiar with but their embeddings. Let us now reconsider a world in which agents interact with humans, content, and other agents. Obviously, we will continue to expect agentic AI to communicate with humans in ordinary language and images. But there is no reason for agent-to-agent communication to take place in human languages; per the discussion above, it would be more natural for it to occur in the native embedding language of the underlying neural networks.

My personal agent, working on a vacation itinerary, might ingest materials such as my previous flights, hotels, and vacation photos to understand my interests and preferences. But to communicate those preferences to another agent — say, an agent aggregating hotel details, prices, and availability — it will not provide the raw source materials; in addition to being massively inefficient and redundant, that could present privacy concerns (more on this below). Rather, my agent will summarize my preferences as a point, or perhaps many points, in an embedding space.

Restaurant embeddings.jpg
In this example, the red, green, and blue points are three-dimensional embeddings of restaurants at which three people (Alice, Bob, and Chris) have eaten. (A real-world embedding, by contrast, might have hundreds of dimensions.) Each glowing point represents the center of one of the clusters, and its values summarize the restaurant preferences of the corresponding person. AI agents could use such vector representations, rather than text, to share information with each other.

By similar reasoning, we might also expect the gradual development of an “agentic Web” meant for navigation by AI, in which the text and images on websites are pre-translated into embeddings that are illegible to humans but are massively more efficient than requiring agents to perform these translations themselves with every visit. In the same way that many websites today have options for English, Spanish, Chinese, and many other languages, there would be an option for Agentic.

All the above presupposes that embedding spaces are shared and standardized across generative and agentic AI systems. This is not true today: embeddings differ from model to model and are often considered proprietary. It’s as if all generative AI systems speak slightly different dialects of some underlying lingua franca. But these observations about agentic language and communication may foreshadow the need for AI scientists to work toward standardization, at least in some form. Each agent can have some special and proprietary details to its embeddings — for instance, a financial-services agent might want to use more of its embedding space for financial terminology than an agentic travel assistant would — but the benefits of a common base embedding are compelling.

Keeping things in context

Even casual users of LLMs may be aware of the notion of “context”, which is informally what and how much the LLM remembers and understands about its recent interactions and is typically measured (at least cosmetically) by the number of words or tokens (word parts) recalled. There is again an apt metaphor with human cognition, in the sense that context can be thought of as the “working memory” of the LLM. And like our own working memory, it can be selective and imperfect.

If we participate in an experiment to test how many random digits or words we can memorize at different time scales, we will of course eventually make mistakes if asked to remember too many things for too long. But we will not forget what the task itself is; our short-term memory may be fallible, but we generally grasp the bigger picture.

Related content
Large language models’ emergent abilities are improving with scale; as scale grows, where are LLMs heading? Insights from Ray Solomonoff’s theory of induction and stochastic realization theory may help us envision — and guide — the limits of scaling.

These same properties broadly hold for LLM context — which is sometimes surprising to users, since we expect computers to be perfect at memorization but highly fallible on more abstract tasks. But when we remember that LLMs do not operate directly on the sequence of words or tokens in the context but on the lossy embedding of that sequence, these properties become less mysterious (though perhaps not less frustrating when an LLM can’t remember something it did just a few steps ago).

Some of the principal advances in LLM technology have been around improvements in context: LLMs can now remember and understand more context and leverage that context to tailor their responses with greater accuracy and sophistication. This greater window of working memory is crucial for many tasks to which we would like to apply agentic AI, such as having an LLM read and understand the entire code base of a large software development project, or all the documents relevant to a complex legal case, and then be able to reason about the contents.

How will context and its limitations affect agentic AI? If embeddings are the language of LLMs, and context is the expression of an LLM’s working memory in that language, a crucial design decision in agent-agent interactions will be how much context to share. Sharing too little will handicap the functionality and efficiency of agentic dialogues; sharing too much will result in unnecessary complexity and potential privacy concerns (just as in human-to-human interactions).

Let us illustrate by returning to my personal agent, who having found and booked my hotel is working with an external airline flight aggregation agent. It would be natural for my agent to communicate lots of context about my travel preferences, perhaps including conditions under which I might be willing to pay or use miles for an upgrade to business class (such as an overnight international flight). But my agent should not communicate context about my broader financial status (savings, debt, investment portfolio), even though in theory these details might correlate with my willingness to pay for an upgrade. When we consider that context is not my verbatim history with my travel agent, but an abstract summary in embedding space, decisions about contextual boundaries and how to enforce them become difficult.

Indeed, this is a relatively untouched scientific topic, and researchers are only just beginning to consider questions such as what can be reverse-engineered about raw data given only its embedding. While human or system prompts to shape inter-agent dealings might be a stopgap (“be sure not to tell the flight agent any unnecessary financial information”), a principled understanding of embedding privacy vulnerabilities and how to mitigate them (perhaps via techniques such as differential privacy) is likely to be an important research area going forward.

Agentic bargains

So far, we’ve talked a fair amount about interagent dialogues but have treated these conversations rather generally, much as if we were speaking about two humans in a collaborative setting. But there will be important categories of interaction that will need to be more structured and formal, with identifiable outcomes that all parties commit to. Negotiation, bargaining, and other strategic interactions are a prime example.

I obviously want my personal agent, when booking hotels and flights for my trips, to get the best possible prices and other conditions (room type and view, flight seat location, and so on). The agents aggregating hotels and flights would similarly prefer that I pay more rather than less, on behalf of their own clients and users.

For my agent to act in my interests in these settings, I’ll need to specify at least some broad constraints on my preferences and willingness to pay for them, and not in fuzzy terms: I can’t expect my agent to simply “know a bargain when it sees one” the way I might if I were handling all the arrangements myself, especially because my notion of a bargain might be highly subjective and dependent on many factors. Again, a near-term makeshift approach might address this via prompt shaping — “be sure to get the best deal possible, as long as the flight is nonstop and leaves in the morning, and I have an aisle seat” — but longer-term solutions will have to be more sophisticated and granular.

Related content
Amazon Research Award recipient Éva Tardos studies complex theoretical questions that have far-ranging practical consequences.

Of course, the mathematical and scientific foundations of negotiating and bargaining have been well studied for decades by game theorists, microeconomists, and related research communities. Their analyses typically begin by presuming the articulation of utility functions for all the parties involved — an abstraction capturing (for example) my travel preferences and willingness to pay for them. The literature also considers settings in which I can’t quantitatively express my own utilities but “know bargains when I see them”, in the sense that given two options (a middle seat on a long flight for $200 vs. a first-class seat for $2,000), I will make the choice consistent with my unknown utilities. (This is the domain of the aptly named utility elicitation.)

Much of the science in such areas is devoted to the question of what “should” happen when fully rational parties with precisely specified utilities, perfect memory, and unlimited computational power come to the proverbial bargaining table; equilibrium analysis in game theory is just one example of this kind of research. But given our observations about the human-like cognitive abilities and shortcomings of LLMs, perhaps a more relevant starting point for agentic negotiation is the field of behavioral economics. Instead of asking what should happen when perfectly rational agents interact, behavioral economics asks what does happen when actual human agents interact strategically. And this is often quite different, in interesting ways, than what fully rational agents would do.

For instance, consider the canonical example of behavioral game theory known as the ultimatum game. In this game, there is $10 to potentially divide between two players, Alice and Bob. Alice first proposes any split she likes. Bob then either accepts Alice’s proposal, in which case both parties get their proposed shares, or rejects Alice’s proposal, in which case each party receives nothing. The equilibrium analysis is straightforward: Alice, being fully rational and knowing that Bob is also, proposes the smallest nonzero amount to Bob, which is a penny. Bob, being fully rational, would prefer to receive a penny than nothing, so he accepts.

Ultimatum game 1.jpg
Game theory (left) supposes that the recipient in the ultimatum game will accept a low offer, since something is better than nothing, but behavioral economics (right) reveals that, in fact, offers tend to concentrate in the range of $3 to $5, and lower offers are frequently rejected.

Nothing remotely like this happens when humans play. Across hundreds of experiments varying myriad conditions — social, cultural, gender, wealth, etc. — a remarkably consistent aggregate behavior emerges. Alice almost always proposes a share to Bob of between $3 and $5 (the fact that Alice gets to move first seems to prime both players for Bob to potentially get less than half the pie). And conditioned on Alice’s proposal being in this range, Bob almost always accepts her offer. But on those rare occasions in which Alice is more aggressive and offers Bob an amount much less than $3, Bob’s rejection rate skyrockets. It’s as if pairs of people — who have never heard of or played the ultimatum game before — have an evolutionarily hardwired sense of what’s “fair” in this setting.

Ultimatum game bar graph.jpg
The way in which the ultimatum game is played — the frequency of particular offers and the rate of rejection — varies across cultures, but this graph illustrates general trends in the data. Offers tend to concentrate between $3 and $5, with a steep falloff above $5, and the rejection rate is high for low offers.

Now back to LLMs and agentic AI. There is already a small but growing literature on what we might call LLM behavioral game theory and economics, in which experiments like the one above are replicated — except human participants are replaced by AI. One early work showed that LLMs almost exactly replicated human behavior in the ultimatum game, as well as other classical behavioral-economics findings.

Note that it is possible to simulate the demographic variability of human subjects in such experiments via LLM prompting, e.g., “You are Alice, a 37-year-old Hispanic medical technician living in Boston, Massachusetts”. Other studies have again shown human-like behavior of LLMs in trading games, price negotiations, and other settings. A very recent study claims that LLMs can even engage in collusive price-fixing behaviors and discusses potential regulatory implications for AI agents.

Once we have a grasp on the behaviors of agentic AI in strategic settings, we can turn to shaping that behavior in desired ways. The field of mechanism design in economics complements areas like game theory by asking questions like “given that this is how agents generally negotiate, how can we structure those negotiations to make them fair and beneficial?” A classic example is the so-called second-price auction, where the highest bidder wins the item — but only pays the second highest bid. This design is more truthful than a standard first-price auction, in the sense that everyone’s optimal strategy is to simply bid the price at which they are indifferent to winning or losing (their subjective valuation of the item); nobody needs to think about other agents’ behaviors or valuations.

We anticipate a proliferation of research on topics like these, as agentic bargaining becomes commonplace and an important component of what we delegate to our AI assistants.

The enduring challenge of common sense

I’ll close with some thoughts on a topic that has bedeviled AI from its earliest days and will continue to do so in the agentic era, albeit in new and more personalized ways. It’s a topic that is as fundamental as it is hard to define: common sense.

By common sense, we mean things that are “obvious”, that any human with enough experience in the world would know without explicitly being told. For example, imagine a glass full of water sitting on a table. We would all agree that if we move the glass to the left or right on the table, it’s still a glass of water. But if we turn it upside down, it’s still a glass on the table, but no longer a glass of water (and is also a mess to be cleaned up). It’s quite unlikely any of us were ever sat down and run through this narrative, and it’s also a good bet that you’ve never deliberately considered such facts before. But we all know and agree on them.

Related content
Using large language models to discern commonsense relationships can improve performance on downstream tasks by as much as 60%.

Figuring out how to imbue AI models and systems with common sense has been a priority of AI research for decades. Before the advent of modern large-scale machine learning, there were efforts like the Cyc project (for “encyclopedia”), part of which was devoted to manually constructing a database of commonsense facts like the ones above about glasses, tables, and water. Eventually the consumer Internet generated enough language and visual data that many such general commonsense facts could be learned or inferred: show a neural network millions of pictures of glasses, tables and water and it will figure things out. Very early research also demonstrated that it was possible to directly encode certain invariances (similar to shifting a glass of water on a table) into the network architecture, and LLM architectures are similarly carefully designed in the modern era.

But in agentic AI, we expect our proxies to understand not only generic commonsense facts of the type we’ve been discussing but also “common sense” particular to our own preferences — things that would make sense to most people if only they understood our contexts and perspectives. Here a pure machine learning approach will likely not suffice. There just won’t be enough data to learn from scratch my subjective version of common sense.

For example, consider your own behavior or “policy” around leaving doors open or closed, locked or unlocked. If you’re like me, these policies can be surprisingly nuanced, even though I follow them without thought all the time. Often, I will close and lock doors behind me — for instance, when I leave my car or my house (unless I’m just stepping right outside to water the plants). Other times I will leave a door unlocked and open, such as when I’m in my office and want to signal I am available to chat with colleagues or students. I might close but leave unlocked that same door when I need to focus on something or take a call. And sometimes I’ll leave my office door unlocked and open even when I’m not in it, despite there being valuables present, because I trust the people on my floor and I’m going to be nearby.

We might call behaviors like these subjective common sense, because to me they are natural and obvious and have good reasons behind them, even though I follow them almost instinctually, the same way I know not to turn a glass of water upside down on the table. But you of course might have very different behaviors or policies in the same or similar situations, with your own good reasons.

Related content
Dataset contains more than 11,000 newly collected dialogues to aid research in open-domain conversation.

The point is that even an apparently simple matter like my behavior regarding doors and locks can be difficult to articulate. But agentic AI will need specifications like this: simply replace doors with online accounts and services and locks with passwords and other authentication credentials. Sometimes we might share passwords with family or friends for less-critical privacy-sensitive resources like Netflix or Spotify, but we would not do the same for bank accounts and medical records. I might be less rigorous about restricting access to, or even encrypting, the files on my laptop than I would be about files I store in the cloud.

The circumstances under which I trust my own or other agents with resources that need to be private and secure will be at least as complex as those regarding door closing and locking. The primary difficulty is not in having the right language or formalisms to specify such policies: there are good proposals for such specification frameworks and even for proving the correctness of their behaviors. The problem is in helping people articulate and translate their subjective common sense into these frameworks in the first place.

Conclusion

The agentic-AI era is in its infancy, but we should not take that to mean we have a long and slow development and adoption period before us. We need only look at the trajectory of the underlying generative AI technology — from being almost entirely unknown outside of research circles as recently as early 2022 to now being arguably the single most important scientific innovation of the century so far. And indeed, there is already widespread use of what we might consider early agentic systems, such as the latest coding agents.

Far beyond the initial “autocomplete for Python” tools of a few years ago, such agents now do so much more — writing working code from natural-language prompts and descriptions, accessing external resources and datasets, proactively designing experiments and visualizing the results, and most importantly (especially for a novice programmer like me), seamlessly handling the endless complexity of environment settings, software package installs and dependencies, and the like. My Amazon Scholar and University of Pennsylvania colleague Aaron Roth and I recently wrote a machine learning paper of almost 50 pages — complete with detailed definitions, theorem statements and proofs, code, and experiments — using nothing except (sometimes detailed) English prompts to such a tool, along with expository text we wrote directly. This would have been unthinkable just a year ago.

Despite the speed with which generative AI has permeated industry and society at large, its scientific underpinnings go back many decades, arguably to the birth of AI but certainly no later than the development of neural-network theory and practice in the 1980s. Agentic AI — built on top of these generative foundations, but quite distinct in its ambitions and challenges — has no such deep scientific substrate on which to systematically build. It’s all quite fresh territory. I’ve tried to anticipate some of the more fundamental challenges here, and I’ve probably got half of them wrong. To paraphrase the Philadelphia department store magnate John Wanamaker, I just don’t know which half — yet.

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.
US, WA, Seattle
The Seller Fees organization drives the monetization infrastructure powering Amazon's global marketplace, processing billions of transactions for over two million active third-party sellers worldwide. Our team owns the complete technical stack and strategic vision for fee computation systems, leveraging advanced machine learning to optimize seller experiences and maintain fee integrity at unprecedented scale. We're seeking an exceptional Applied Scientist to push the boundaries of large-scale ML systems in a business-critical domain. This role presents unique opportunities to • Architect and deploy state-of-the-art transformer-based models for fee classification and anomaly detection across hundreds of millions of products • Pioneer novel applications of multimodal LLMs to analyze product attributes, images, and seller metadata for intelligent fee determination • Build production-scale generative AI systems for fee integrity and seller communications • Advance the field of ML through novel research in high-stakes, large-scale transaction processing • Develop SOTA causal inference frameworks integrated with deep learning to understand fee impacts and optimize seller outcomes • Collaborate with world-class scientists and engineers to solve complex problems at the intersection of deep learning, economics, and large business systems. If you're passionate about advancing the state-of-the-art in applied ML/AI while tackling challenging problems at global scale, we want you on our team! Key job responsibilities Responsibilities: . Design measurable and scalable science solutions that can be adopted across stores worldwide with different languages, policy and requirements. · Integrate AI (both generative and symbolic) into compound agentic workflows to transform complex business systems into intelligent ones for both internal and external customers. · Develop large scale classification and prediction models using the rich features of text, image and customer interactions and state-of-the-art techniques. · Research and implement novel machine learning, statistical and econometrics approaches. · Write high quality code and implement scalable models within the production systems. · Stay up to date with relevant scientific publications. · Collaborate with business and software teams both within and outside of the fees organization.
US, WA, Seattle
The Selling Partner Experience (SPX) organization strives to make Amazon the best place for Selling Partners to do business. The SPX Science team is building an AI-powered conversational assistant to transform the Selling Partner experience. The Selling Assistant is a trusted partner and a seasoned advisor that’s always available to enable our partners to thrive in Amazon’s stores. It takes away the cognitive load of selling on Amazon by providing a single interface to handle a diverse set of selling needs. The assistant always stays by the seller's side, talks to them in their language, enables them to capitalize on opportunities, and helps them accomplish their business goals with ease. It is powered by the state-of-the-art Generative AI, going beyond a typical chatbot to provide a personalized experience to sellers running real businesses, large and small. Do you want to join an innovative team of scientists, engineers, product and program managers who use the latest Generative AI and Machine Learning technologies to help Amazon create a delightful Selling Partner experience? Do you want to build solutions to real business problems by automatically understanding and addressing sellers’ challenges, needs and opportunities? Are you excited by the prospect of contributing to one of Amazon’s most strategic Generative AI initiatives? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use state-of-the-art Machine Learning and Generative AI techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model benchmarking, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. We are focused on building seller facing AI-powered tools using the latest science advancements to empower sellers to drive the growth of their business. We strive to radically simplify the seller experience, lowering the cognitive burden of selling on Amazon by making it easy to accomplish critical tasks such as launching new products, understanding and complying with Amazon’s policies and taking actions to grow their business.
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Selling Partner Growth organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential supported by Amazon tools and resources. We are looking for a Senior Applied Scientist to lead us to identify data-driven insight and opportunities to improve our SP growth strategy and drive new seller success. As a successful applied scientist on our talented team of scientists and engineers, you will solve complex problems to identify actionable opportunities, and collaborate with engineering, research, and business teams for future innovation. You need to have deep understanding on the business domain and have the ability to connect business with science. You are also strong in ML modeling and scientific foundation with the ability to collaborate with engineering to put models in production to answer specific business questions. You are an expert at synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication. You will continue to contribute to the research community, by working with scientists across Amazon, as well as collaborating with academic researchers and publishing papers (www.aboutamazon.com/research). Key job responsibilities As a Sr. Applied Scientist in the team, you will: - Identify opportunities to improve SP growth and translate those opportunities into science problems via principled statistical solutions (e.g. ML, causal, RL). - Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in MLOps. - Design and lead roadmaps for complex science projects to help SP have a delightful selling experience while creating long term value for our shoppers. - Work with our engineering partners and draw upon your experience to meet latency and other system constraints. - Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. - Be responsible for communicating our science innovations to the broader internal & external scientific community.
US, CA, Sunnyvale
Our team leads the development and optimization of on-device ML models for Amazon's hardware products, including audio, vision, and multi-modal AI features. We work at the critical intersection of ML innovation and silicon design, ensuring AI capabilities can run efficiently on resource-constrained devices. Currently, we enable production ML models across multiple device families, including Echo, Ring/Blink, and other consumer devices. Our work directly impacts Amazon's customer experiences in consumer AI device market. The solutions we develop determine which AI features can be offered on-device versus requiring cloud connectivity, ultimately shaping product capabilities and customer experience across Amazon's hardware portfolio. This is a unique opportunity to shape the future of AI in consumer devices at unprecedented scale. You'll be at the forefront of developing industry-first model architectures and compression techniques that will power AI features across millions of Amazon devices worldwide. Your innovations will directly enable new AI features that enhance how customers interact with Amazon products every day. Come join our team! Key job responsibilities As a Principal Applied Scientist, you will: • Own the technical architecture and optimization strategy for ML models deployed across Amazon's device ecosystem, from existing to yet-to-be-shipped products. • Develop novel model architectures optimized for our custom silicon, establishing new methodologies for model compression and quantization. • Create an evaluation framework for model efficiency and implement multimodal optimization techniques that work across vision, language, and audio tasks. • Define technical standards for model deployment and drive research initiatives in model efficiency to guide future silicon designs. • Spend the majority of your time doing deep technical work - developing novel ML architectures, writing critical optimization code, and creating proof-of-concept implementations that demonstrate breakthrough efficiency gains. • Influence architecture decisions impacting future silicon generations, establish standards for model optimization, and mentor others in advanced ML techniques.