A gentle introduction to automated reasoning

Meet Amazon Science’s newest research area.

This week, Amazon Science added automated reasoning to its list of research areas. We made this change because of the impact that automated reasoning is having here at Amazon. For example, Amazon Web Services’ customers now have direct access to automated-reasoning-based features such as IAM Access Analyzer, S3 Block Public Access, or VPC Reachability Analyzer. We also see Amazon development teams integrating automated-reasoning tools into their development processes, raising the bar on the security, durability, availability, and quality of our products.

The goal of this article is to provide a gentle introduction to automated reasoning for the industry professional who knows nothing about the area but is curious to learn more. All you will need to make sense of this article is to be able to read a few small C and Python code fragments. I will refer to a few specialist concepts along the way, but only with the goal of introducing them in an informal manner. I close with links to some of our favorite publicly available tools, videos, books, and articles for those looking to go more in-depth.

Let’s start with a simple example. Consider the following C function:

bool f(unsigned int x, unsigned int y) {
   return (x+y == y+x);
}

Take a few moments to answer the question “Could f ever return false?” This is not a trick question: I’ve purposefully used a simple example to make a point.

To check the answer with exhaustive testing, we could try executing the following doubly nested test loop, which calls f on all possible pairs of values of the type unsigned int:

#include<stdio.h>
#include<stdbool.h>
#include<limits.h>

bool f(unsigned int x, unsigned int y) {
   return (x+y == y+x);
}

void main() {
   for (unsigned int x=0;1;x++) {
      for (unsigned int y=0;1;y++) {
         if (!f(x,y)) printf("Error!\n");
         if (y==UINT_MAX) break;
      }
      if (x==UINT_MAX) break;
   }
}

Unfortunately, even on modern hardware, this doubly nested loop will run for a very long time. I compiled it and ran it on a 2.6 GHz Intel processor for over 48 hours before giving up.

Why does testing take so long? Because UINT_MAX is typically 4,294,967,295, there are 18,446,744,065,119,617,025 separate f calls to consider. On my 2.6 GHz machine, the compiled test loop called f approximately 430 million times a second. But to test all 18 quintillion cases at this performance, we would need over 1,360 years.

When we show the above code to industry professionals, they almost immediately work out that f can't return false as long as the underlying compiler/interpreter and hardware are correct. How do they do that? They reason about it. They remember from their school days that x + y can be rewritten as y + x and conclude that f always returns true.

Re:Invent 2021 keynote address by Peter DeSantis, senior vice president for utility computing at Amazon Web Services
Skip to 15:49 for a discussion of Amazon Web Services' work on automated reasoning.

An automated reasoning tool does this work for us: it attempts to answer questions about a program (or a logic formula) by using known techniques from mathematics. In this case, the tool would use algebra to deduce that x + y == y + x can be replaced with the simple expression true.

Automated-reasoning tools can be incredibly fast, even when the domains are infinite (e.g., unbounded mathematical integers rather than finite C ints). Unfortunately, the tools may answer “Don’t know” in some instances. We'll see a famous example of that below.

The science of automated reasoning is essentially focused on driving the frequency of these “Don’t know” answers down as far as possible: the less often the tools report "Don't know" (or time out while trying), the more useful they are.

Today’s tools are able to give answers for programs and queries where yesterday’s tools could not. Tomorrow’s tools will be even more powerful. We are seeing rapid progress in this field, which is why at Amazon, we are increasingly getting so much value from it. In fact, we see automated reasoning forming its own Amazon-style virtuous cycle, where more input problems to our tools drive improvements to the tools, which encourages more use of the tools.

A slightly more complex example. Now that we know the rough outlines of what automated reasoning is, the next small example gives a slightly more realistic taste of the sort of complexity that the tools are managing for us.

void g(int x, int y) {
   if (y > 0)
      while (x > y)
         x = x - y;
}

Or, alternatively, consider a similar Python program over unbounded integers:

def g(x, y):
   assert isinstance(x, int) and isinstance(y, int)
   if y > 0:
      while x > y:
         x = x - y

Try to answer this question: “Does g always eventually return control back to its caller?”

When we show this program to industry professionals, they usually figure out the right answer quickly. A few, especially those who are aware of results in theoretical computer science, sometimes mistakenly think that we can't answer this question, with the rationale “This is an example of the halting problem, which has been proved insoluble”. In fact, we can reason about the halting behavior for specific programs, including this one. We’ll talk more about that later.

Here’s the reasoning that most industry professionals use when looking at this problem:

  1. In the case where y is not positive, execution jumps to the end of the function g. That’s the easy case.
  2. If, in every iteration of the loop, the value of the variable x decreases, then eventually, the loop condition x > y will fail, and the end of g will be reached.
  3. The value of x always decreases only if y is always positive, because only then does the update to x (i.e., x = x - y) decrease x. But y’s positivity is established by the conditional expression, so x always decreases.

The experienced programmer will usually worry about underflow in the x = x - y command of the C program but will then notice that x > y before the update to x and thus cannot underflow.

If you carried out the three steps above yourself, you now have a very intuitive view of the type of thinking an automated-reasoning tool is performing on our behalf when reasoning about a computer program. There are many nitty-gritty details that the tools have to face (e.g., heaps, stacks, strings, pointer arithmetic, recursion, concurrency, callbacks, etc.), but there’s also decades of research papers on techniques for handling these and other topics, along with various practical tools that put these ideas to work.

Policy-code.gif
Automated reasoning can be applied to both policies (top) and code (bottom). In both cases, an essential step is reasoning about what's always true.

The main takeaway is that automated-reasoning tools are usually working through the three steps above on our behalf: Item 1 is reasoning about the program’s control structure. Item 2 is reasoning about what is eventually true within the program. Item 3 is reasoning about what is always true in the program.

Note that configuration artifacts such as AWS resource policies, VPC network descriptions, or even makefiles can be thought of as code. This viewpoint allows us to use the same techniques we use to reason about C or Python code to answer questions about the interpretation of configurations. It’s this insight that gives us tools like IAM Access Analyzer or VPC Reachability Analyzer.

An end to testing?

As we saw above when looking at f and g, automated reasoning can be dramatically faster than exhaustive testing. With tools available today, we can show properties of f or g in milliseconds, rather than waiting lifetimes with exhaustive testing.

Can we throw away our testing tools now and just move to automated reasoning? Not quite. Yes, we can dramatically reduce our dependency on testing, but we will not be completely eliminating it any time soon, if ever. Consider our first example:

bool f(unsigned int x, unsigned int y) {
   return (x + y == y + x);
}

Recall the worry that a buggy compiler or microprocessor could in fact cause an executable program constructed from this source code to return false. We might also need to worry about the language runtime. For example, the C math library or the Python garbage collector might have bugs that cause a program to misbehave.

What’s interesting about testing, and something we often forget, is that it’s doing much more than just telling us about the C or Python source code. It’s also testing the compiler, the runtime, the interpreter, the microprocessor, etc. A test failure could be rooted in any of those tools in the stack.

Automated reasoning, in contrast, is usually applied to just one layer of that stack — the source code itself, or sometimes the compiler or the microprocessor. What we find so valuable about reasoning is it allows us to clearly define both what we do know and what we do not know about the layer under inspection.

Furthermore, the models of the surrounding environment (e.g., the compiler or the procedure calling our procedure) used by the automated-reasoning tool make our assumptions very precise. Separating the layers of the computational stack helps make better use of our time, energy, and money and the capabilities of the tools today and tomorrow.

Unfortunately, we will almost always need to make assumptions about something when using automated reasoning — for example, the principles of physics that govern our silicon chips. Thus, testing will never be fully replaced. We will want to perform end-to-end testing to try and validate our assumptions as best we can.

An impossible program

I previously mentioned that automated-reasoning tools sometimes return “Don’t know” rather than “yes” or “no”. They also sometimes run forever (or time out), thus never returning an answer. Let’s look at the famous "halting problem" program, in which we know tools cannot return “yes” or “no”.

Imagine that we have an automated-reasoning API, called terminates, that returns “yes” if a C function always terminates or “no” when the function could execute forever. As an example, we could build such an API using the tool described here (shameless self-promotion of author’s previous work). To get the idea of what a termination tool can do for us, consider two basic C functions, g (from above),

void g(int x, int y) {
   if (y > 0)
      while (x > y)
         x = x - y;
}

and g2:

void g2(int x, int y) {
   while (x > y)
      x = x - y;
}

For the reasons we have already discussed, the function g always returns control back to its caller, so terminates(g) should return true. Meanwhile, terminates(g2) should return false because, for example, g2(5, 0) will never terminate.

Now comes the difficult function. Consider h:

void h() {
   if terminates(h) while(1){}
}

Notice that it's recursive. What’s the right answer for terminates(h)? The answer cannot be "yes". It also cannot be "no". Why?

Imagine that terminates(h) were to return "yes". If you read the code of h, you’ll see that in this case, the function does not terminate because of the conditional statement in the code of h that will execute the infinite loop while(1){}. Thus, in this case, the terminates(h) answer would be wrong, because h is defined recursively, calling terminates on itself.

Similarly, if terminates(h) were to return "no", then h would in fact terminate and return control to its caller, because the if case of the conditional statement is not met, and there is no else branch. Again, the answer would be wrong. This is why the “Don’t know” answer is actually unavoidable in this case.

The program h is a variation of examples given in Turing’s famous 1936 paper on decidability and Gödel’s incompleteness theorems from 1931. These papers tell us that problems like the halting problem cannot be “solved”, if bysolved” we mean that the solution procedure itself always terminates and answers either “yes” or “no” but never “Don’t know”. But that is not the definition of “solved” that many of us have in mind. For many of us, a tool that sometimes times out or occasionally returns “Don’t know” but, when it gives an answer, always gives the right answer is good enough.

This problem is analogous to airline travel: we know it’s not 100% safe, because crashes have happened in the past, and we are sure that they will happen in the future. But when you land safely, you know it worked that time. The goal of the airline industry is to reduce failure as much as possible, even though it’s in principle unavoidable.

To put that in the context of automated reasoning: for some programs, like h, we can never improve the tool enough to replace the "Don't know" answer. But there are many other cases where today's tools answer "Don't know", but future tools may be able to answer "yes" or "no". The modern scientific challenge for automated-reasoning subject-matter experts is to get the practical tools to return “yes” or “no” as often as possible. As an example of current work, check out CMU professor and Amazon scholar Marijn Heule and his quest to solve the Collatz termination problem.

Another thing to keep in mind is that automated-reasoning tools are regularly trying to solve “intractable” problems, e.g., problems in the NP complexity class. Here, the same thinking applies that we saw in the case of the halting problem: automated-reasoning tools have powerful heuristics that often work around the intractability problem for specific cases, but those heuristics can (and sometimes do) fail, resulting in “Don’t know” answers or impractically long execution time. The science is to improve the heuristics to minimize that problem.

Nomenclature

A host of names are used in the scientific literature to describe interrelated topics, of which automated reasoning is just one. Here’s a quick glossary:

  • logic is a formal and mechanical system for defining what is true and untrue. Examples: propositional logic or first-order logic.
  • theorem is a true statement in logic. Example: the four-color theorem.
  • proof is a valid argument in logic of a theorem. Example: Gonthier's proof of the four-color theorem
  • mechanical theorem prover is a semi-automated-reasoning tool that checks a machine-readable expression of a proof often written down by a human. These tools often require human guidance. Example: HOL-light, from Amazon researcher John Harrison
  • Formal verification is the use of theorem proving when applied to models of computer systems to prove desired properties of the systems. Example: the CompCert verified C compiler
  • Formal methods is the broadest term, meaning simply the use of logic to reason formally about models of systems. 
  • Automated reasoning focuses on the automation of formal methods. 
  • semi-automated-reasoning tool is one that requires hints from the user but still finds valid proofs in logic. 

As you can see, we have a choice of monikers when working in this space. At Amazon, we’ve chosen to use automated reasoning, as we think it best captures our ambition for automation and scale. In practice, some of our internal teams use both automated and semi-automated reasoning tools, because the scientists we've hired can often get semi-automated reasoning tools to succeed where the heuristics in fully automated reasoning might fail. For our externally facing customer features, we currently use only fully automated approaches.

Next steps

In this essay, I’ve introduced the idea of automated reasoning, with the smallest of toy programs. I haven’t described how to handle realistic programs, with heap or concurrency. In fact, there are a wide variety of automated-reasoning tools and techniques, solving problems in all kinds of different domains, some of them quite narrow. To describe them all and the many branches and sub-disciplines of the field (e.g. “SMT solving”, “higher-order logic theorem proving”, “separation logic”) would take thousands of blogs posts and books.

Automated reasoning goes back to the early inventors of computers. And logic itself (which automated reasoning attempts to solve) is thousands of years old. In order to keep this post brief, I’ll stop here and suggest further reading. Note that it’s very easy to get lost in the weeds reading depth-first into this area, and you could emerge more confused than when you started. I encourage you to use a bounded depth-first search approach, looking sequentially at a wide variety of tools and techniques in only some detail and then moving on, rather than learning only one aspect deeply.

Suggested books:

International conferences/workshops:

Tool competitions:

Some tools:

Interviews of Amazon staff about their use of automated reasoning:

AWS Lectures aimed at customers and industry:

AWS talks aimed at the automated-reasoning science community:

AWS blog posts and informational videos:

Some course notes by Amazon Scholars who are also university professors:

A fun deep track:

Some algorithms found in the automated theorem provers we use today date as far back as 1959, when Hao Wang used automated reasoning to prove the theorems from Principia Mathematica.

Research areas

Related content

US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, CA, Santa Clara
Amazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Generative AI, Large Language Model (LLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation, Responsible AI, Agent, Evaluation, and Model Adaptation. As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The Science team at AWS Bedrock builds science foundations of Bedrock, which is a fully managed service that makes high-performing foundation models available for use through a unified API. We are adamant about continuously learning state-of-the-art NLP/ML/LLM technology and exploring creative ways to delight our customers. In our daily job we are exposed to large scale NLP needs and we apply rigorous research methods to respond to them with efficient and scalable innovative solutions. At AWS Bedrock, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging AWS resources, one of the world’s leading cloud companies and you’ll be able to publish your work in top tier conferences and journals. We are building a brand new team to help develop a new NLP service for AWS. You will have the opportunity to conduct novel research and influence the science roadmap and direction of the team. Come join this greenfield opportunity! About the team AWS Bedrock Science Team is a part of AWS Utility Computing AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a Data Scientist in our team, you will collaborate directly with developers and scientists to produce modeling solutions, you will partner with software developers and data engineers to build end-to-end data pipelines and production code, and you will have exposure to senior leadership as we communicate results and provide scientific guidance to the business. You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (like ROAS, Share of Wallet) that will enable us to continually delight our customers worldwide. As a successful data scientist, you are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, can multi-task, and can credibly interface between technical teams and business stakeholders. Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economist employment at Amazon. If you are interested, please send your CV to our mailing list at: econ-internship@amazon.com.
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is looking for an Applied Scientist with strong Deep Learning and Large Language Models background, to develop critical algorithms for generating reasoning and explainability for some key algorithms driving warehouse management processes on Amazon’s Fulfillment Network. We’re working to improve operations management within 4-walls of Amazon Fulfillment Center by using the conversational capabilities of large language models on existing algorithms, and developing online learning mechanisms. We are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. Key job responsibilities Develop novel algorithms and modeling techniques to advance the state of the art with LLMs Analyze, understand, and model the operator (user/customer) behavior and the customer experience based on large scale data Build novel online & offline evaluation metrics and methodologies. Develop an understanding and domain knowledge of operational processes, system architecture and functions, and business requirements. Drive scalable and hands-off-the-wheel solutions. Create, enhance, and maintain technical documentation, and present to other scientists, engineers and business leaders. Partner with engineers to integrate prototypes into production systems. -Quickly experiment and setup experimentation framework for agile model and data analysis or A/B testing. Set high standards of coding and integrate successful models and algorithms in production systems. Use the best practices in science: data integrity, design, test, and implementation and documentation. Contribute to Amazon's Intellectual Property through patents and internal and external publications. Drive best practices on the team; mentor and guide junior members to achieve their career growth potential. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Amazon Fulfillment Technology (AFT) designs, develops and operates the end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FC). We harmonize the physical and virtual world so Amazon customers can get what they want, when they want it. The AFT Science team has expertise in computer vision, deep learning, operations research, optimization, scheduling, planning, simulation, and machine learning. We also have domain expertise in the operational processes within the FCs and their defects. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment which includes both developing novel solutions or improving existing approaches. Resulting production systems rely on a diverse set of technologies, our teams therefore invest in multiple specialties as the needs of each focus area evolves.
US, CA, San Diego
Amazon.com’s Buyer Risk Prevention's (BRP) mission is to make Amazon the safest and most trusted place worldwide to transact online. BRP safeguards every financial transaction across all Amazon sites. As such, BRP designs and builds the software systems, risk models, and operational processes that minimize risk and maximize trust in Amazon.com. The BRP organization is looking for an Applied Scientist for the Buyer Abuse team, whose mission is to combine advanced analytics with investigator insight to create mechanisms to proactively and reactively reduce the impact of abuse across Amazon. Key job responsibilities As an Applied Scientist, you will be responsible for modeling complex problems, discovering insights, and building risk algorithms that identify opportunities through statistical models, machine learning, and visualization techniques to improve operational efficiency and reduce monetary losses and improve customer trust. You will need to collaborate effectively with business and product leaders within BRP and cross-functional teams to build scalable solutions against high organizational standards. The candidate should be able to apply a breadth of tools, data sources, and ML techniques to answer a wide range of high-impact business questions and proactively present new insights in concise and effective manner. The candidate should be an effective communicator capable of independently driving issues to resolution and communicating insights to non-technical audiences. This is a high impact role with goals that directly impacts the bottom line of the business. Responsibilities: - Invent, implement, and deploy state of the art machine learning algorithms and systems - Build prototypes and explore conceptually new solutions - Define and conduct experiments to validate/reject hypotheses, and communicate insights and recommendations to Product and Tech teams - Take ownership of how ML solutions impact Amazon resources and Customer experience - Develop efficient data querying infrastructure for both offline and online use cases - Collaborate with cross-functional teams from multidisciplinary science, engineering and business backgrounds to enhance current automation processes - Learn and understand a broad range of Amazon’s data resources and know when, how, and which to use and which not to use. - Research and implement novel machine learning and statistical approaches - Maintain technical document and communicate results to diverse audiences with effective writing, visualizations, and presentations Please visit https://www.amazon.science for more information