Solomonic learning: Large language models and the art of induction

Large language models’ emergent abilities are improving with scale; as scale grows, where are LLMs heading? Insights from Ray Solomonoff’s theory of induction and stochastic realization theory may help us envision — and guide — the limits of scaling.

“One year of research in neural networks is sufficient to believe in God.” The writing on the wall of John Hopfield’s lab at Caltech made no sense to me in 1992. Three decades later, and after years of building large language models, I see its sense if one replaces sufficiency with necessity: understanding neural networks as we teach them today requires believing in an immanent entity.

Stefano Soatto.png
Stefano Soatto, a vice president and distinguished scientist with Amazon Web Services.
Credit: UCLA Samueli

Let’s start from the basics: when we teach machine learning, we say that memorization is bad, because it leads to overfitting and prevents generalization. Generalization is good — so good that, to achieve it, we incentivize machines not to memorize, through “regularization”. We even prove theorems — so-called uniform generalization bounds — that guarantee generalization no matter what distribution the data are drawn from, provided we avoid memorization.

But my mother always told me not to generalize, and she had me commit to memory countless useless poems in elementary school. Why am I teaching that generalization is good and memorization is bad, when I was taught the opposite?

Biology vs. technology

Machine learning has historically drawn inspiration from biology. But biological systems have hard ontogenic and phylogenic memory bounds: our synapses cannot memorize everything we experience, and our DNA cannot transmit the knowledge we’ve accumulated to our descendants. (As an educator and father, I often wished I could upload what I have learned into my students and kids. I haven’t figured that one out, but can we at least do it for AI models?) Furthermore, biology imposes a strong evolutionary bias toward minimizing inference latency: when facing an animal in the wild and having to determine who’s whose meal, we can’t reason through all past memories lest the decision be made for us.

In other words, biological systems are forced to adopt inductive learning, using specific data from the past (or a “training set”) to devise a process for handling any future data. Success in inference from inductive learning (or more simply, induction) relies on the so-called inductive hypothesis, that past performance can guarantee future rewards (the primate species called “financial advisor” has evolved out of this belief).

Related content
New method leverages vision-language models to formalize a comparison that had previously required human judgment.

Technology does not have the limitations of biological systems: there are no hard memory bounds (we can always add more storage) and no hard computational bounds (we can fire up more computers), at least until we hit cosmic limits. If we accept that machines do not have the same limitations as biology, what is the best inference paradigm for them? That is, given a training set and a test query, how can they devise the best answer?[1] If we want our model to operate in the constantly evolving real world, we shouldn’t assume the existence of a single distribution from which all data are drawn, in principio, nunc, et semper.

Inference that allows processing the training data at inference time is called transductive inference, or transduction. Transduction calls for us to memorize and reason, unlike induction, which wants us to generalize and forget. To perform optimal inference with respect to any hypothetical distribution in the future, one must memorize past data and, only when presented with a specific query, deploy “reasoning” skills and access memory to compute the best possible answer to that query.

Induction calls for forgetting what does not matter during training, under the assumption that the training set is representative of all future data. But in reality, one cannot know what data will be useful when, so memorization is wise if one can afford it, even when the data — like the writing on John Hopfield’s lab’s wall — does not make sense in that moment.

Transductive inference from inductive learning

Uniform generalization bounds may seem powerful because they are valid for any distribution; but for them to work, there can be only one distribution from which both past and future data are independently sampled. Paraphrasing the statistician Bruno de Finetti, this distribution does not exist in any objective or material sense. It is an abstract concept, the product of our imagination. Something we concoct to guide our intuition and analysis.

Related content
In addition to its practical implications, recent work on “meaning representations” could shed light on some old philosophical questions.

The inductive hypothesis is fundamentally not verifiable: any finite training data could have been drawn with identical likelihood from infinitely many distributions, so even if there was a single true one, how would we know which? Once the present is past, we cannot repeat the experiment. The inductive hypothesis is a statement of faith and uniform generalization bounds an expression of hope, not quite within the scientific realm.

Don’t get me wrong: hope can pay off. The future often does resemble the past. But many of the mechanisms that generate the data we care about today, in business, finance, climate, and language, evolve over time. The same word can carry a different meaning today than it did a century, or even a decade, ago. The point is that whether the inductive hypothesis holds or not cannot be known ahead of time.

Solomonoff inference

What if we forgo generalization and embrace memorization and reasoning? Is that what LLMs are doing? If so, where are they heading? What does the limit of optimal transductive inference look like?

The answer was given in 1964 by the mathematician Ray Solomonoff and is now known, somewhat confusingly, as Solomonoff induction. I will refer to it as Solomonoff inference, which can be thought of as the limit of scaling laws when we allow memory, computational capacity, and time to grow to infinity.

Solomonoff inference is optimal with respect to all computable distributions, averaged with respect to the universal prior. The Church-Turing thesis predicates that any physically realizable mechanism belongs to this class. While infeasible in practice, since it requires infinite resources, Solomonoff’s algorithm is quite simple: execute all programs in increasing order of length until one manages to spit out all the data observed up to now, bit by bit, if it terminates.

Related content
The surprising dynamics related to learning that are common to artificial and biological systems.

The optimal algorithm is basically a lookup table with a switch. There is no insight, no knowledge, not even learning. If presented with the same query twice in a row, the optimal algorithm would repeat the same procedure all over, having learned nothing from past experience.

Solomonoff inference is quite unlike neural networks, which are trained by comparing gradient vectors in a high-dimensional space, where the data are embedded. But could it be that, as we scale LLMs to larger and larger sizes, their behavior is beginning to resemble Solomonoff inference? After all, LLMs are known to memorize, albeit imperfectly, and they can perform universal computation, at least if augmented with a scratchpad. Indeed, LLMs are already able to perform rudimentary transductive inference, now known as “in-context learning” — somewhat confusingly, as it involves no learning: if presented with the same context twice, an LLM would repeat the same process, with no improvement from experience.

So, if LLMs were to begin to perform Solomonoff inference, would they become “superintelligent”? Given no accepted definition of intelligence, let alone its superlatives, many tacitly assume inference performance as its proxy: “smarter” models (or students) perform better on tests, whether the SAT, GRE, or BAR, or the famed IMO math competition. The higher the score, the more “intelligent” the model must be! But the absolute best would be Solomonoff’s algorithm, and no matter what one’s definition of intelligence is, Solomonoff’s algorithm cannot meet it: if by mistake the IMO printed each question twice, Solomonoff’s algorithm would redo the same work twice, not exactly what most would call “intelligent” behavior.

As an analogy, an “inductive student” is a diligent pupil who studies the textbook and completes all homework assignments and practice problems before showing up at the exam. So long as the questions are close enough to practice problems, the inductive student does well. On the occasional odd (or out-of-distribution, as a believer in induction would say) question, the inductive student may not do as well.

By contrast, the “transductive student” does not study at all and instead shows up at the exam with the textbook in hand. Only after reading the first question does the transductive student go through the book to find all the pieces needed to assemble an answer. The student could, in principle, repeat the exercise all the way to the last question, learning nothing in the process. As Solomonoff showed us, there is no need to be smart if one has unbounded time, memory, and computational power.

Do we want models that perform well on benchmark exams, or is the kind of “intelligence” we want something else? Fortunately, inductive and transductive inference are not mutually exclusive. In fact, their difference is quite subtle, as one could frame either as a special case of the other, and the two coincide when the data are independently and identically distributed.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

What matters is that LLMs are inductively trained transductive-inference engines and can therefore support both forms of inference.[2] They are capable of performing inference by inductive learning, like any trained classifier, akin to Daniel Kahneman’s “system 1” behavior — the fast thinking of his book title Thinking Fast and Slow. But LLMs are also capable of rudimentary forms of transduction, such as in-context-learning and chain of thought, which we may call system 2 — slow-thinking — behavior. The more sophisticated among us have even taught LLMs to do deduction — the ultimate test for their emergent abilities.

AI models’ inferential abilities are improving organically with scale — although they’re still inferior to those of the best humans on most tasks. But they are also being actively fostered through the use of formal-verification tools such as LEAN, as is happening at AWS. One could call this paradigm Solomonic learning: embrace memorization and foster reasoning, yet do not eschew induction. Simple tasks that might benefit from past experience can be solved inductively, saving time and energy, but doing so requires “understanding” and “insight”.

Given that paradigm, the question is what classes of models best support Solomonic learning.

Architectures for Solomonic learning

Solomonic learning requires models that can memorize and perform computation at inference time, in addition to performing ordinary induction. The model architectures therefore need eidetic (verbatim) working memory, which could fade over time, to support computation; but they also need long-term memory to easily retrieve facts from the distant past (the purpose for which humans invented the printing press).

To adapt to changing conditions, they need their long-term memory to decay in synchrony with changes to the mechanisms that generate the data they process. Evolution does that for biological agents, to the benefit of the species rather than any one individual. Transformers, the workhorses of current LLMs, have eidetic (verbatim) memory “in context”, but only until tokens slide out of context. They also have permanent memory “in weights”, but training data are not accessible eidetically from the weights, and there is no long-term adaptation. Eidetic long-term memory can be accessed through RAG (retrieval-augmented generation), but in current Transformers, RAG is not integrated into the primary (autoregressive) inference loop.

Stochastic realization theory and input-dependent state space models

Half a century ago, stochastic realization theory tackled the question of how to model sequential data for downstream decision or control tasks. The “state” of the model was defined as the function of past data that is sufficient for the future, meaning that, given the state, one can discard all past data and predict future data as well as if the data had been retained.

The trivial state is the data itself. An optimal state, by definition, supports an optimal predictor, which is one that makes the prediction error unpredictable. Then, by construction, the state contains all the “information” in past data. During training, the states of LLMs are their weights, so it should be no surprise that next-token prediction is the method of choice for training them. During inference, the state of a Transformer-based LLM is the sliding window of tokens, which is “deadbeat”, meaning that it decays to zero in finite steps without a driving input.

B'MOJO.jpg
In B’MOJO, a state-space model (SSM) computes a fading memory that represents long-range dependencies through a fixed-dimensional representation (pink). The eidetic memory, by contrast, selects tokens from the past (dark-blue x's) using an innovation test over the SSM output and appends them to the current sliding window. Adapted from "B'MOJO: Hybrid state space realizations of foundation models with eidetic and fading memory".

In general, as we observe more and more data during both training and inference, the state must grow apace. In the 1970s, an unbounded state was unthinkable, so the key question was how to find a fixed-dimensional state that is optimal even as the data volume grows to infinity. Therefore, stochastic realization theory focused on Markov processes that admit a finite-dimensional state.

Since any finite-memory sequence could be modeled as the output of a linear model driven by white zero-mean Gaussian noise, the attention was all on linear state-space models (SSMs). While simplistic, such SSMs were good enough to take us to the moon. Today, an unbounded state is not unthinkable. Nonetheless, LLM weights are fixed after training, and the context size is imposed by hardware limitations. So we need richer architecture families.

As an aside, I wish to stress the distinction between the model, which is any state-space realization that supports optimal prediction (there are generally infinitely many), and the system, which is the “real” mechanism that generates the data. The system is unknown and unknowable; the model is tangible and entirely under our control. Although as engineers we are trained to believe that models of the world converge to the “true” system as they improve, this position — known in epistemology as "naïve realism" — is scientifically indefensible.[3]

Amazon’s Stefano Soatto on how learning representations came to dominate machine learning.

To stress the dichotomy between the system and the model, in 1979, Anders Lindqvist and Giorgio Picci derived an equation that, four decades later, is at the heart of diffusion models. In a dissipative physical system, time cannot be reversed, bu it can in a model of that system, for instance a Gaussian SSM. The structure of the reverse diffusion in the model is the same as the forward diffusion, a fact that is exploited in diffusion models for image generation.[4]

Unlike deadbeat Transformers, SSMs have unbounded memory, but it fades, making them incompatible with optimal transductive inference. Again in the 1970s, the late Roger Brockett triggered a burst of interest in input-dependent state-space models, where some of the parameters are affected by the input, the simplest case being when they interact (bi-)linearly with the state. Art Krener showed that such bilinear SSMs can approximate an arbitrarily complex nonlinear (smooth) model. Alberto Isidori and coworkers extended stochastic realization theory to bilinear models, but still with an eye to making the state as small as possible.

Even 30 years later, prior to the deep-learning revolution, when we used input-dependent SSMs to generate videos of dynamic textures, we were still focused on keeping the state dimension as small as possible, encouraged by the fact that 20 states were sufficient to animate and control the rendering of waterfalls, flames, smoke, foliage, talking faces, and other stationary processes. Thanks to the reversibility of the model, we could even make smoke or steam move faster, slower, or backwards!

Deep learning twisted Occam’s razor by trying to make the embedding dimension of the training state (the weights) as large as possible, not as small as possible. Dimension is only an upper bound on “information,” and the key to induction is to limit the “information” in, not the dimension of, the trained weights.[5] Two decades later, we stacked SSMs into a neural architecture by feeding the (input-dependent) prediction residual of one layer to the next.

A breakthrough came with Mamba, which showed that efficient implementation at the hardware level is key. When Mamba is stripped down (as it is in appendix E of our recent paper on architectures to support transductive inference), it is a stack of bilinear SSMs (which Mamba’s developers call “selective state-space models”) restricted to non-interacting states (diagonal dynamics), so it can be implemented efficiently in hardware.

Diagonal SSMs are disjoint from and complementary to Transformers. Autoregressive (AR) Transformers have nilpotent dynamics, meaning that the state transition matrix becomes zero in a finite number of steps in the absence of external input. Mamba has diagonal dynamics, and nilpotent matrices cannot be diagonalized. Diagonal SSMs support infinite fading memory; AR Transformers support finite eidetic memory, and neither is general. Instead, any general (bi-)linear system can be converted to a so-called canonical form, also derived in the 1970s, which can support both eidetic and fading memory.

Meet B’MOJO

B’MOJO is a family of architectures based on canonical realizations that include Transformers, Mamba-like SSMs, and any hybrid combination of the two. There are combinatorially many options, and the name of the game is to find those that are sufficiently general to support different memory regimes yet can be efficiently mapped to specific hardware in order to scale. We plan to release basic versions of B’MOJO both for GPU hardware and for Amazon’s Trainium hardware, so they can be easily compared with existing Transformers, SSMs, and hybrid architectures.

The writing on the wall

While a representation of the “true” system is fundamentally elusive, lending credence to the writing on the wall of John Hopfield’s lab back in 1992, building model realizations is a concrete exercise grounded in data. LLMs, where the “L” refers not to natural language but to the inner language that emerges in the trained model at scale, are stochastic realizations trained inductively as optimal predictors and coopted for (suboptimal) transductive inference and generation. If the training data subtend latent logical structures, as do sensory data such as visual or acoustic data, models trained as optimal predictors are forced to capture their statistical structure.

Related content
From the urgent challenge of "machine unlearning" to overcoming the problem of critical learning periods in deep neural networks, Alessandro Achille is tackling fundamental issues on behalf of Amazon customers.

Thus, LLMs in our parlance include so-called world models trained with visual, acoustic, olfactory, tactile, and other sensory data. The model is indifferent to whether tokenized data express some abstract concept in natural language or a physical measurement process in finite precision. The resulting LLMs can represent concepts and meanings, including physical concepts such as the laws of physics, and can in principle reason, although at present they appear to be mostly building ever bigger lookup tables. Regardless, as stochastic dynamical models, LLMs can be controlled, probed with causal interventions, made observable, and studied with the tools of dynamical-systems theory.

A model is an abstraction of the underlying world — not a representation of it, because there is no objective “it” to re-present, but a realization of it, made real through the only objective entity, which is the data. Synthetic data are just as real to the model as data produced by a physical measurement process, and aligning the two is the essence of perception, for this reason often referred to as controlled hallucination.

While much of the popular discourse denigrates hallucinations[6] as something to be avoided, the ability to hallucinate is necessary for reasoning. The question is not how to avoid hallucinations but how to control them, which is the process of alignment. Architectures designed for decision and control can help, and decades of work in dynamical systems and controls may provide insights — hopefully without the need to resort to divinity, as the writing on the wall suggested.

Footnotes

[1] Note that "best" does not mean "correct." If the data is insufficient to identify the correct conclusion, even the best answer can be wrong.

[2] The simplest form of inductive learning for transductive inference is transductive fine-tuning, a form of meta-learning: past data is used to "meta-train" a model that, at inference time, is fine-tuned with a small number of examples ("few shots") to perform a new task. LLMs take this program steps further, by using sequential data with a latent logical structure (not only natural language but also video, audio, and other signals) to produce an “inner language” (we call it "Neuralese") that can then be co-opted for transductive inference.

[3] Quoting Bertrand Russell: “We all start from 'naïve realism,' i.e., the doctrine that things are what they seem. ... The observer, when he seems to himself to be observing a stone, is really, if physics is to be believed, observing the effects of the stone upon himself. Thus science seems to be at war with itself: when it most means to be objective, it finds itself plunged into subjectivity against its will. Naïve realism leads to physics, and physics, if true, shows that naïve realism is false. Therefore naïve realism, if true, is false; therefore it is false.” Even the International Vocabulary of Metrology has dispensed with the notion of “true value” in its most recent revisions.

[4] In the paper that introduced diffusion models for image generation, the reverse-diffusion equation was attributed to a 1949 work of Feller. However, forward diffusion in the form in use today was not derived until 1960, so neither was reverse diffusion. Later references attribute the reverse-diffusion equation to a 1982 paper by B. D. O. Anderson, which, however, did not introduce it but instead described it, based on the 1979 paper of Lindqvist and Picci, correctly referenced in Anderson’s work, and extended it to more general models different from those in use in diffusion models today. The correct reference for the reverse-diffusion equation used in diffusion models is therefore Lindqvist-Picci 1979.

[5] I use quotes because defining information for the weights of a trained model entails some subtleties, but it can be done.

[6] "Hallucinations" are data generated by a model that are statistically compatible with the training set (in the sense of high likelihood under the trained model), yet "wrong", i.e., individually inconsistent with constraints that some external oracle has deemed "true" ("facts", or "axioms"). In other words, hallucinations are the product of any generative model. Outside formalized domains such as math or code, there is no objective "truth", so the oracle is replaced by an accepted knowledge base, which depends on the application. For "common sense" knowledge, the base is generally a large corpus of (more or less) verified facts, such as WikiData. Outside formalized domains, including the law, there is no guarantee that the facts or "axioms" are mutually compatible.

Research areas

Related content

US, WA, Seattle
The Automated Reasoning Group in the AWS Neuron Compiler team is looking for an Applied Scientist to work on the intersection of Artificial Intelligence and program analysis to raise the code quality bar in our state-of-the-art deep learning compiler stack. This stack is designed to optimize application models across diverse domains, including Large Language and Vision, originating from leading frameworks such as PyTorch, TensorFlow, and JAX. Your role will involve working closely with our custom-built Machine Learning accelerators, Inferentia and Trainium, which represent the forefront of AWS innovation for advanced ML capabilities, and is the underpinning of Generative AI. In this role as an Applied Scientist, you'll be instrumental in designing, developing, and deploying analyzers for ML compiler stages and compiler IRs. You will architect and implement business-critical tooling, publish cutting-edge research, and mentor a brilliant team of experienced scientists and engineers. You will need to be technically capable, credible, and curious in your own right as a trusted AWS Neuron engineer, innovating on behalf of our customers. Your responsibilities will involve tackling crucial challenges alongside a talented engineering team, contributing to leading-edge design and research in compiler technology and deep-learning systems software. Strong experience in programming languages, compilers, program analyzers, and program synthesis engines will be a benefit in this role. A background in machine learning and AI accelerators is preferred but not required. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities • Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges • Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production • Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization • Provide customer and market feedback to product and engineering teams to help define product direction
CA, BC, Vancouver
Are you ready to be at the forefront of Agentic AI innovation and redefine the future of communication? Join our dynamic Alexa Connections team as a Sr. Applied Scientist, and lead futuristic initiatives that will shape the next generation of intelligent, conversational experiences. In this role, you'll work at the intersection of disruptive AI technologies and real-world impact, making a difference for millions of customers. You'll collaborate with a team of passionate professionals who are as excited about innovation as you are, and together, you'll push the boundaries of what's possible with Alexa+. As a Sr. Applied Scientist, you'll drive the development of novel algorithms and modeling techniques to advance the state of the art with LLMs and real-time Agentic AI solutions that power our next-generation communication features. You'll work closely with cross-functional teams, including product management, engineering, design, and data, to design and deliver innovative solutions that leverage these AI technologies to enable seamless, intelligent communication experiences. You'll also lead the integration of these advanced AI systems into Alexa's core capabilities, ensuring a seamless and intuitive user experience. Key job responsibilities - Develop new inference and training techniques to improve the performance of Large Language Models for Smart Home control and Automation - Develop robust techniques for synthetic data generation for training large models and maintaining model generalization - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environment, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues - Mentoring junior scientists to improve their skills, knowledge, and their ability to get things done About the team Alexa Connections aspires to make Alexa+ the world’s most trusted connection assistant for getting things done and creating moments of joy. Our vision emphasizes a) Trust as our foundation for becoming a daily habit, knowing our customers have plentiful choices, b) Completion of end-to-end customer journeys, beyond shipping features, and c) Joy through personalized, proactive experiences, that create a memory.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for a Data Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and big-data challenges, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities - Design and deliver big data architectures for experimental and production consumption between scientists and software engineering. - Develop the end-to-end automation of data pipelines, making datasets readily-consumable by science and engineering teams. - Create automated alarming and dashboards to monitor data integrity. - Create and manage capacity and performance plans. - Act as the subject matter expert for the data structure and usage.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Lead design and implement control algorithms for robot locomotion - Develop behaviors that enable the robot to traverse diverse terrain - Develop methods that seamlessly integrate stability, locomotion, and manipulation tasks - Create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
US, WA, Seattle
AWS Training & Certification is seeking an exceptional Senior Applied Scientist to provide strategic scientific leadership for our industry-leading learning technology initiatives. We have an ambitious vision to revolutionize training experiences through multimodal LLMs, agentic AI systems, and complex multi-lingual GenAI solutions, leveraging Amazon's unique expertise and scale. You will drive the scientific agenda for our team, identify and frame ill-defined customer problems, and invent new methodologies to deliver breakthrough learning experiences that enable customers to solve challenging business problems through workforce upskilling. AWS Global Services includes experts from across AWS who help our customers design, build, operate, and secure their cloud environments. Customers innovate with AWS Professional Services, upskill with AWS Training and Certification, optimize with AWS Support and Managed Services, and meet objectives with AWS Security Assurance Services. Our expertise and emerging technologies include AWS Partners, AWS Sovereign Cloud, AWS International Product, and the Generative AI Innovation Center. You’ll join a diverse team of technical experts in dozens of countries who help customers achieve more with the AWS cloud. Key job responsibilities The Senior Applied Scientist will provide strategic scientific leadership for AI-powered learning and certification systems across our product portfolio. This role requires deep expertise in research areas strategic to our organization and the ability to identify and devise new research solutions for ill-defined problems at the product level. You will drive our team's scientific agenda, mentor junior scientists, and ensure our innovations meet the highest standards of scientific rigor while delivering measurable customer impact. You should be comfortable articulating key scientific challenges for future customer needs and presenting interventions to address complex, multi-faceted problems in educational AI. • Drive strategic scientific direction for complex multi-lingual GenAI solutions, LLM-powered learning experiences, and agentic AI systems at the product level • Identify and frame customer problems, devising new research methodologies and paradigms to address educational AI challenges • Design and oversee AI systems for personalized learning recommendations, content discovery, and adaptive assessment technologies • Establish and maintain core reusable scientific components including advanced evaluation frameworks, prompt optimization strategies, and knowledge distillation techniques • Mentor and provide technical leadership to 6+ Applied Scientists, ensuring research methodology excellence and publication-quality standards • Role model the publishing of research results at top-tier peer-reviewed internal and external venues, driving the team's publication strategy About the team The AWS Training and Certifications team is dedicated to cultivating millions of highly skilled cloud professionals by delivering industry-leading training products and experiences, and certifications. Starting with Skill Builder – a comprehensive hub for all AWS skill acquisition – the team is dedicated to offering deeply personalized experiences for individuals, and highly customizable experiences for organizations across modalities, assessments and certificates. Customers can access training content – both free and paid – from a wide variety of training products such as digital courses, learning plans, instructor led classroom training, simulated learning environments, game based learning formats, hands-on labs, and social cohorts. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!