73 Amazon Research Award recipients announced

Awardees, who represent 46 universities in 10 countries, have access to Amazon public datasets, along with AWS AI/ML services and tools.

Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 73 award recipients who represent 46 universities in 10 countries.

This announcement includes awards funded under five call for proposals during the fall 2024 cycle: AI for Information Security, Automated Reasoning, AWS AI, AWS Cryptography, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society. Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

Recipients have access to more than 700 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Recommended reads
In both black-box stress testing and red-team exercises, Nova Premier comes out on top.

“Automated Reasoning is an important area of research for Amazon, with potential applications across various features and applications to help improve security, reliability, and performance for our customers. Through the ARA program, we collaborate with leading academic researchers to explore challenges in this field,” said Robert Jones, senior principal scientist with the Cloud Automated Reasoning Group. “We were again impressed by the exceptional response to our Automated Reasoning call for proposals this year, receiving numerous high-quality submissions. Congratulations to the recipients! We're excited to support their work and partner with them as they develop new science and technology in this important area.”

Recommended reads
IAM Access Analyzer feature uses automated reasoning to recommend policies that remove unused accesses, helping customers achieve “least privilege”.

“At Amazon, we believe that solving the world's toughest sustainability challenges benefits from both breakthrough scientific research and open and bold collaboration. Through programs like the Amazon Research Awards program, we aim to support academic research that could contribute to our understanding of these complex issues,” said Kommy Weldemariam, Director of Science and Innovation Sustainability. “The selected proposals represent innovative projects that we hope will help advance knowledge in this field, potentially benefiting customers, communities, and the environment.”

ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The tables below list, in alphabetical order by last name, fall 2024 cycle call-for-proposal recipients, sorted by research area.

AI for Information Security

ARA-AIInfoSecurity-1200x750.png

Recipient

University

Research title

Christopher Amato

Northeastern University

Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms

Bernd Bischl

Ludwig Maximilian University of Munich

Improving Generative and Foundation Models Reliability via Uncertainty-awareness

Shiqing Ma

University Of Massachusetts Amherst

LLM and Domain Adaptation for Attack Detection

Alina Oprea

Northeastern University

Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms

Roberto Perdisci

University of Georgia

ContextADBench: A Comprehensive Benchmark Suite for Contextual Anomaly Detection

Automated Reasoning

ARA-AutomatedReasoning-1200x750.png

Recipient

University

Research title

Nada Amin

Harvard University

LLM-Augmented Semi-Automated Proofs for Interactive Verification

Suguman Bansal

Georgia Institute of Technology

Certified Inductive Generalization in Reinforcement Learning

Ioana Boureanu

University of Surrey

Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems

Omar Haider Chowdhury

Stony Brook University

Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege

Stefan Ciobaca

Alexandru Ioan Cuza University

An Interactive Proof Mode for Dafny

João Ferreira

INESC-ID

Polyglot Automated Program Repair for Infrastructure as Code

Sicun Gao

University Of California, San Diego

Monte Carlo Trees with Conflict Models for Proof Search

Mirco Giacobbe

University of Birmingham

Neural Software Verification

Tobias Grosser

University of Cambridge

Synthesis-based Symbolic BitVector Simplification for Lean

Ronghui Gu

Columbia University

Scaling Formal Verification of Security Properties for Unmodified System Software

Alexey Ignatiev

Monash University

Huub: Next-Gen Lazy Clause Generation

Kenneth McMillan

University of Texas At Austin

Synthesis of Auxiliary Variables and Invariants for Distributed Protocol Verification

Alexandra Mendes

University of Porto

Overcoming Barriers to the Adoption of Verification-Aware Languages

Jason Nieh

Columbia University

Scaling Formal Verification of Security Properties for Unmodified System Software

Rohan Padhye

Carnegie Mellon University

Automated Synthesis and Evaluation of Property-Based Tests

Nadia Polikarpova

University Of California, San Diego

Discovering and Proving Critical System Properties with LLMs

Fortunat Rajaona

University of Surrey

Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems

Subhajit Roy

Indian Institute of Technology Kanpur

Theorem Proving Modulo LLM

Gagandeep Singh

University of Illinois At Urbana–Champaign

Trustworthy LLM Systems using Formal Contracts

Scott Stoller

Stony Brook University

Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege

Peter Stuckey

Monash University

Huub: Next-Gen Lazy Clause Generation

Yulei Sui

University of New South Wales

Path-Sensitive Typestate Analysis through Sparse Abstract Execution

Nikos Vasilakis

Brown University

Semantics-Driven Static Analysis for the Unix/Linux Shell

Ping Wang

Stevens Institute of Technology

Leveraging Large Language Models for Reasoning Augmented Searching on Domain-specific NoSQL Database

John Wawrzynek

University of California, Berkeley

GPU-Accelerated High-Throughput SAT Sampling

AWS AI

ARA-AWSAI-1200x750.png

Recipient

University

Research title

Panagiotis Adamopoulos

Emory University

Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations

Vikram Adve

University of Illinois at Urbana–Champaign

Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models

Frances Arnold

California Institute of Technology

Closed-loop Generative Machine Learning for De Novo Enzyme Discovery and Optimization

Yonatan Bisk

Carnegie Mellon University

Useful, Safe, and Robust Multiturn Interactions with LLMs

Shiyu Chang

University of California, Santa Barbara

Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing

Yuxin Chen

University of Pennsylvania

Provable Acceleration of Diffusion Models for Modern Generative AI

Tianlong Chen

University of North Carolina at Chapel Hill

Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing

Mingyu Ding

University of North Carolina at Chapel Hill

Aligning Long Videos and Language as Long-Horizon World Models

Nikhil Garg

Cornell University

Market Design for Responsible Multi-agent LLMs

Jessica Hullman

Northwestern University

Human-Aligned Uncertainty Quantification in High Dimensions

Christopher Jermaine

Rice University

Fast, Trusted AI Using the EINSUMMABLE Compiler

Yunzhu Li

Columbia University

Physics-Informed Foundation Models Through Embodied Interactions

Pattie Maes

Massachusetts Institute of Technology

Understanding How LLM Agents Deviate from Human Choices

Sasa Misailovic

University of Illinois at Urbana–Champaign

Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models

Kristina Monakhova

Cornell University

Trustworthy extreme imaging for science using interpretable uncertainty quantification

Todd Mowry

Carnegie Mellon University

Efficient LLM Serving on Trainium via Kernel Generation

Min-hwan Oh

Seoul National University

Mutually Beneficial Interplay Between Selection Fairness and Context Diversity in Contextual Bandits

Patrick Rebeschini

University of Oxford

Optimal Regularization for LLM Alignment

Jose Renau

University of California, Santa Cruz

Verification Constrained Hardware Optimization using Intelligent Design Agentic Programming

Vilma Todri

Emory University

Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations

Aravindan Vijayaraghavan

Northwestern University

Human-Aligned Uncertainty Quantification in High Dimensions

Wei Yang

University of Texas at Dallas

Optimizing RISC-V Compilers with RISC-LLM and Syntax Parsing

Huaxiu Yao

University of North Carolina at Chapel Hill

Aligning Long Videos and Language as Long-Horizon World Models

Amy Zhang

University of Washington

Tools for Governing AI Agent Autonomy

Ruqi Zhang

Purdue University

Efficient Test-time Alignment for Large Language Models and Large Multimodal Models

Zheng Zhang

Rutgers University-New Brunswick

AlphaQC: An AI-powered Quantum Circuit Optimizer and Denoiser

AWS Cryptography

ARA-AWSCryptoPrivacy-1200x750.png

Recipient

University

Research title

Alexandra Boldyreva

Georgia Institute of Technology

Quantifying Information Leakage in Searchable Encryption Protocols

Maria Eichlseder

Graz University of Technology, Austria

SALAD – Systematic Analysis of Lightweight Ascon-based Designs

Venkatesan Guruswami

University of California, Berkeley

Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing

Joseph Jaeger

Georgia Institute of Technology

Analyzing Chat Encryption for Group Messaging

Aayush Jain

Carnegie Mellon

Large Scale Multiparty Silent Preprocessing for MPC from LPN

Huijia Lin

University of Washington

Large Scale Multiparty Silent Preprocessing for MPC from LPN

Hamed Nemati

KTH Royal Institute of Technology

Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary

Karl Palmskog

KTH Royal Institute of Technology

Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary

Chris Peikert

University of Michigan, Ann Arbor

Practical Third-Generation FHE and Bootstrapping

Dimitrios Skarlatos

Carnegie Mellon University

Scale-Out FHE LLMs on GPUs

Vinod Vaikuntanathan

Massachusetts Institute of Technology

Can Quantum Computers (Really) Factor?

Daniel Wichs

Northeastern University

Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing

David Wu

University Of Texas At Austin

Fast Private Information Retrieval and More using Homomorphic Encryption

Sustainability

ARA-Sustainability-1200x750.png

Recipient

University

Research title

Meeyoung Cha

Max Planck Institute

Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring

Jingrui He

University of Illinois at Urbana–Champaign

Foundation Model Enabled Earth’s Ecosystem Monitoring

Pedro Lopes

University of Chicago

AI-powered Tools that Enable Engineers to Make & Re-make Sustainable Hardware

Cheng Yaw Low

Max Planck Institute

Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
US, NY, New York
** This position is open to all candidates in NYC and Arlington, VA Amazon Ads Response Prediction team is your choice, if you want to join a highly motivated, collaborative, and fun-loving team with a strong entrepreneurial spirit and bias for action. We are seeking an experienced and motivated Machine Learning Applied Scientist who loves to innovate at the intersection of customer experience, deep learning, and high-scale machine-learning systems. Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. We are looking for a talented Machine Learning Applied Scientist for our Amazon Ads Response Prediction team to grow the business. We are providing advanced real-time machine learning services to connect shoppers with right ads on all platforms and surfaces worldwide. Through the deep understanding of both shoppers and products, we help shoppers discover new products they love, be the most efficient way for advertisers to meet their customers, and helps Amazon continuously innovate on behalf of all customers. Key job responsibilities As a Machine Learning Applied Scientist, you will: * Conduct deep data analysis to derive insights to the business, and identify gaps and new opportunities * Develop scalable and effective machine-learning models and optimization strategies to solve business problems * Run regular A/B experiments, gather data, and perform statistical analysis * Work closely with software engineers to deliver end-to-end solutions into production * Improve the scalability, efficiency and automation of large-scale data analytics, model training, deployment and serving * Conduct research on new machine-learning modeling to optimize all aspects of Sponsored Products business About the team We are pioneers in applying advanced machine learning and generative AI algorithms in Sponsored Products business. We empower every customer with a customized discovery experiences from back-end optimization (such as customized response prediction models) to front-end CX innovation (such as widgets), to help shoppers feel understood and shop efficiently on and off Amazon.