Custom policy checks help democratize automated reasoning

New IAM Access Analyzer feature uses automated reasoning to ensure that access policies written in the IAM policy language don’t grant unintended access.

To control access to resources in the Amazon Web Services (AWS) Cloud, customers can author AWS Identity and Access Management (IAM) policies. The IAM policy language is expressive, allowing you to create fine-grained policies that control who can perform what actions on which resources. This control can be used to enforce the principle of least privilege, granting only the permissions required to perform a task.

But how can you verify that your IAM policies meet your security requirements? At AWS’s 2023 re:Invent conference, we announced the launch of IAM Access Analyzer custom policy checks, which help you benchmark policies against your security standards. Custom policy checks abstract away the task of converting policy statements into mathematical formulas, so customers can enjoy the benefits of automated reasoning without expertise in formal logic.

Policy checks in context.png
The role of IAM Access Analyzer custom policy checks in the development pipeline.

The IAM Access Analyzer API CheckNoNewAccess ensures that you do not inadvertently add permissions to a policy when you update it. With the CheckAccessNotGranted API, you can specify critical permissions that developers should not grant in their IAM policies.

We built custom policy checks on an internal AWS service called Zelkova, which uses automated reasoning to analyze IAM policies. Previously, we used Zelkova to build preventative and detective managed controls, such as Amazon S3 Block Public Access and IAM Access Analyzer public and cross-account findings. Now, with the release of custom policy checks, you can set a security standard and prevent policies that do not meet this standard from being deployed.

How does Zelkova work?

Zelkova models the semantics of the IAM policy language by translating policies into precise mathematical expressions. It then uses automated engines called satisfiability modulo theories (SMT) solvers to check properties of the policies. Satisfiability (SAT) solvers check if it is possible to assign true or false values to Boolean variables to satisfy a set of constraints; SMT is a generalization of SAT to include strings, integers, real numbers, or functions. The benefit of using SMT to analyze policies is that it is comprehensive. Unlike tools that simulate or evaluate a policy for a given request or a small set of requests, Zelkova can check properties of a policy for all possible requests.

Consider the following Amazon S3 bucket policy:

{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Principal": "*",
         "Action": ["s3:PutObject"],
         "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET"
      }
   ]
}

Zelkova translates this policy into the following formula:

(Action = “s3:PutObject”) 
∧ (Resource = “arn:aws:s3:::DOC-EXAMPLE-BUCKET”)

In this formula, "∧" is the mathematical symbol for “and”. Action and Resource are variables that represent values from any possible request. The formula is true only when a request is allowed by the policy. This precise mathematical representation of a policy is useful because it allows us to answer questions about the policy exhaustively. For example, we can ask if the policy allows public access, and we receive the answer that it does.

For simple policies such as the preceding policy, we could perform manual reviews to determine whether they allow public access: the "Principal": "*" in the policy’s statement means that anyone (the public) is allowed access. But manual review can be error prone and is not scalable.

Alternatively, we could write simple syntactic checks for patterns such as "Principal": "*". However, these syntactic checks can miss the subtleties of policies and the interactions between different parts of a policy. Consider the following modification of the preceding policy, which adds a Deny statement with "NotPrincipal": "123456789012"; the policy still has the pattern "Principal": "*", but it no longer allows public access:

{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Principal": "*",
         "Action": ["s3:PutObject"],
         "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET"
      },
      {
         "Effect": "Deny",
         "NotPrincipal": "123456789012",
         "Action": "*",
         "Resource": "*"
      }
   ]
}

With the mathematical representation of policy semantics in Zelkova, we can answer questions about access privileges precisely.

Answering questions with Zelkova

As an example, let’s consider a relatively simple question. With IAM policies, you can grant cross-account access to resources you want to share. For sensitive resources, you’d like to check that cross-account access is not possible.

Suppose we wanted to check whether the preceding policies allow anyone outside my account, 123456789012, to access my S3 bucket. Just as we translated the policy into a mathematical formula, we can translate the question we want to ask (or property we want to check) into a mathematical formula. To check whether all allowed accesses are from my account, we can translate the property to the following formula:

(Principal = 123456789012)

To show that the property holds true for the policy, we can now try to prove that only requests with (Principal = 123456789012) are allowed by the policy. A common trick used in mathematics is to flip the question around. Instead of trying to prove that the property holds, we can prove that it does not hold by finding requests that do not satisfy it — in other words, requests that satisfy (Principal 123456789012). To find such a counterexample, we look for assignments to the variables Principal, Action, and Resource such that the following is true:

(Action = “s3:PutObject”)
∧ (Resource = “arn:aws:s3:::DOC-EXAMPLE-BUCKET”)
∧ (Principal ≠ 123456789012)

Zelkova translates the policy and property into the preceding mathematical formula, and it efficiently searches for counterexamples using SMT solvers. For the preceding formula, the SMT solver can produce a counterexample showing that such access is indeed allowed by the policy (for example, with Principal = 111122223333).

For the previously modified policy with the Deny statement, the SMT solver can also prove that no solution is possible for the resulting formula and that no access is allowed for the policy from outside my account, 123456789012:

(Action = “s3:PutObject”) 
∧ (Resource = “arn:aws:s3:::DOC-EXAMPLE-BUCKET”) 
∧ (Principal = 123456789012) ∧ (Principal ≠ 123456789012)

The Deny statement in the policy with "NotPrincipal": "123456789012" is translated to the constraint (Principal = 123456789012). By inspecting the preceding formula, we can see that it can’t be satisfied: the constraints on Principal from the policy and from the property are contradictory. An SMT solver can prove this and more complicated formulas by exhaustively ruling out solutions.

Custom policy checks

To democratize access to Zelkova, we needed to abstract the construction of mathematical formulas behind a more accessible interface. To that end, we launched IAM Access Analyzer custom policy checks with two predefined checks: CheckNoNewAccess and CheckAccessNotGranted.

With CheckNoNewAccess, you can confirm that you do not accidentally add permissions to a policy when updating it. Developers often start with more-permissive policies and refine them over time toward least privilege. With CheckNoNewAccess, you can now compare two versions of a policy to confirm that the new version is not more permissive than the old version.

Suppose a developer updates the first example policy in this post to disallow cross-account access but at the same time also adds a new action:

{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Principal": "123456789012",
         "Action": [ 
            "s3:PutObject",
            "s3:DeleteBucket" 
         ],
         "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET"
      }
   ]
}

CheckNoNewAccess translates the two versions of the policy into formulas Pold and Pnew, respectively. It then searches for solutions to the formula (Pnew ¬Pold) that represent requests that are allowed by the new policy but not allowed by the old policy (“¬” is the mathematical symbol for “not”). Because the new policy allows principals in 123456789012 to perform an action that the old policy did not, the check fails, and a security engineer can review whether this policy change is acceptable.

With CheckAccessNotGranted, security engineers can be more prescriptive by specifying critical permissions to be checked against policy updates. Let’s say we want to ensure that developers are not granting permissions to delete an important bucket. In our previous example, CheckNoNewAccess detected this only because the permission was added with an update. With CheckAccessNotGranted, the security engineer can specify s3:DeleteBucket as a critical permission. We then translate the critical permissions into a formula such as (Action = “s3:DeleteBucket”) and search for requests with that action that are allowed by the policy. Because the preceding policy allows this action, the check fails and that prevents the permission from being deployed.

With the ability to specify critical permissions as parameters to the CheckAccessNotGranted API, you can now check policies against your standards — and not just for canned, broadly applicable checks.

Debugging failures

By democratizing policy checks, without the need for costly and time-consuming manual reviews, custom policy checks help developers move faster. When policies pass the checks, developers can make updates with confidence. If policies fail the checks, IAM Access Analyzer provides additional information so that developers can debug and fix them.

Suppose a developer writes the following identity-based policy:

{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": [
            "ec2:DescribeInstance*",
            "ec2:StartInstances", 
            "ec2:StopInstances" 
         ],
         "Resource": "arn:aws:ec2:*:*:instance/*"
      },
      {
         "Effect": "Allow",
         "Action": [ 
            "s3:GetObject*", 
            "s3:PutObject",
            "s3:DeleteBucket" 
         ],
         "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
      }
   ]
}

Let’s also suppose that a security engineer has specified critical permissions that include s3:DeleteBucket. As described above, CheckAccessNotGranted fails on this policy.

For any given policy, it can sometimes be hard to understand why a check failed. To give developers more clarity, IAM Access Analyzer uses Zelkova to solve additional problems that pinpoint the failure to a specific statement in the policy. For the preceding policy, the check failed with the description "New access in the statement with index: 1". This description indicates that the second statement contains a critical permission.

The key to democratizing automated reasoning is to make it simple to use and easy to specify properties. With additional custom checks, we will continue to enable our customers on their journey to least privilege.

Research areas

Related content

US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
CA, BC, Vancouver
Have you ever wondered how Amazon predicts delivery times and ensures your orders arrive exactly when promised? Have you wondered where all those Amazon semi-trucks on the road are headed? Are you passionate about increasing efficiency and reducing carbon footprint? Does the idea of having worldwide impact on Amazon's multimodal logistics network that includes planes, trucks, and vans sound exciting to you? Are you interested in developing Generative AI solutions using state-of-the-art LLM techniques to revolutionize how Amazon optimizes the fulfillment of millions of customer orders globally with unprecedented scale and precision? If so, then we want to talk with you! Join our team to apply the latest advancements in Generative AI to enhance our capability and speed of decision making. Fulfillment Planning & Execution (FPX) Science team within SCOT- Fulfillment Optimization owns and operates optimization, machine learning, and simulation systems that continually optimize the fulfillment of millions of products across Amazon’s network in the most cost-effective manner, utilizing large scale optimization, advanced machine learning techniques, big data technologies, and scalable distributed software on the cloud that automates and optimizes inventory and shipments to customers under the uncertainty of demand, pricing, and supply. The team has embarked on its Generative AI to build the next-generation AI agents and LLM frameworks to promote efficiency and improve productivity. We’re looking for a passionate, results-oriented, and inventive machine learning scientist who can design, build, and improve models for our outbound transportation planning systems. You will work closely with our product managers and software engineers to disambiguate complex supply chain problems and create ML / AI solutions to solve those problems at scale. You will work independently in an ambiguous environment while collaborating with cross-functional teams to drive forward innovation in the Generative AI space. Key job responsibilities * Design, develop, and evaluate tailored ML/AI, models for solving complex business problems. * Research and apply the latest ML / AI techniques and best practices from both academia and industry. * Identify and implement novel Generative AI use cases to deliver value. * Design and implement Generative AI and LLM solutions to accelerate development and provide intuitive explainability of complex science models. * Develop and implement frameworks for evaluation, validation, and benchmarking AI agents and LLM frameworks. * Think about customers and how to improve the customer delivery experience. * Use analytical techniques to create scalable solutions for business problems. * Work closely with software engineering teams to build model implementations and integrate successful models and algorithms in production systems at large scale. * Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. A day in the life You will have the opportunity to learn how Amazon plans for and executes within its logistics ne twork including Fulfillment Centers, Sort Centers, and Delivery Stations. In this role, you will design and develop Machine Learning / AI models with significant scope, impact, and high visibility. You will focus on designing, developing, and deploying Generative AI solutions at scale that will improve efficiency, increase productivity, accelerate development, automate manual tasks, and deliver value to our internal customers. Your solutions will impact business segments worth many-billions-of-dollars and geographies spanning multiple countries and markets. From day one, you will be working with bar raising scientists, engineers, and designers. You will also collaborate with the broader science community in Amazon to broaden the horizon of your work. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team FPX Science tackles some of the most mathematically complex challenges in transportation planning and execution space to improve Amazon's operational efficiency worldwide at a scale that is unique to Amazon. We own the long-term and intermediate-term planning of Amazon’s global fulfillment centers and transportation network as well as the short-term network planning and execution that determines the optimal flow of customer orders through Amazon fulfillment network. FPX science team is a group of scientists with different technical backgrounds including Machine Learning and Operations Research, who will collaborate closely with you on your projects. Our team directly supports multiple functional areas across SCOT - Fulfillment Optimization and the research needs of the corresponding product and engineering teams. We disambiguate complex supply chain problems and create innovative data-driven solutions to solve those problems at scale with a mix of science-based techniques including Operations Research, Simulation, Machine Learning, and AI to tackle some of our biggest technical challenges. In addition, we are incorporating the latest advances in Generative AI and LLM techniques in how we design, develop, enhance, and interpret the results of these science models.
US, WA, Bellevue
Amazon LEO is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. The Amazon LEO Infrastructure Data Engineering, Analytics, and Science team owns designing, implementing, and operating systems/models that support the optimal demand/capacity planning function. We are looking for a talented scientist to implement LEO's long-term vision and strategy for capacity simulations and network bandwidth optimization. This effort will be instrumental in helping LEO execute on its business plans globally. As one of our valued team members, you will be obsessed with matching our standards for operational excellence with a relentless focus on delivering results. Key job responsibilities In this role, you will: Work cross-functionally with product, business development, and various technical teams (engineering, science, R&D, simulations, etc.) to implement the long-term vision, strategy, and architecture for capacity simulations and inventory optimization. Design and deliver modern, flexible, scalable solutions to complex optimization problems for operating and planning satellite resources. Contribute to short and long terms technical roadmap definition efforts to predict future inventory availability and key operational and financial metrics across the network. Design and deliver systems that can keep up with the rapid pace of optimization improvements and simulating how they interact with each other. Analyze large amounts of satellite and business data to identify simulation and optimization opportunities. Synthesize and communicate insights and recommendations to audiences of varying levels of technical sophistication to drive change across LEO. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases