How the Lean language brings math to coding and coding to math

Uses of the functional programming language include formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

This post is an adaptation of a keynote address that Leo de Moura delivered at the International Conference on Computer Aided Verification (CAV), in July 2024.

LEAN logo.png
The Lean logo.

In 2013, I launched the Lean project with the goal of bridging the gap between automated and interactive theorem provers. Since its inception, Lean has seen unparalleled adoption in the mathematical community, surpassing previous efforts in formalized mathematics. Lean 4, the latest version, is implemented in Lean itself and is also a fully fledged, extensible programming language with robust IDE support, package management, and a thriving ecosystem.

In 2023, Sebasian Ullrich and I founded the Lean Focused Research Organization (FRO), a nonprofit dedicated to advancing Lean and supporting its community. The Lean project embraces a philosophy that promotes decentralized innovation, empowering a diverse community of researchers, developers, and enthusiasts to collaboratively push the boundaries of mathematical practice and software development. In this blog post, we will provide a brief introduction to the project and describe how it is used at AWS.

A brief introduction to Lean

Lean is an open-source, extensible, functional programming language and interactive theorem prover that makes writing correct and maintainable code easy. Lean programming primarily involves defining types and functions, allowing users to focus on the problem domain and its data rather than on coding details. Lean has four primary use cases: formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

Formal mathematics

Lean allows mathematicians to work with advanced mathematical structures using syntax that feels natural to them. The math community recognizes its usefulness: for instance, Fields medalists Peter Scholze and Terence Tao used Lean to confirm their new results; Quanta Magazine has lauded Lean as one of the biggest breakthroughs in mathematics, and it has been featured in numerous popular scientific and academic publications, including the Wired magazine article “The effort to build the mathematical library of the future”. Recently, DeepMind used Lean to build an AI engine that met the silver-medal standard at the International Math Olympiad.

As of July 2024, the Lean Mathematical Library has received contributions from over 300 mathematicians and contains 1.58 million lines of code, surpassing other formal-mathematics systems in use. This remarkable growth has come despite Lean’s concision and youth: it’s at least a decade younger than comparable libraries.

Software and hardware verification

Lean’s combination of formal verification, user interaction, and mathematical rigor makes it invaluable for both software and hardware verification. Lean is a system for programming your proofs and proving your programs. An additional benefit is that Lean produces efficient code, and its extensibility features, originally designed for mathematicians, are also highly convenient for creating abstractions when writing clean and maintainable code. Its benefits extend to any system requiring exceptional accuracy and security, including industries such as aerospace, cryptography, web services, autonomous vehicles, biomedical systems, and medical devices. Later on, we will provide several examples of Lean's applications at AWS.

AI for math and code synthesis

Lean is popular with groups developing AI for mathematics and code synthesis. One of the key reasons is that Lean formal proofs are machine checkable and can be independently audited by external proof checkers. Additionally, Lean's extensibility allows users to peer into the system internals, including data structures for representing proofs and code. This capability is also used to automatically generate animations from Lean proofs.

AI researchers are leveraging large language models (LLMs) to create Lean formal proofs and automatically translate prose into formalized mathematics. OpenAI has released lean-gym, a reinforcement learning environment based on Lean. Harmonic used Lean in the development of its Mathematical Superintelligence Platform (MSI), an AI model designed to guarantee accuracy and avoid hallucinations. Meta AI created an AI model that has solved 10 International Mathematical Olympiad problems, and DeepMind has formalized a theoretical result related to AI safety in Lean. Additionally, LeanDojo is an open-source project using LLMs to automate proof construction in Lean.

Lean's unique combination of machine-checkable proofs, system introspection, and extensibility makes it an ideal tool for advancing AI research in mathematics and code synthesis. The synergy between LLMs and Lean formal proofs is emphasized in Terence Tao's colloquium lecture at the American Mathematical Society, “Machine Assisted Proof”; in the Scientific American article “AI will become mathematicians' co-pilot”; and in the New York Times article “A.I. Is coming for mathematics, too.”

Math and CS education

Millions of people learn mathematics as students and use it throughout their careers. Since its inception, the Lean project has supported students' mathematical-reasoning needs and enabled a more diverse population to contribute to the fields of math and computer science. Numerous educational resources are available for learning Lean, including interactive computer games such as the Natural Number Game, computer science and mathematics textbooks, university courses, and on-demand tutorials. The Lean FRO is committed to expanding Lean’s educational content and envisions a future where children use Lean as a playground for learning mathematics, progressing at their own paces and receiving instantaneous feedback, similar to how many have learned to code.

A quick tour of Lean

Lean combines programming and formal verification. Let's take a quick tour through a small example to see how we write code in Lean and prove properties about that code.

Writing code in Lean

First, let's define a simple function that appends two lists:

def append (xs ys : List a) : List a :=
  match xs with
  | [] => ys
  | x :: xs => x :: append xs ys

This function is defined using pattern matching. For the base case, appending an empty list [] to ys results in ys. The notation x :: xs represents a list with head x and tail xs. For the recursive case, appending x :: xs to ys results in x :: append xs ys. Additionally, the append function is polymorphic, meaning it works with lists of any type a.

Extensible syntax

The notation x :: xs used above is not built into Lean but is defined using the infixr command:

infixr:67 " :: " => List.cons

The infixr command defines a new infix operator x :: xs, denoting List.cons x xs. This command is actually a macro implemented using Lean's hygienic macro system. Lean's extensible syntax allows users to define their own domain-specific languages. For example, Verso, the Lean documentation-authoring system, is implemented in Lean using this mechanism. Verso defines alternative concrete syntaxes that closely resemble Markdown and HTML.

Proving properties about code

Next, we'll prove a property about our append function: that the length of the appended lists is the sum of their lengths.

theorem append_length (xs ys : List a)
        : (append xs ys).length = xs.length + ys.length := by
  induction xs with
  | nil => simp [append]
  | cons x xs ih => simp [append, ih]; omega

Here, theorem introduces a new theorem named append_length. The statement (append xs ys).length = xs.length + ys.length is what we want to prove. The by ... block contains the proof. In this proof,

  • induction xs with initiates a proof by induction on xs;
  • the nil case proves the base case using simp, the Lean simplifier. The parameter append instructs the simplifier to expand append’s definition; and
  • the cons x xs ih case proves the inductive step where ih is the inductive hypothesis. It also uses simp and omega, which complete the proof using arithmetical reasoning.

In this proof, induction, simp, and omega are tactics. Tactics, which transform one state of the proof into another, are key to interactive theorem proving in Lean. Users can inspect the states of their proofs using the Lean InfoView, a panel in the IDE. The InfoView is an interactive object that can be inspected and browsed by the user. In the following picture, we see the state of our proof before the simp tactic at line 10. Note that the proof state contains all hypotheses and the goal (append (x :: xs) ys).length = (x :: xs).length + ys.length, which remains to be proved.

LEAN example.png
The state of the proof before the simp tactic at line 10, as visualized in the Lean InfoView.

How Lean is used at AWS

At AWS, Lean is used in several open-source projects to address complex verification and modeling challenges. These projects not only highlight the practical applications of Lean in different domains but also emphasize AWS's commitment to open-source development and collaboration. We cover four key projects: Cedar, LNSym, and SampCert, whose Lean source code is already available on GitHub, and AILean, which is exploring the relationship between LLMs and formal mathematics and whose code is not open source yet. 

Cedar: an open-source policy language and evaluation engine 

Cedar is an open-source policy language and evaluation engine. Cedar enables developers to express fine-grained permissions as easy-to-understand policies enforced in their applications and to decouple access control from application logic. Cedar supports common authorization models such as role-based access control and attribute-based access control. It is the first policy language built from the ground up to be verified formally using automated reasoning and tested rigorously using differential random testing.

The Cedar project uses Lean to create an executable formal model of each core component of the Cedar runtime (such as the authorization engine) and static-analysis tools (such as the type checker). This model serves as a highly readable specification, allowing the team to prove key correctness properties using Lean.

Lean was chosen for modeling Cedar due to its fast runtime, extensive libraries, IDE support, and small trusted computing base (TCB). The fast runtime enables efficient differential testing of Cedar models. The libraries provide reusable verified data structures and tactics built by the open-source community. Lean’s small TCB allows Cedar to leverage these contributions confidently, as Lean checks their correctness, requiring trust only in Lean’s minimal proof-checking kernel.

LNSym: Symbolic simulation for cryptographic verification

LNSym is a symbolic simulator for Armv8 native-code programs. It’s currently under development, with a focus on enabling automated reasoning of cryptographic machine-code programs. Many cryptographic routines are written in assembly to optimize performance and security on the underlying processor. LNSym aims to reduce the cost of verifying cryptographic routines, particularly block ciphers and secure hashes, ultimately empowering cryptography developers to formally reason about their native-code programs.

LNSym uses Lean as a specification language to model the Arm instruction semantics and cryptographic protocols and as a theorem prover for reasoning about these artifacts. Since Lean programs are executable, the specifications achieve a high degree of trust through thorough conformance testing. Lean orchestrates proofs such that the heavy and often tedious lifting is done automatically, using decision procedures like SAT solvers or custom domain-specific tactics. When proof automation fails, users can employ Lean as an interactive theorem prover. This combination of interactive and automated theorem proving ensures that progress on verification tasks is not hindered by the limitations of proof automation.

SampCert: formally verified differential-privacy primitives

SampCert is an open-source library of formally verified differential-privacy primitives used by the AWS Clean Rooms Differential Privacy service for its fast and sound sampling algorithms. Using Lean, SampCert provides the only verified implementation of the discrete Gaussian sampler and the primitives of zero concentrated differential privacy.

Although SampCert focuses on software, its verification relies heavily on Mathlib, the Lean Mathematical Library. The verification of code addressing practical problems in data privacy depends on the formalization of mathematical concepts from Fourier analysis to number theory and topology.

AILean: AI for math and math for AI

AILean is exploring the relationship between LLMs and formal mathematics in collaboration with the Technology Innovation Institute (TII). This exploration works in both directions: AI for math and math for AI. In AILean, LLMs are used to enhance proof automation and user experience in formal mathematics. LLMs can analyze theorem statements and existing proof steps, suggesting relevant lemmas, definitions, or tactics to guide users in completing proofs. They can also identify common mistakes or inconsistencies, proposing corrections or alternative approaches that avoid dead ends and thereby improving the proof development process.

Takeaways

Lean is a complex system, but its correctness relies only on a small trusted kernel. Moreover, all proofs and definitions can be exported and independently audited and checked. This is a crucial feature for both the mathematical and software verification communities because it eliminates the trust bottleneck. It doesn't matter who you are; if Lean checked your proof, the whole world can build on top of it. This enables large groups of mathematicians who have never met to collaborate and work together. Additionally, it allows users to extend Lean without fearing the introduction of soundness bugs that could compromise the logical consistency of the system.

Lean's extensibility enables customization, which was particularly important during its first ten years, when resources were limited. Lean’s extensibility allowed the community to extend the system without needing to synchronize with its developers. Self-hosting, or implementing Lean in Lean, also ensured that users can access all parts of the system without having to learn a different programming language. This makes it easy and convenient to extend Lean. Packages such as ProofWidgets and SciLean are excellent examples of user-defined extensions that leverage these features.

The FRO model introduced by Convergent Research has been instrumental in supporting Lean and helping it transition to a self-sufficient foundation. The Lean project has grown significantly, and driving it forward would have been difficult without Convergent Research’s efforts to secure philanthropic support. Just as foundations like the Rust and Linux Foundations are vital for the success and sustainability of open-source projects, the support of Convergent Research has been critical for Lean's ongoing progress.

To learn more about Lean, visit the website.

Research areas

Related content

US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
US, CA, Sunnyvale
As a Reinforcement Learning Controls Scientist, you will be responsible for developing Reinforcement Learning models to control complex electromechanical systems. You will take responsibility for defining frameworks, performing analysis, and training models that guide and inform mechanical and electrical designs, software implementation, and other software modules that affect overall device safety and performance. You understand trade-offs between model-based and model-free approaches. You will demonstrate cross-functional collaboration and influence to accomplish your goals. You will play a role in defining processes and methods to improve the productivity of the entire team. You will interface with Amazon teams outside your immediate organization to collaborate and share knowledge. You will investigate applicable academic and industry research, prototype and test solutions to support product features, and design and validate production designs that deliver an exceptional user experience. Key job responsibilities - Produce models and simulations of complex, high degree-of-freedom dynamic electromechanical systems - Train Reinforcement Learning control policies that achieve performance targets within hardware and software constraints - Hands-on prototyping and testing of physical systems in the lab - Influence hardware and software design decisions owned by other teams to optimize system-level performance - Work with cross-functional teams (controls, firmware, perception, planning, sensors, mechanical, electrical, etc.) to solve complex system integration issues - Define key performance indicators and allocate error budgets across hardware and software modules - Perform root cause analysis of system-level failures and distinguish between hardware/software failures and hardware/software mitigations - Translate business requirements to engineering requirements and identify trade-offs and sensitivities - Mentor junior engineers in good design practice; actively participate in hiring of new team members About the team The Dynamic Systems and Control team develops models, algorithms, and code to bridge hardware and software development teams and bring robotic products to life. We contributed to Amazon Astro (https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB) and Echo Show 10 (https://www.amazon.com/echo-show-10/dp/B07VHZ41L8/), along with several new technology introductions and unannounced products currently in development.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As a Principal Scientist for the team, you will have the opportunity to apply your deep subject matter expertise in the area of ML, LLM and GenAI models. You will invent new product experiences that enable novel advertiser and shopper experiences. This role will liaise with internal Amazon partners and work on bringing state-of-the-art GenAI models to production, and stay abreast of the latest developments in the space of GenAI and identify opportunities to improve the efficiency and productivity of the team. Additionally, you will define a long-term science vision for our advertising business, driven by our customer’s needs, and translate it into actionable plans for our team of applied scientists and engineers. This role will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across org. * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders. * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Data Scientist on our team, you'll analyze complex data, develop statistical methodologies, and provide critical insights that shape how we optimize our solutions. Working closely with our Applied Science team, you'll help build robust analytical frameworks to improve healthcare outcomes. This role offers a unique opportunity to impact healthcare through data-driven innovation. Key job responsibilities In this role, you will: - Analyze complex healthcare data to identify patterns, trends, and insights - Develop and validate statistical methodologies - Create and maintain analytical frameworks - Provide recommendations on data collection strategies - Collaborate with Applied Scientists to support model development efforts - Design and implement statistical analyses to validate analytical approaches - Present findings to stakeholders and contribute to scientific publications - Work with cross-functional teams to ensure solutions are built on sound statistical foundations - Design and implement causal inference analyses to understand underlying mechanisms - Develop frameworks for identifying and validating causal relationships in complex systems - Work with stakeholders to translate causal insights into actionable recommendations A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to validate model predictions and ensure statistical rigor in our approach. Regular interaction with product teams will help translate analytical findings into practical improvements for our services. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.