How the Lean language brings math to coding and coding to math

Uses of the functional programming language include formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

This post is an adaptation of a keynote address that Leo de Moura delivered at the International Conference on Computer Aided Verification (CAV), in July 2024.

LEAN logo.png
The Lean logo.

In 2013, I launched the Lean project with the goal of bridging the gap between automated and interactive theorem provers. Since its inception, Lean has seen unparalleled adoption in the mathematical community, surpassing previous efforts in formalized mathematics. Lean 4, the latest version, is implemented in Lean itself and is also a fully fledged, extensible programming language with robust IDE support, package management, and a thriving ecosystem.

In 2023, Sebasian Ullrich and I founded the Lean Focused Research Organization (FRO), a nonprofit dedicated to advancing Lean and supporting its community. The Lean project embraces a philosophy that promotes decentralized innovation, empowering a diverse community of researchers, developers, and enthusiasts to collaboratively push the boundaries of mathematical practice and software development. In this blog post, we will provide a brief introduction to the project and describe how it is used at AWS.

A brief introduction to Lean

Lean is an open-source, extensible, functional programming language and interactive theorem prover that makes writing correct and maintainable code easy. Lean programming primarily involves defining types and functions, allowing users to focus on the problem domain and its data rather than on coding details. Lean has four primary use cases: formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

Formal mathematics

Lean allows mathematicians to work with advanced mathematical structures using syntax that feels natural to them. The math community recognizes its usefulness: for instance, Fields medalists Peter Scholze and Terence Tao used Lean to confirm their new results; Quanta Magazine has lauded Lean as one of the biggest breakthroughs in mathematics, and it has been featured in numerous popular scientific and academic publications, including the Wired magazine article “The effort to build the mathematical library of the future”. Recently, DeepMind used Lean to build an AI engine that met the silver-medal standard at the International Math Olympiad.

As of July 2024, the Lean Mathematical Library has received contributions from over 300 mathematicians and contains 1.58 million lines of code, surpassing other formal-mathematics systems in use. This remarkable growth has come despite Lean’s concision and youth: it’s at least a decade younger than comparable libraries.

Software and hardware verification

Lean’s combination of formal verification, user interaction, and mathematical rigor makes it invaluable for both software and hardware verification. Lean is a system for programming your proofs and proving your programs. An additional benefit is that Lean produces efficient code, and its extensibility features, originally designed for mathematicians, are also highly convenient for creating abstractions when writing clean and maintainable code. Its benefits extend to any system requiring exceptional accuracy and security, including industries such as aerospace, cryptography, web services, autonomous vehicles, biomedical systems, and medical devices. Later on, we will provide several examples of Lean's applications at AWS.

AI for math and code synthesis

Lean is popular with groups developing AI for mathematics and code synthesis. One of the key reasons is that Lean formal proofs are machine checkable and can be independently audited by external proof checkers. Additionally, Lean's extensibility allows users to peer into the system internals, including data structures for representing proofs and code. This capability is also used to automatically generate animations from Lean proofs.

AI researchers are leveraging large language models (LLMs) to create Lean formal proofs and automatically translate prose into formalized mathematics. OpenAI has released lean-gym, a reinforcement learning environment based on Lean. Harmonic used Lean in the development of its Mathematical Superintelligence Platform (MSI), an AI model designed to guarantee accuracy and avoid hallucinations. Meta AI created an AI model that has solved 10 International Mathematical Olympiad problems, and DeepMind has formalized a theoretical result related to AI safety in Lean. Additionally, LeanDojo is an open-source project using LLMs to automate proof construction in Lean.

Lean's unique combination of machine-checkable proofs, system introspection, and extensibility makes it an ideal tool for advancing AI research in mathematics and code synthesis. The synergy between LLMs and Lean formal proofs is emphasized in Terence Tao's colloquium lecture at the American Mathematical Society, “Machine Assisted Proof”; in the Scientific American article “AI will become mathematicians' co-pilot”; and in the New York Times article “A.I. Is coming for mathematics, too.”

Math and CS education

Millions of people learn mathematics as students and use it throughout their careers. Since its inception, the Lean project has supported students' mathematical-reasoning needs and enabled a more diverse population to contribute to the fields of math and computer science. Numerous educational resources are available for learning Lean, including interactive computer games such as the Natural Number Game, computer science and mathematics textbooks, university courses, and on-demand tutorials. The Lean FRO is committed to expanding Lean’s educational content and envisions a future where children use Lean as a playground for learning mathematics, progressing at their own paces and receiving instantaneous feedback, similar to how many have learned to code.

A quick tour of Lean

Lean combines programming and formal verification. Let's take a quick tour through a small example to see how we write code in Lean and prove properties about that code.

Writing code in Lean

First, let's define a simple function that appends two lists:

def append (xs ys : List a) : List a :=
  match xs with
  | [] => ys
  | x :: xs => x :: append xs ys

This function is defined using pattern matching. For the base case, appending an empty list [] to ys results in ys. The notation x :: xs represents a list with head x and tail xs. For the recursive case, appending x :: xs to ys results in x :: append xs ys. Additionally, the append function is polymorphic, meaning it works with lists of any type a.

Extensible syntax

The notation x :: xs used above is not built into Lean but is defined using the infixr command:

infixr:67 " :: " => List.cons

The infixr command defines a new infix operator x :: xs, denoting List.cons x xs. This command is actually a macro implemented using Lean's hygienic macro system. Lean's extensible syntax allows users to define their own domain-specific languages. For example, Verso, the Lean documentation-authoring system, is implemented in Lean using this mechanism. Verso defines alternative concrete syntaxes that closely resemble Markdown and HTML.

Proving properties about code

Next, we'll prove a property about our append function: that the length of the appended lists is the sum of their lengths.

theorem append_length (xs ys : List a)
        : (append xs ys).length = xs.length + ys.length := by
  induction xs with
  | nil => simp [append]
  | cons x xs ih => simp [append, ih]; omega

Here, theorem introduces a new theorem named append_length. The statement (append xs ys).length = xs.length + ys.length is what we want to prove. The by ... block contains the proof. In this proof,

  • induction xs with initiates a proof by induction on xs;
  • the nil case proves the base case using simp, the Lean simplifier. The parameter append instructs the simplifier to expand append’s definition; and
  • the cons x xs ih case proves the inductive step where ih is the inductive hypothesis. It also uses simp and omega, which complete the proof using arithmetical reasoning.

In this proof, induction, simp, and omega are tactics. Tactics, which transform one state of the proof into another, are key to interactive theorem proving in Lean. Users can inspect the states of their proofs using the Lean InfoView, a panel in the IDE. The InfoView is an interactive object that can be inspected and browsed by the user. In the following picture, we see the state of our proof before the simp tactic at line 10. Note that the proof state contains all hypotheses and the goal (append (x :: xs) ys).length = (x :: xs).length + ys.length, which remains to be proved.

LEAN example.png
The state of the proof before the simp tactic at line 10, as visualized in the Lean InfoView.

How Lean is used at AWS

At AWS, Lean is used in several open-source projects to address complex verification and modeling challenges. These projects not only highlight the practical applications of Lean in different domains but also emphasize AWS's commitment to open-source development and collaboration. We cover four key projects: Cedar, LNSym, and SampCert, whose Lean source code is already available on GitHub, and AILean, which is exploring the relationship between LLMs and formal mathematics and whose code is not open source yet. 

Cedar: an open-source policy language and evaluation engine 

Cedar is an open-source policy language and evaluation engine. Cedar enables developers to express fine-grained permissions as easy-to-understand policies enforced in their applications and to decouple access control from application logic. Cedar supports common authorization models such as role-based access control and attribute-based access control. It is the first policy language built from the ground up to be verified formally using automated reasoning and tested rigorously using differential random testing.

The Cedar project uses Lean to create an executable formal model of each core component of the Cedar runtime (such as the authorization engine) and static-analysis tools (such as the type checker). This model serves as a highly readable specification, allowing the team to prove key correctness properties using Lean.

Lean was chosen for modeling Cedar due to its fast runtime, extensive libraries, IDE support, and small trusted computing base (TCB). The fast runtime enables efficient differential testing of Cedar models. The libraries provide reusable verified data structures and tactics built by the open-source community. Lean’s small TCB allows Cedar to leverage these contributions confidently, as Lean checks their correctness, requiring trust only in Lean’s minimal proof-checking kernel.

LNSym: Symbolic simulation for cryptographic verification

LNSym is a symbolic simulator for Armv8 native-code programs. It’s currently under development, with a focus on enabling automated reasoning of cryptographic machine-code programs. Many cryptographic routines are written in assembly to optimize performance and security on the underlying processor. LNSym aims to reduce the cost of verifying cryptographic routines, particularly block ciphers and secure hashes, ultimately empowering cryptography developers to formally reason about their native-code programs.

LNSym uses Lean as a specification language to model the Arm instruction semantics and cryptographic protocols and as a theorem prover for reasoning about these artifacts. Since Lean programs are executable, the specifications achieve a high degree of trust through thorough conformance testing. Lean orchestrates proofs such that the heavy and often tedious lifting is done automatically, using decision procedures like SAT solvers or custom domain-specific tactics. When proof automation fails, users can employ Lean as an interactive theorem prover. This combination of interactive and automated theorem proving ensures that progress on verification tasks is not hindered by the limitations of proof automation.

SampCert: formally verified differential-privacy primitives

SampCert is an open-source library of formally verified differential-privacy primitives used by the AWS Clean Rooms Differential Privacy service for its fast and sound sampling algorithms. Using Lean, SampCert provides the only verified implementation of the discrete Gaussian sampler and the primitives of zero concentrated differential privacy.

Although SampCert focuses on software, its verification relies heavily on Mathlib, the Lean Mathematical Library. The verification of code addressing practical problems in data privacy depends on the formalization of mathematical concepts from Fourier analysis to number theory and topology.

AILean: AI for math and math for AI

AILean is exploring the relationship between LLMs and formal mathematics in collaboration with the Technology Innovation Institute (TII). This exploration works in both directions: AI for math and math for AI. In AILean, LLMs are used to enhance proof automation and user experience in formal mathematics. LLMs can analyze theorem statements and existing proof steps, suggesting relevant lemmas, definitions, or tactics to guide users in completing proofs. They can also identify common mistakes or inconsistencies, proposing corrections or alternative approaches that avoid dead ends and thereby improving the proof development process.

Takeaways

Lean is a complex system, but its correctness relies only on a small trusted kernel. Moreover, all proofs and definitions can be exported and independently audited and checked. This is a crucial feature for both the mathematical and software verification communities because it eliminates the trust bottleneck. It doesn't matter who you are; if Lean checked your proof, the whole world can build on top of it. This enables large groups of mathematicians who have never met to collaborate and work together. Additionally, it allows users to extend Lean without fearing the introduction of soundness bugs that could compromise the logical consistency of the system.

Lean's extensibility enables customization, which was particularly important during its first ten years, when resources were limited. Lean’s extensibility allowed the community to extend the system without needing to synchronize with its developers. Self-hosting, or implementing Lean in Lean, also ensured that users can access all parts of the system without having to learn a different programming language. This makes it easy and convenient to extend Lean. Packages such as ProofWidgets and SciLean are excellent examples of user-defined extensions that leverage these features.

The FRO model introduced by Convergent Research has been instrumental in supporting Lean and helping it transition to a self-sufficient foundation. The Lean project has grown significantly, and driving it forward would have been difficult without Convergent Research’s efforts to secure philanthropic support. Just as foundations like the Rust and Linux Foundations are vital for the success and sustainability of open-source projects, the support of Convergent Research has been critical for Lean's ongoing progress.

To learn more about Lean, visit the website.

Research areas

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. We are seeking a highly skilled and analytical Research Scientist. You will play an integral part in the measurement and optimization of Amazon Music marketing activities. You will have the opportunity to work with a rich marketing dataset together with the marketing managers. This role will focus on developing and implementing causal models and randomized controlled trials to assess marketing effectiveness and inform strategic decision-making. This role is suitable for candidates with strong background in causal inference, statistical analysis, and data-driven problem-solving, with the ability to translate complex data into actionable insights. As a key member of our team, you will work closely with cross-functional partners to optimize marketing strategies and drive business growth. Key job responsibilities Develop Causal Models Design, build, and validate causal models to evaluate the impact of marketing campaigns and initiatives. Leverage advanced statistical methods to identify and quantify causal relationships. Conduct Randomized Controlled Trials Design and implement randomized controlled trials (RCTs) to rigorously test the effectiveness of marketing strategies. Ensure robust experimental design and proper execution to derive credible insights. Statistical Analysis and Inference Perform complex statistical analyses to interpret data from experiments and observational studies. Use statistical software and programming languages to analyze large datasets and extract meaningful patterns. Data-Driven Decision Making Collaborate with marketing teams to provide data-driven recommendations that enhance campaign performance and ROI. Present findings and insights to stakeholders in a clear and actionable manner. Collaborative Problem Solving Work closely with cross-functional teams, including marketing, product, and engineering, to identify key business questions and develop analytical solutions. Foster a culture of data-informed decision-making across the organization. Stay Current with Industry Trends Keep abreast of the latest developments in data science, causal inference, and marketing analytics. Apply new methodologies and technologies to improve the accuracy and efficiency of marketing measurement. Documentation and Reporting Maintain comprehensive documentation of models, experiments, and analytical processes. Prepare reports and presentations that effectively communicate complex analyses to non-technical audiences.