# A gentle introduction to automated reasoning

## Meet Amazon Science’s newest research area.

This week, Amazon Science added automated reasoning to its list of research areas. We made this change because of the impact that automated reasoning is having here at Amazon. For example, Amazon Web Services’ customers now have direct access to automated-reasoning-based features such as IAM Access Analyzer, S3 Block Public Access, or VPC Reachability Analyzer. We also see Amazon development teams integrating automated-reasoning tools into their development processes, raising the bar on the security, durability, availability, and quality of our products.

The goal of this article is to provide a gentle introduction to automated reasoning for the industry professional who knows nothing about the area but is curious to learn more. All you will need to make sense of this article is to be able to read a few small C and Python code fragments. I will refer to a few specialist concepts along the way, but only with the goal of introducing them in an informal manner. I close with links to some of our favorite publicly available tools, videos, books, and articles for those looking to go more in-depth.

```bool f(unsigned int x, unsigned int y) {
return (x+y == y+x);
}```

Take a few moments to answer the question “Could f ever return false?” This is not a trick question: I’ve purposefully used a simple example to make a point.

To check the answer with exhaustive testing, we could try executing the following doubly nested test loop, which calls f on all possible pairs of values of the type unsigned int:

```#include<stdio.h>
#include<stdbool.h>
#include<limits.h>

bool f(unsigned int x, unsigned int y) {
return (x+y == y+x);
}

void main() {
for (unsigned int x=0;1;x++) {
for (unsigned int y=0;1;y++) {
if (!f(x,y)) printf("Error!\n");
if (y==UINT_MAX) break;
}
if (x==UINT_MAX) break;
}
}```

Unfortunately, even on modern hardware, this doubly nested loop will run for a very long time. I compiled it and ran it on a 2.6 GHz Intel processor for over 48 hours before giving up.

Why does testing take so long? Because UINT_MAX is typically 4,294,967,295, there are 18,446,744,065,119,617,025 separate f calls to consider. On my 2.6 GHz machine, the compiled test loop called f approximately 430 million times a second. But to test all 18 quintillion cases at this performance, we would need over 1,360 years.

When we show the above code to industry professionals, they almost immediately work out that f can't return false as long as the underlying compiler/interpreter and hardware are correct. How do they do that? They reason about it. They remember from their school days that x + y can be rewritten as y + x and conclude that f always returns true.

Re:Invent 2021 keynote address by Peter DeSantis, senior vice president for utility computing at Amazon Web Services
Skip to 15:49 for a discussion of Amazon Web Services' work on automated reasoning.

An automated reasoning tool does this work for us: it attempts to answer questions about a program (or a logic formula) by using known techniques from mathematics. In this case, the tool would use algebra to deduce that x + y == y + x can be replaced with the simple expression true.

Automated-reasoning tools can be incredibly fast, even when the domains are infinite (e.g., unbounded mathematical integers rather than finite C ints). Unfortunately, the tools may answer “Don’t know” in some instances. We'll see a famous example of that below.

The science of automated reasoning is essentially focused on driving the frequency of these “Don’t know” answers down as far as possible: the less often the tools report "Don't know" (or time out while trying), the more useful they are.

Today’s tools are able to give answers for programs and queries where yesterday’s tools could not. Tomorrow’s tools will be even more powerful. We are seeing rapid progress in this field, which is why at Amazon, we are increasingly getting so much value from it. In fact, we see automated reasoning forming its own Amazon-style virtuous cycle, where more input problems to our tools drive improvements to the tools, which encourages more use of the tools.

A slightly more complex example. Now that we know the rough outlines of what automated reasoning is, the next small example gives a slightly more realistic taste of the sort of complexity that the tools are managing for us.

```void g(int x, int y) {
if (y > 0)
while (x > y)
x = x - y;
}```

Or, alternatively, consider a similar Python program over unbounded integers:

```def g(x, y):
assert isinstance(x, int) and isinstance(y, int)
if y > 0:
while x > y:
x = x - y```

Try to answer this question: “Does g always eventually return control back to its caller?”

When we show this program to industry professionals, they usually figure out the right answer quickly. A few, especially those who are aware of results in theoretical computer science, sometimes mistakenly think that we can't answer this question, with the rationale “This is an example of the halting problem, which has been proved insoluble”. In fact, we can reason about the halting behavior for specific programs, including this one. We’ll talk more about that later.

Here’s the reasoning that most industry professionals use when looking at this problem:

1. In the case where y is not positive, execution jumps to the end of the function g. That’s the easy case.
2. If, in every iteration of the loop, the value of the variable x decreases, then eventually, the loop condition x > y will fail, and the end of g will be reached.
3. The value of x always decreases only if y is always positive, because only then does the update to x (i.e., x = x - y) decrease x. But y’s positivity is established by the conditional expression, so x always decreases.

The experienced programmer will usually worry about underflow in the x = x - y command of the C program but will then notice that x > y before the update to x and thus cannot underflow.

If you carried out the three steps above yourself, you now have a very intuitive view of the type of thinking an automated-reasoning tool is performing on our behalf when reasoning about a computer program. There are many nitty-gritty details that the tools have to face (e.g., heaps, stacks, strings, pointer arithmetic, recursion, concurrency, callbacks, etc.), but there’s also decades of research papers on techniques for handling these and other topics, along with various practical tools that put these ideas to work.

The main takeaway is that automated-reasoning tools are usually working through the three steps above on our behalf: Item 1 is reasoning about the program’s control structure. Item 2 is reasoning about what is eventually true within the program. Item 3 is reasoning about what is always true in the program.

Note that configuration artifacts such as AWS resource policies, VPC network descriptions, or even makefiles can be thought of as code. This viewpoint allows us to use the same techniques we use to reason about C or Python code to answer questions about the interpretation of configurations. It’s this insight that gives us tools like IAM Access Analyzer or VPC Reachability Analyzer.

## An end to testing?

As we saw above when looking at f and g, automated reasoning can be dramatically faster than exhaustive testing. With tools available today, we can show properties of f or g in milliseconds, rather than waiting lifetimes with exhaustive testing.

Can we throw away our testing tools now and just move to automated reasoning? Not quite. Yes, we can dramatically reduce our dependency on testing, but we will not be completely eliminating it any time soon, if ever. Consider our first example:

```bool f(unsigned int x, unsigned int y) {
return (x + y == y + x);
}```

Recall the worry that a buggy compiler or microprocessor could in fact cause an executable program constructed from this source code to return false. We might also need to worry about the language runtime. For example, the C math library or the Python garbage collector might have bugs that cause a program to misbehave.

What’s interesting about testing, and something we often forget, is that it’s doing much more than just telling us about the C or Python source code. It’s also testing the compiler, the runtime, the interpreter, the microprocessor, etc. A test failure could be rooted in any of those tools in the stack.

Automated reasoning, in contrast, is usually applied to just one layer of that stack — the source code itself, or sometimes the compiler or the microprocessor. What we find so valuable about reasoning is it allows us to clearly define both what we do know and what we do not know about the layer under inspection.

Furthermore, the models of the surrounding environment (e.g., the compiler or the procedure calling our procedure) used by the automated-reasoning tool make our assumptions very precise. Separating the layers of the computational stack helps make better use of our time, energy, and money and the capabilities of the tools today and tomorrow.

Unfortunately, we will almost always need to make assumptions about something when using automated reasoning — for example, the principles of physics that govern our silicon chips. Thus, testing will never be fully replaced. We will want to perform end-to-end testing to try and validate our assumptions as best we can.

## An impossible program

I previously mentioned that automated-reasoning tools sometimes return “Don’t know” rather than “yes” or “no”. They also sometimes run forever (or time out), thus never returning an answer. Let’s look at the famous "halting problem" program, in which we know tools cannot return “yes” or “no”.

Imagine that we have an automated-reasoning API, called terminates, that returns “yes” if a C function always terminates or “no” when the function could execute forever. As an example, we could build such an API using the tool described here (shameless self-promotion of author’s previous work). To get the idea of what a termination tool can do for us, consider two basic C functions, g (from above),

```void g(int x, int y) {
if (y > 0)
while (x > y)
x = x - y;
}```

and g2:

```void g2(int x, int y) {
while (x > y)
x = x - y;
}```

For the reasons we have already discussed, the function g always returns control back to its caller, so terminates(g) should return true. Meanwhile, terminates(g2) should return false because, for example, g2(5, 0) will never terminate.

Now comes the difficult function. Consider h:

```void h() {
if terminates(h) while(1){}
}```

Notice that it's recursive. What’s the right answer for terminates(h)? The answer cannot be "yes". It also cannot be "no". Why?

Imagine that terminates(h) were to return "yes". If you read the code of h, you’ll see that in this case, the function does not terminate because of the conditional statement in the code of h that will execute the infinite loop while(1){}. Thus, in this case, the terminates(h) answer would be wrong, because h is defined recursively, calling terminates on itself.

Similarly, if terminates(h) were to return "no", then h would in fact terminate and return control to its caller, because the if case of the conditional statement is not met, and there is no else branch. Again, the answer would be wrong. This is why the “Don’t know” answer is actually unavoidable in this case.

The program h is a variation of examples given in Turing’s famous 1936 paper on decidability and Gödel’s incompleteness theorems from 1931. These papers tell us that problems like the halting problem cannot be “solved”, if bysolved” we mean that the solution procedure itself always terminates and answers either “yes” or “no” but never “Don’t know”. But that is not the definition of “solved” that many of us have in mind. For many of us, a tool that sometimes times out or occasionally returns “Don’t know” but, when it gives an answer, always gives the right answer is good enough.

This problem is analogous to airline travel: we know it’s not 100% safe, because crashes have happened in the past, and we are sure that they will happen in the future. But when you land safely, you know it worked that time. The goal of the airline industry is to reduce failure as much as possible, even though it’s in principle unavoidable.

To put that in the context of automated reasoning: for some programs, like h, we can never improve the tool enough to replace the "Don't know" answer. But there are many other cases where today's tools answer "Don't know", but future tools may be able to answer "yes" or "no". The modern scientific challenge for automated-reasoning subject-matter experts is to get the practical tools to return “yes” or “no” as often as possible. As an example of current work, check out CMU professor and Amazon scholar Marijn Heule and his quest to solve the Collatz termination problem.

Another thing to keep in mind is that automated-reasoning tools are regularly trying to solve “intractable” problems, e.g., problems in the NP complexity class. Here, the same thinking applies that we saw in the case of the halting problem: automated-reasoning tools have powerful heuristics that often work around the intractability problem for specific cases, but those heuristics can (and sometimes do) fail, resulting in “Don’t know” answers or impractically long execution time. The science is to improve the heuristics to minimize that problem.

## Nomenclature

A host of names are used in the scientific literature to describe interrelated topics, of which automated reasoning is just one. Here’s a quick glossary:

• logic is a formal and mechanical system for defining what is true and untrue. Examples: propositional logic or first-order logic.
• theorem is a true statement in logic. Example: the four-color theorem.
• proof is a valid argument in logic of a theorem. Example: Gonthier's proof of the four-color theorem
• mechanical theorem prover is a semi-automated-reasoning tool that checks a machine-readable expression of a proof often written down by a human. These tools often require human guidance. Example: HOL-light, from Amazon researcher John Harrison
• Formal verification is the use of theorem proving when applied to models of computer systems to prove desired properties of the systems. Example: the CompCert verified C compiler
• Formal methods is the broadest term, meaning simply the use of logic to reason formally about models of systems.
• Automated reasoning focuses on the automation of formal methods.
• semi-automated-reasoning tool is one that requires hints from the user but still finds valid proofs in logic.

As you can see, we have a choice of monikers when working in this space. At Amazon, we’ve chosen to use automated reasoning, as we think it best captures our ambition for automation and scale. In practice, some of our internal teams use both automated and semi-automated reasoning tools, because the scientists we've hired can often get semi-automated reasoning tools to succeed where the heuristics in fully automated reasoning might fail. For our externally facing customer features, we currently use only fully automated approaches.

## Next steps

In this essay, I’ve introduced the idea of automated reasoning, with the smallest of toy programs. I haven’t described how to handle realistic programs, with heap or concurrency. In fact, there are a wide variety of automated-reasoning tools and techniques, solving problems in all kinds of different domains, some of them quite narrow. To describe them all and the many branches and sub-disciplines of the field (e.g. “SMT solving”, “higher-order logic theorem proving”, “separation logic”) would take thousands of blogs posts and books.

Automated reasoning goes back to the early inventors of computers. And logic itself (which automated reasoning attempts to solve) is thousands of years old. In order to keep this post brief, I’ll stop here and suggest further reading. Note that it’s very easy to get lost in the weeds reading depth-first into this area, and you could emerge more confused than when you started. I encourage you to use a bounded depth-first search approach, looking sequentially at a wide variety of tools and techniques in only some detail and then moving on, rather than learning only one aspect deeply.

### A fun deep track:

Some algorithms found in the automated theorem provers we use today date as far back as 1959, when Hao Wang used automated reasoning to prove the theorems from Principia Mathematica.

Research areas

## Related content

• August 08, 2024
Optimizations for Amazon's Graviton2 chip boost efficiency, and formal verification shortens development time.
• August 16, 2024
Uses of the functional programming language include formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.
• Amazon Research Awards team
April 26, 2024
Awardees, who represent 51 universities in 15 countries, have access to Amazon public datasets, along with AWS AI/ML services and tools.

## Work with us

US, WA, Bellevue
The Learning & Development Science team in Amazon Logistics (AMZL) builds state-of-the-art Artificial Intelligence (AI) solutions for enhancing leadership and associate development within the organization. We develop technology and mechanisms to map the learner journeys, answer real-time questions through chat assistants, and drive the right interventions at the right time. As an Applied Scientist on the team, you will play a critical role in driving the design, research, and development of these science initiatives. The ideal candidate will lead the research on learning and development trends, and develop impactful learning journey roadmap that align with organizational goals and priorities. By parsing the information of different learning courses, they will utilize the latest advances in Gen AI technology to address the personalized questions in real-time from the leadership and associates through chat assistants. Post the learning interventions, the candidate will apply causal inference or A/B experimentation frameworks to assess the associated impact of these learning programs on associate performance. As a part of this role, this candidate will collaborate with a large team of experts in the field and move the state of learning experience research forward. They should have the ability to communicate the science insights effectively to both technical and non-technical audiences. Key job responsibilities * Apply science models to extract actionable information from learning feedback * Leverage GenAI/Large Language Model (LLM) technology for scaling and automating learning experience workflows * Design and implement metrics to evaluate the effectiveness of AI models * Present deep dives and analysis to both technical and non-technical stakeholders, ensuring clarity and understanding and influencing business partners * Perform statistical analysis and statistical tests including hypothesis testing and A/B testing * Recognize and adopt best practices in reporting and analysis: data integrity, test design, analysis, validation, and documentation
US, WA, Bellevue
Are you excited about developing cutting-edge generative AI, large language models (LLMs), and foundation models? Are you looking for opportunities to build and deploy them on real-world problems at a truly vast scale with global impact? At AFT (Amazon Fulfillment Technologies) AI, a group of around 50 scientists and engineers, we are on a mission to build a new generation of dynamic end-to-end prediction models (and agents) for our warehouses based on GenAI and LLMs. These models will be able to understand and make use of petabytes of human-centered as well as process information, and learn to perceive and act to further improve our world-class customer experience – at Amazon scale. We are looking for a Sr. Applied Scientist who will become of the research leads in a team that builds next-level end-to-end process predictions and shift simulations for all systems in a full warehouse with the help of generative AI, graph neural networks, and LLMs. Together, we will be pushing beyond the state of the art in simulation and optimization of one of the most complex systems in the world: Amazon's Fulfillment Network. Key job responsibilities In this role, you will dive deep into our fulfillment network, understand complex processes, and channel your insights to build large-scale machine learning models (LLMs and Transformer-based GNNs) that will be able to understand (and, eventually, optimize) the state and future of our buildings, network, and orders. You will face a high level of research ambiguity and problems that require creative, ambitious, and inventive solutions. You will work with and in a team of applied scientists to solve cutting-edge problems going beyond the published state of the art that will drive transformative change on a truly global scale. You will identify promising research directions, define parts of our research agenda and be a mentor to members of our team and beyond. You will influence the broader Amazon science community and communicate with technical, scientific and business leaders. If you thrive in a dynamic environment and are passionate about pushing the boundaries of generative AI, LLMs, and optimization systems, we want to hear from you. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Amazon Fulfillment Technologies (AFT) powers Amazon’s global fulfillment network. We invent and deliver software, hardware, and data science solutions that orchestrate processes, robots, machines, and people. We harmonize the physical and virtual world so Amazon customers can get what they want, when they want it. The AFT AI team has deep expertise developing cutting edge AI solutions at scale and successfully applying them to business problems in the Amazon Fulfillment Network. These solutions typically utilize machine learning and computer vision techniques, applied to text, sequences of events, images or video from existing or new hardware. We influence each stage of innovation from inception to deployment, developing a research plan, creating and testing prototype solutions, and shepherding the production versions to launch.
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. Key job responsibilities The primary responsibilities of this role are to: • Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries • Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them • Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution A day in the life ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Bellevue
The Geospatial science team solves problems at the interface of ML/AI and GIS for Amazon's last mile delivery programs. We have access to Earth-scale datasets and use them to solve challenging problems that affect hundreds of thousands of transporters. We are looking for strong candidates to join the transportation science team which owns time estimation, GPS trajectory learning, and sensor fusion from phone data. You will join a team of GIS and ML domain experts and be expected to develop ML models, present research results to stakeholders, and collaborate with SDEs to implement the models in production. Key job responsibilities - Understand business problems and translate them into science problems - Develop ML models - Present research results - Write and publish papers - Write production code - Collaborate with SDEs and other scientists
IN, KA, Bengaluru
Job Description AOP(Analytics Operations and Programs) team is responsible for creating core analytics, insight generation and science capabilities for ROW Ops. We develop scalable analytics applications and research modeling to optimize operation processes.. You will work with professional Product Managers, Data Engineers, Data Scientists, Research Scientists, Applied Scientists and Business Intelligence Engineers using rigorous quantitative approaches to ensure high quality data/science products for our customers around the world. We are looking for an Applied Scientist to join our growing Science Team in Bangalore/Hyderabad. As an Applied Scientist, you are able to use a range of science methodologies to solve challenging business problems when the solution is unclear. You will be responsible for building ML models to solve complex business problems and test them in production environment. The scope of role includes defining the charter for the project and proposing solutions which align with org's priorities and production constraints but still create impact . You will achieve this by leveraging strong leadership and communication skills, data science skills and by acquiring domain knowledge pertaining to the delivery operations systems. You will provide ML thought leadership to technical and business leaders, and possess ability to think strategically about business, product, and technical challenges. You will also be expected to contribute to the science community by participating in science reviews and publishing in internal or external ML conferences. Our team solves a broad range of problems that can be scaled across ROW (Rest of the World including countries like India, Australia, Singapore, MENA and LATAM). Here is a glimpse of the problems that this team deals with on a regular basis: • Using live package and truck signals to adjust truck capacities in real-time • HOTW models for Last Mile Channel Allocation • Using LLMs to automate analytical processes and insight generation • Using ML to predict parameters which affect truck scheduling • Working with global science teams to predict Shipments Per Route for \$MM savings • Deep Learning models to classify addresses based on various attributes Key job responsibilities 1. Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes 2. Design, develop, evaluate and deploy, innovative and highly scalable ML models 3. Work closely with other science and engineering teams to drive real-time model implementations 4. Work closely with Ops/Product partners to identify problems and propose machine learning solutions 5. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance 6. Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production 7. Leading projects and mentoring other scientists, engineers in the use of ML techniques As part of our team, candidate in this role will work in close collaboration with other applied scientists and cross functional teams on high visibility projects with direct exposure to the senior leadership team on regular basis. About the team This team is responsible for applying science based algo and techniques to solve the problems in operation and supply chain. Some of these problems include Truck Scheduling, LM capacity planning, LLM and so on.
US, WA, Seattle