Sustainability call for proposals — Fall 2024

Welcoming proposals related to data validation, life cycle assessment, biodiversity and more.

About this CFP

Amazon Sustainability works to make Amazon one of the most environmentally and socially responsible places to buy or sell goods and services. We conduct research to map, model and measure the end-to-end environmental and social impact of the company and vet sustainability topics that will have the greatest future impact to Amazon to inform business planning and resilience. We develop and test strategies that support revenue growth while reducing negative environmental and social impact. We work with the external science community to drive our vision and mission. We accelerate sustainability practices at Amazon by guiding critical decision makers with crisp recommendations backed by scientific rigor. We remove ambiguity around sustainability and provide them scientifically credible mechanisms, data, tools and solutions that they can use to make informed decisions.

We welcome proposals in the following research tracks:

Validating sustainability data at scale

Accurate and verifiable greenhouse gas (GHG) emissions data across the supply chain is critical for organizations to make informed procurement decisions, set meaningful carbon and other environmental impacts reduction targets, and drive meaningful progress towards their climate goals. However, the current process of validating supplier-reported GHG metrics is often manual, costly, and lacks consistency. Proving the accuracy of abatement data is further complicated by the complex and ever-changing nature of business operations. Key challenges include verifying that supplier-reported GHG emissions reductions adhere to established standards of being real, additional, and permanent, as well as socially-beneficial. We invite proposals for innovative, open-sourced projects that leverage machine learning (ML) and artificial intelligence (AI) techniques to improve data resolution and validate GHG emissions and carbon accounting data by harnessing data from diverse sources, including data shared by suppliers, with the goal of streamlining the process and lowering the overall cost of verification for all organizations. The validations should be sufficient for GHG emissions and carbon accounting claims. Where possible, we encourage proposals to incorporate current standards for producing (e.g., Product Category Rules) and sharing carbon data (e.g., WBCSD Pathfinder Initiative). Additional challenges include the difficulty in aggregating accurate, comparable GHG emissions data across complex, global supply chains due to inconsistent or costly data sharing practices, and the limited ability for organizations to quickly identify and address discrepancies or anomalies in supplier-reported carbon performance.

Machine learning applications for life cycle assessment

Life cycle assessment (LCA) is an instrumental method for corporations disclosing their environmental footprint. The primary challenges associated with corporate footprinting are scalability, automation, transparency, and lack of appropriate data to measure impacts of a wide range of products and services. Currently, much of the LCA work remains manual, and requires subject matter expertise. We solicit proposals that primarily focus on machine learning application in life cycle assessment ranging from to automating assessment and validation, completing life cycle inventories using approximation, computing product carbon footprint (PCF) in supply chain and BOM data, use of large language models (LLMs) and ontologies / knowledge graphs in LCA settings, and building tools to conduct scenario analysis and assess emissions abatement potential at a web-scale. As lack of groundtruth data is a perennial challenge in this field, proposals are encouraged to contribute open-source benchmark datasets and reduce reliance on large-scale, expensive data collection.

Data-driven sustainable product design and manufacturing

There is a lack of methods, tools, and systems to enable product manufacturers to incorporate sustainability performance metrics into decisions made across the product’s life cycle, from product development to manufacturing to post-use recovery and treatment. We are welcoming research proposals focused on innovative approaches to create, test, and implement decision support capabilities for multiple sustainability criteria (e.g., carbon, waste, and water) to increase the velocity and lower the cost of more sustainable product development. Proposals that demonstrate broad applicability across different product sectors, supply chain complexity, and manufacturing types (discrete and continuous) are highly encouraged.

Climate risk assessment

We invite proposals that leverage novel methods and modeling approaches to advance climate risk assessment and resilience at scale. Traditional methods for monitoring impacts/damages from climate hazards to point assets (e.g. buildings, infrastructure), linear assets (e.g. roads), and supply chains often require expert assessment and are limited in their ability to assess risk at a local level. We seek innovative proposals that utilize artificial intelligence, remote sensing (e.g. pre- and post-disaster imagery), and new modeling techniques to enhance the assessment of vulnerabilities (damage functions). Projects should demonstrate how the proposed approaches can enable scalable, high-resolution risk evaluation without relying on traditional expert assessments. Moreover, proposals investigating the application of emerging technologies to better assess climate-related risks to nature and forests are highly encouraged. Climate risks to forests threaten permanence of carbon storages, durability of nature-based solutions, biodiversity, and supply of commodities within supply chains. We are interested in proposals that use new methodologies to quantify climate-related reversal risks and risks to ecosystem services, for example the inter-connections between carbon, biodiversity, and climate risks. We strongly encourage open-source contributions.

Biodiversity

We request proposals that advance biodiversity measurement, monitoring, and impact assessment. Despite growing recognition of biodiversity risks, critical gaps remain in our ability to systematically quantify changes in ecosystems, species populations, and genetic diversity across spatial scales. Traditional methods for biodiversity assessment have limited scalability, often relying on sparse validation data and expert-driven scoring systems. We invite projects that harness in-situ and remote sampling, artificial-intelligence, and new statistical techniques to enable continuous, high-resolution, and reliable biodiversity tracking at local levels. Additionally, we encourage proposals that advance biodiversity impact quantification and attribution. Innovative approaches are needed to translate the tangible interactions between biodiversity and ecosystems, human systems, and organizations. We are interested in approaches that quantify biodiversity co-benefits of nature-based solutions and climate change mitigation strategies. We encourage open-source contributions and pathways enabling real-world implementation.

Lower-carbon cement and concrete

Amazon seeks research proposals to address a critical gap in validating lower-carbon cement and concrete innovations. Cement and concrete production is highly carbon-intensive, contributing significantly to global emissions. While new solutions emerge, a key challenge is the lack of standardized methods to confirm these new materials can be manufactured, transported, and placed as easily as existing products. We are interested in research that comprehensively evaluates the performance, workability, and constructability of lower-carbon cement and concrete mixes across the value chain. The goal is to generate data-driven evidence supporting broad adoption of sustainable alternatives. Proposals demonstrating collaborative industry partnerships and practical, scalable solutions are encouraged.

Responsible supply chain

Corporate Social Responsibility (CSR) within supply chains is a critical area of research, addressing the ethical, environmental, and social impacts of global supply networks. Traditional supply chain auditing practices, while prevalent, face significant challenges related to scalability, transparency, and the absence of universal evaluation standards. These audits often rely on manual data collection processes, limiting their effectiveness in addressing complex and dynamic social risks.
This call for papers seeks to explore fundamental and academic problems in CSR within supply chains. We invite research that advances the theoretical foundations of CSR in supply chains, particularly through the lens of data-driven approaches and machine learning. Topics of interest include, but are not limited to:

  • Development of universal standards and frameworks for CSR evaluation in global supply chains.
  • Methodologies for real-time social risk detection and hotspot analysis.
  • Predictive modeling for supplier risk assessment and compliance.
  • AI to support humans in performing audits, such as generating strategies and guidance.
  • Innovative strategies for automating and enhancing the transparency of social responsibility audits.
  • Theoretical exploration of the ethical implications of AI in CSR decision-making processes.

CO2 Mineralization

Carbon capture, utilization, and storage (CCUS) is a critical decarbonization lever across several hard-to-abate industrial sectors. However, the potential of carbon capture and storage (CCS) is constrained by the availability of suitable CO2 pipeline infrastructure and nearby geological storage sites. Carbon capture and utilization (CCU) technologies, such as ex-situ mineral carbonation, offer a viable alternative for industrial sites that lack underground storage infrastructure. Nevertheless, the potential of ex-situ carbon mineralization is also limited by the cost of carbonation and the availability of suitable feedstocks besides industrial waste materials. This call for proposals aims to identify solutions that can maximize the impact of mineral carbonation for permanent CO2 sequestration, for example the identification/development of direct carbonation of Mg-rich minerals, processes to broaden the application of magnesium carbonate (MgCO3) produced through mineral carbonation, or AI-driven models for optimization of ex-situ/superficial mineralization.

Timeline

Submission period: September 25, 2024 - November 13, 2024 (11:59PM Pacific Time)

Decision letters will be sent out in March 2025

Award details

Selected Principal Investigators (PIs) may receive the following:

  • Unrestricted funds, from $50,000 to $100,000 USD
  • AWS Promotional Credits, up to $40,000 USD
  • Training resources, including AWS tutorials and hands-on sessions with Amazon scientists and engineers

Awards are structured as one-year unrestricted gifts. The budget should include a list of expected costs specified in USD, and should not include administrative overhead costs. The final award amount will be determined by the awards panel.

Eligibility requirements

Please refer to the ARA Program rules on the Rules and Eligibility page.

Proposal requirements

Proposals should be prepared according to the proposal template. In addition, to submit a proposal for this CFP, please also include the following information:

  • Description of the proposed solution and its innovative aspects
  • Explanation of how the project addresses the specified challenges
  • Plan for the development and implementation of the methodology or dataset
  • Potential impact on sustainability in the targeted sectors
  • Inclusion of Category Rules across Environmental Product Declarations and Product Environmental Footprints where applicable
  • List of open-source tools, datasets, or methodologies you plan to contribute to.
  • List of AWS ML tools you will use.

Selection criteria

Proposals will be reviewed by a panel of experts in machine learning, LCA, and sustainability. Proposals will be evaluated on the following:

  • Immediate and sizeable impact on carbon abatements (i.e., reducing greenhouse gases)
  • Practicality and scalability of the solutions that can support measurement validations
  • Feasibility and clarity of the proposed approach
  • Potential for widespread adoption and implementation
  • Feasibility to open source

Expectations from recipients

To the extent deemed reasonable, Award recipients should acknowledge the support from ARA. Award recipients will inform ARA of publications, presentations, code and data releases, blogs/social media posts, and other speaking engagements referencing the results of the supported research or the Award. Award recipients are expected to provide updates and feedback to ARA via surveys or reports on the status of their research. Award recipients will have an opportunity to work with ARA on an informational statement about the awarded project that may be used to generate visibility for their institutions and ARA.

When you're ready to submit your proposal, use the button below and follow the instructions on the site.

US, WA, Seattle
About Sponsored Products and Brands The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: * Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. * Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. * Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. * Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. * Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value.
RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
US, VA, Arlington
The Generative AI Innovation Center (GenAIIC) at AWS helps AWS customers accelerate the use of generative AI and realize transformational business opportunities. This is a cross-functional team of ML scientists, engineers, architects, and strategists working step-by-step with customers and partners to build bespoke solutions that harness the power of generative AI. The team is looking for an experienced and talented Senior Applied Scientist who brings a strong blend of experience in machine learning, generative and agentic AI, and experience building scalable AI/ML solutions using cloud computing. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of GenAIIC with our customers. You will be able to drive discussions with technical and business leaders within customers and partners. You will possess technical background that enables you to interact with and give guidance to data/research/applied scientists and software engineers on the team. The ideal candidate will have think strategically about business, product, and technical issues. Key job responsibilities • Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges • Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production • Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization • Help customers develop scalable, secure and effective agentic workflows • Provide customer and market feedback to product and engineering teams to help define product direction
Amazon Research Awards.jpg

Amazon Research Awards

Collaborating with scientists around the world to fund research, share knowledge and encourage innovation.