New AWS tool recommends removal of unused permissions

IAM Access Analyzer feature uses automated reasoning to recommend policies that remove unused accesses, helping customers achieve “least privilege”.

AWS Identity and Access Management (IAM) policies provide customers with fine-grained control over who has access to what resources in the Amazon Web Services (AWS) Cloud. This control helps customers enforce the principle of least privilege by granting only the permissions required to perform particular tasks. In practice, however, writing IAM policies that enforce least privilege requires customers to understand what permissions are necessary for their applications to function, which can become challenging when the scale of the applications grows.

To help customers understand what permissions are not necessary, we launched IAM Access Analyzer unused access findings at the 2023 re:Invent conference. IAM Access Analyzer analyzes your AWS accounts to identify unused access and creates a centralized dashboard to report its findings. The findings highlight unused roles and unused access keys and passwords for IAM users. For active IAM roles and users, the findings provide visibility into unused services and actions.

Related content
New IAM Access Analyzer feature uses automated reasoning to ensure that access policies written in the IAM policy language don’t grant unintended access.

To take this service a step further, in June 2024 we launched recommendations to refine unused permissions in Access Analyzer. This feature recommends a refinement of the customer’s original IAM policies that retains the policy structure while removing the unused permissions. The recommendations not only simplify removal of unused permissions but also help customers enact the principle of least privilege for fine-grained permissions.

In this post, we discuss how Access Analyzer policy recommendations suggest policy refinements based on unused permissions, which completes the circle from monitoring overly permissive policies to refining them.

Policy recommendation in practice

Let's dive into an example to see how policy recommendation works. Suppose you have the following IAM policy attached to an IAM role named MyRole:

{
  "Version": "2012-10-17",
  "Statement": [
   {
      "Effect": "Allow",
      "Action": [
        "lambda:AddPermission",
        "lambda:GetFunctionConfiguration",
        "lambda:UpdateFunctionConfiguration",
        "lambda:UpdateFunctionCode",
        "lambda:CreateFunction",
        "lambda:DeleteFunction",
        "lambda:ListVersionsByFunction",
        "lambda:GetFunction",
        "lambda:Invoke*"
      ],
      "Resource": "arn:aws:lambda:us-east-1:123456789012:function:my-lambda"
   },
  {
    "Effect" : "Allow",
    "Action" : [
      "s3:Get*",
      "s3:List*"
    ],
    "Resource" : "*"
  }
 ]
}

The above policy has two policy statements:

  • The first statement allows actions on a function in AWS Lambda, an AWS offering that provides function execution as a service. The allowed actions are specified by listing individual actions as well as via the wildcard string lambda:Invoke*, which permits all actions starting with Invoke in AWS Lambda, such as lambda:InvokeFunction.
  • The second statement allows actions on any Amazon Simple Storage Service (S3) bucket. Actions are specified by two wildcard strings, which indicate that the statement allows actions starting with Get or List in Amazon S3.

Enabling Access Analyzer for unused finding will provide you with a list of findings, each of which details the action-level unused permissions for specific roles. For example, for the role with the above policy attached, if Access Analyzer finds any AWS Lambda or Amazon S3 actions that are allowed but not used, it will display them as unused permissions.

Related content
Amazon Web Services (AWS) is a cloud computing services provider that has made significant investments in applying formal methods to proving correctness of its internal systems and providing assurance of correctness to their end-users. In this paper, we focus on how we built abstractions and eliminated specifications to scale a verification engine for AWS access policies, Zelkova, to be usable by all AWS

The unused permissions define a list of actions that are allowed by the IAM policy but not used by the role. These actions are specific to a namespace, a set of resources that are clustered together and walled off from other namespaces, to improve security. Here is an example in Json format that shows unused permissions found for MyRole with the policy we attached earlier:

[
 {
    "serviceNamespace": "lambda",
    "actions": [
      "UpdateFunctionCode",
      "GetFunction",
      "ListVersionsByFunction",
      "UpdateFunctionConfiguration",
      "CreateFunction",
      "DeleteFunction",
      "GetFunctionConfiguration",
      "AddPermission"
    ]
  },
  {
    "serviceNamespace": "s3",
    "actions": [
        "GetBucketLocation",
        "GetBucketWebsite",
        "GetBucketPolicyStatus",
        "GetAccelerateConfiguration",
        "GetBucketPolicy",
        "GetBucketRequestPayment",
        "GetReplicationConfiguration",
        "GetBucketLogging",
        "GetBucketObjectLockConfiguration",
        "GetBucketNotification",
        "GetLifecycleConfiguration",
        "GetAnalyticsConfiguration",
        "GetBucketCORS",
        "GetInventoryConfiguration",
        "GetBucketPublicAccessBlock",
        "GetEncryptionConfiguration",
        "GetBucketAcl",
        "GetBucketVersioning",
        "GetBucketOwnershipControls",
        "GetBucketTagging",
        "GetIntelligentTieringConfiguration",
        "GetMetricsConfiguration"
    ]
  }
]

This example shows actions that are not used in AWS Lambda and Amazon S3 but are allowed by the policy we specified earlier.

Related content
Rungta had a promising career with NASA, but decided the stars aligned for her at Amazon.

How could you refine the original policy to remove the unused permissions and achieve least privilege? One option is manual analysis. You might imagine the following process:

  • Find the statements that allow unused permissions;
  • Remove individual actions from those statements by referencing unused permissions.

This process, however, can be error prone when dealing with large policies and long lists of unused permissions. Moreover, when there are wildcard strings in a policy, removing unused permissions from them requires careful investigation of which actions should replace the wildcard strings.

Policy recommendation does this refinement automatically for customers!

The policy below is one that Access Analyzer recommends after removing the unused actions from the policy above (the figure also shows the differences between the original and revised policies):

{
  "Version": "2012-10-17",
  "Statement" : [
   {
      "Effect" : "Allow",
      "Action" : [
-       "lambda:AddPermission",
-       "lambda:GetFunctionConfiguration",
-       "lambda:UpdateFunctionConfiguration",
-       "lambda:UpdateFunctionCode",
-       "lambda:CreateFunction",
-       "lambda:DeleteFunction",
-       "lambda:ListVersionsByFunction",
-       "lambda:GetFunction",
        "lambda:Invoke*"
      ],
      "Resource" : "arn:aws:lambda:us-east-1:123456789012:function:my-lambda"
    },
    {
     "Effect" : "Allow",
     "Action" : [
-      "s3:Get*",
+      "s3:GetAccess*",
+      "s3:GetAccountPublicAccessBlock",
+      "s3:GetDataAccess",
+      "s3:GetJobTagging",
+      "s3:GetMulti*",
+      "s3:GetObject*",
+      "s3:GetStorage*",
       "s3:List*"
     ],
     "Resource" : "*"
   }
  ]
}

Let’s take a look at what’s changed for each policy statement.

For the first statement, policy recommendation removes all individually listed actions (e.g., lambda:AddPermission), since they appear in unused permissions. Because none of the unused permissions starts with lambda:Invoke, the recommendation leaves lambda:Invoke* untouched.

For the second statement, let’s focus on what happens to the wildcard s3:Get*, which appears in the original policy. There are many actions that can start with s3:Get, but only some of them are shown in the unused permissions. Therefore, s3:Get* cannot just be removed from the policy. Instead, the recommended policy replaces s3:Get* with seven actions that can start with s3:Get but are not reported as unused.

Related content
Amazon scientists are on the cutting edge of using math-based logic to provide better network security, access management, and greater reliability.

Some of these actions (e.g., s3:GetJobTagging) are individual ones, whereas others contain wildcards (e.g., s3:GetAccess* and s3:GetObject*). One way to manually replace s3:Get* in the revised policy would be to list all the actions that start with s3:Get except for the unused ones. However, this would result in an unwieldy policy, given that there are more than 50 actions starting with s3:Get.

Instead, policy recommendation identifies ways to use wildcards to collapse multiple actions, outputting actions such as s3:GetAccess* or s3:GetMulti*. Thanks to these wildcards, the recommended policy is succinct but still permits all the actions starting with s3:Get that are not reported as unused.

How do we decide where to place a wildcard in the newly generated wildcard actions? In the next section, we will dive deep on how policy recommendation generalizes actions with wildcards to allow only those actions that do not appear in unused permissions.

A deep dive into how actions are generalized

Policy recommendation is guided by the mathematical principle of “least general generalization” — i.e., finding the least permissive modification of the recommended policy that still allows all the actions allowed by the original policy. This theorem-backed approach guarantees that the modified policy still allows all and only the permissions granted by the original policy that are not reported as unused.

To implement the least-general generalization for unused permissions, we construct a data structure known as a trie, which is a tree each of whose nodes extends a sequence of tokens corresponding to a path through the tree. In our case, the nodes represent prefixes shared among actions, with a special marker for actions reported in unused permissions. By traversing the trie, we find the shortest string of prefixes that does not contain unused actions.

The diagram below shows a simplified trie delineating actions that replace the S3 Get* wildcard from the original policy (we have omitted some actions for clarity):

Access Analyzer trie.png
A trie delineating actions that can replace the Get* wildcard in an IAM policy. Nodes containing unused actions are depicted in orange; the remaining nodes are in green.

At a high level, the trie represents prefixes that are shared by some of the possible actions starting with s3:Get. Its root node represents the prefix Get; child nodes of the root append their prefixes to Get. For example, the node named Multi represents all actions that start with GetMulti.

Related content
Automated reasoning and optimizations specific to CPU microarchitectures improve both performance and assurance of correct implementation.

We say that a node is safe (denoted in green in the diagram) if none of the unused actions start with the prefix corresponding to that node; otherwise, it is unsafe (denoted in orange). For example, the node s3:GetBucket is unsafe because the action s3:GetBucketPolicy is unused. Similarly, the node ss is safe since there are no unused permissions that start with GetAccess.

We want our final policies to contain wildcard actions that correspond only to safe nodes, and we want to include enough safe nodes to permit all used actions. We achieve this by selecting the nodes that correspond to the shortest safe prefixes—i.e., nodes that are themselves safe but whose parents are not. As a result, the recommended policy replaces s3:Get* with the shortest prefixes that do not contain unused permissions, such as s3:GetAccess*, s3:GetMulti* and s3:GetJobTagging.

Together, the shortest safe prefixes form a new policy that, while syntactically similar to the original policy, is the least-general generalization to result from removing the unused actions. In other words, we have not removed more actions than necessary.

You can find how to start using policy recommendation with unused access in Access Analyzer. To learn more about the theoretical foundations powering policy recommendation, be sure to check out our science paper.

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
US, NY, New York
We are seeking a motivated and talented Applied Scientist to join our team at Amazon Advertising, where we are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping beautiful, delightful, and personal. Our team builds the central Brand Understanding foundation for Amazon ads and beyond. We focus on enabling the Amazon brand ads businesses to align the customer's brand shopping intent with the brand's unique value (e.g., intelligent query/shopper-to-brand understanding, brand value/differentiator attribute extraction, and brand profile building). We provide large-scale offline and online Brand Understanding data services, powered by the latest Machine Learning technologies (e.g., Large Language Models, Multi-Modal Deep Neural Networks, Statistical Modeling). We also enable customer-brand engagement enhancement through intelligent UX and efficient ads serving. About Amazon Advertising: Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital display advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers of all types to reach Amazon customers on Amazon.com, across our other owned and operated sites, on other high quality sites across the web, and on millions of mobile devices. We start with the customer and work backwards in everything we do, including advertising. If you’re interested in joining a rapidly growing team working to build a unique, world-class advertising group with a relentless focus on the customer, you’ve come to the right place. Key job responsibilities - Leverage Large Language Models (LLMs) and transformer-based models, and apply machine learning and natural language understanding techniques to improve the shopper and advertiser experience at Amazon. - Perform hands-on data analysis and modeling with large data sets to develop insights. - Run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Be a member of the Amazon-wide machine learning community, participating in internal and external hackathons and conferences - Help attract and recruit technical talent
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).