Yellow Warbler
Critical learning periods are vital for birds developing the ability to sing. Deep neural networks exhibit critical learning periods just like biological systems.
JHunter/Getty Images/iStockphoto

The importance of forgetting in artificial and animal intelligence

The surprising dynamics related to learning that are common to artificial and biological systems.

Deep neural networks (DNNs) have taken the AI research community by storm, approaching human-like performance in niche learning tasks from recognizing speech to finding objects in images. The industry has taken notice, with adoption growing by 37% in the past four years, according to Gartner, a leading research and advisory firm.

But how does a DNN learn? What “information” does it contain? How is such information represented, and where is it stored? How does information content in the DNN change during learning?

In 2016, my collaborators and I (then at UCLA) set out to answer some of these questions. To frame the questions mathematically, we had to form a viable definition of “information” in deep networks.

Traditional information theory is built around Claude Shannon’s idea to quantify how many bits are needed to send a message. But as Shannon himself noted, this is a measure of information for communication. When applied to measure how much information a DNN has in its weights about the task it is trying to solve, it has the unwelcome tendency to give degenerate nonsensical values.

This paradox led to the introduction a more general notion of the information Lagrangian — which defines information as the trade-off between how much noise could be added to the weights between layers and the resulting accuracy of its input-output behavior. Intuitively, even if a network is very large, this suggests that if we can replace most computations with random noise and still get the same output, then the DNN does not actually contain that much information. Pleasingly, for some particular noise models, we can conduct specializations to recover Shannon’s original definition.

The next step is related to the computing of information for DNNs with millions of parameters.

As learning progresses, one would expect the amount of information stored in the weights of the network to increase monotonically: the more you train, the more you learn. However, the information in the weights (the blue line in the figure at right) follows a completely different path: First, the information contained in the weights increases sharply, as if the network was trying to acquire information about the data set. Following this, the information in the weights drops — almost as though the network was “forgetting”, or shedding information about the training data. Amazingly, such forgetting is occurring while performance in the learning task, shown in the green dashed curve, continues to increase!

When we shared these findings with biologists, they were not surprised. In biological systems, forgetting is an important aspect of learning. Animal brains have a bounded capacity. There is an ongoing need to forget useless information and consolidate useful information. However, DNNs are not biological in nature. There is no apparent reason why memorizing first, and then forgetting, should be beneficial.

Our research uncovered another connected discovery — one that was surprising to our biologist collaborator as well.

Biological networks have another fundamental property: they lose their plasticity over time. If people do not learn a skill (say, seeing or speaking) during a critical period of development, their ability to learn that skill is permanently impaired. This is common when it comes to humans, where, for example, failure to correct visual defects early enough during childhood can result in lifelong amblyopia-impaired vision in one eye, even if the defect is later corrected. The importance of the critical learning period is especially pronounced in the animal kingdom — for example, it is vital for birds developing the ability to sing.

The inability to learn a new skill later in life is considered a side effect of the loss of neuronal plasticity due to several biochemical factors. Artificial neural networks, on the other hand, have no plasticity. They do not age. Why then would they have a critical learning period?

We set out to repeat a classical experiment of neuroscience pioneers Hubel and Wiesel, who in the '50s and '60s studied the effect of temporary visual deficit in cats after birth and correlated the phenomenon to permanent visual impairment later in life.

We “blindfolded” the DNNs by blurring the training images at the beginning of the training. Then we let the network train on clear images. We found that the deficiency introduced in the initial period resulted in permanent deficit (classification accuracy loss), no matter how much additional training the network performed.

FinalaccuracyofDNN.JPG
The final accuracy of a DNN, plotted as a function of the epoch when the “visual deficit” (blur) was removed, is shown in blue (left), against the normal training accuracy in dashed lines (same as in the previous plot). This bears a puzzling similarity to the visual acuity measured by biologists in cats, as a function of when the visual defect was removed (blue). Also shown in green is the progression of visual acuity of the normal cats. On the right, the same phenomenon is sliced in another way: rather than being removed at a certain time, a defect is applied for a window starting at a particular instant (horizontal axis), measured in days for cats and training epochs for DNNs. The sensitivity of the system (cat or DNN, measured by the percentage decrease in performance relative to normal training) shows a remarkable similarity to the information curve in the previous image: there is a strong sensitivity in the initial critical period (the “information acquisition phase”), past which visual deficits have no long-term effect.

In other words, DNNs exhibit critical learning periods just like biological systems. If we messed with the data during the “information acquisition” phase, the network would get into a state from which it cannot recover. Altering the data after this critical period has no effect.

We then performed a process akin to “artificial neural recording” and measured the information flow among different neurons. We found that during the critical period, the way information flows between layers is fluid. However, after the critical period, these ways become fixed. Unlike neural plasticity, a DNN exhibits some form of “information plasticity”, where the ability to process information is lost during learning. But rather than being a consequence of aging or some complex biochemical phenomenon, this “forgetting” appears to be an essential part of learning. This is true for both artificial and biological systems.

Over the subsequent years, we tried to understand and analyze these dynamics related to learning that are common to artificial and biological systems.

Graphic that illustrates the Task2Vec method for transforming learning tasks into vectors.
Task2Vec is a method for transforming learning tasks into vectors, so they can be compared, clustered, and selected based on neighborhood criteria. This plot is a 2-D reduction of the space of learning tasks that shows, for instance, that the tasks of learning different colors cluster together, as do the tasks of learning plants and animals. Some concepts that are visually dissimilar (such as denim and yoga pants) are close to each other, but so are “ripped” and “denim”.

We found a rich universe of findings. Some of our learnings are already making their way into our products. For instance, it is common in AI to train a DNN model to solve a task — say, finding cats and dogs in images — and then fine-tune it for a different task — say, recognizing objects for autonomous-driving applications. But how do we know what model to start from to solve a customer problem? When are two learning tasks “close”? How do we represent learning tasks mathematically, and how do we compute their distance?

To give just one practical application of our research, Task2Vec is a method for representing a learning task with a simple vector. This vector is a function of the information in the weights discussed earlier. The amount of information needed to fine-tune one model from another is an (asymmetric) distance between the tasks the two models represent. We can now measure how difficult it would be to fine-tune a given model for a given task. This is part of our Amazon Rekognition Custom Labels service, where customers can provide a few sample images of objects, and the system learns a model to detect them and classify them in never-before-seen images.

AI is truly in its infancy. The depth of the intellectual questions raised by the field is invigorating. For now, there’s consolation for those of us aging and beginning to forget things. We can take comfort in the knowledge that we are still learning.

Research areas

Related content

US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Key job responsibilities • Identifying creative solutions for challenging research problems in robotics and computer vision • Developing software solutions to test hypotheses and demonstrate new functionality • Prototyping concepts to collect data and measure performance • Writing code and unit tests and integrating code with other software and hardware components • Utilizing Amazon Robotics and Amazon engineering tools, processes and technologies • Delivering a final presentation to managers and engineers on the successes and challenges of their internship and the business value they have contributed
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
US, MN, Minneapolis
AWS Central Economics is an interdisciplinary team on the cutting edge of economics, statistical analysis, and machine learning whose mission is to solve problems that have high risk with abnormally high returns. Our team leverages the strengths of our scientists to build solutions for some of the toughest business problems here at Amazon AWS. We are looking for an exceptionally talented, seasoned, and motivated Economist to manage a team of economists and data scientists to drive the science for AWS. Key job responsibilities Manage a team of economists and data scientists to deliver actionable economic analyses to business leaders, provide leadership on the economics and science used in the analyses, and engage with business leaders to identify challenges AWS faces that call for in-depth economic analyses and to ensure the analyses have their intended impact.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.