A gentle introduction to automated reasoning

Meet Amazon Science’s newest research area.

This week, Amazon Science added automated reasoning to its list of research areas. We made this change because of the impact that automated reasoning is having here at Amazon. For example, Amazon Web Services’ customers now have direct access to automated-reasoning-based features such as IAM Access Analyzer, S3 Block Public Access, or VPC Reachability Analyzer. We also see Amazon development teams integrating automated-reasoning tools into their development processes, raising the bar on the security, durability, availability, and quality of our products.

The goal of this article is to provide a gentle introduction to automated reasoning for the industry professional who knows nothing about the area but is curious to learn more. All you will need to make sense of this article is to be able to read a few small C and Python code fragments. I will refer to a few specialist concepts along the way, but only with the goal of introducing them in an informal manner. I close with links to some of our favorite publicly available tools, videos, books, and articles for those looking to go more in-depth.

Let’s start with a simple example. Consider the following C function:

bool f(unsigned int x, unsigned int y) {
   return (x+y == y+x);
}

Take a few moments to answer the question “Could f ever return false?” This is not a trick question: I’ve purposefully used a simple example to make a point.

To check the answer with exhaustive testing, we could try executing the following doubly nested test loop, which calls f on all possible pairs of values of the type unsigned int:

#include<stdio.h>
#include<stdbool.h>
#include<limits.h>

bool f(unsigned int x, unsigned int y) {
   return (x+y == y+x);
}

void main() {
   for (unsigned int x=0;1;x++) {
      for (unsigned int y=0;1;y++) {
         if (!f(x,y)) printf("Error!\n");
         if (y==UINT_MAX) break;
      }
      if (x==UINT_MAX) break;
   }
}

Unfortunately, even on modern hardware, this doubly nested loop will run for a very long time. I compiled it and ran it on a 2.6 GHz Intel processor for over 48 hours before giving up.

Why does testing take so long? Because UINT_MAX is typically 4,294,967,295, there are 18,446,744,065,119,617,025 separate f calls to consider. On my 2.6 GHz machine, the compiled test loop called f approximately 430 million times a second. But to test all 18 quintillion cases at this performance, we would need over 1,360 years.

When we show the above code to industry professionals, they almost immediately work out that f can't return false as long as the underlying compiler/interpreter and hardware are correct. How do they do that? They reason about it. They remember from their school days that x + y can be rewritten as y + x and conclude that f always returns true.

Re:Invent 2021 keynote address by Peter DeSantis, senior vice president for utility computing at Amazon Web Services
Skip to 15:49 for a discussion of Amazon Web Services' work on automated reasoning.

An automated reasoning tool does this work for us: it attempts to answer questions about a program (or a logic formula) by using known techniques from mathematics. In this case, the tool would use algebra to deduce that x + y == y + x can be replaced with the simple expression true.

Automated-reasoning tools can be incredibly fast, even when the domains are infinite (e.g., unbounded mathematical integers rather than finite C ints). Unfortunately, the tools may answer “Don’t know” in some instances. We'll see a famous example of that below.

The science of automated reasoning is essentially focused on driving the frequency of these “Don’t know” answers down as far as possible: the less often the tools report "Don't know" (or time out while trying), the more useful they are.

Today’s tools are able to give answers for programs and queries where yesterday’s tools could not. Tomorrow’s tools will be even more powerful. We are seeing rapid progress in this field, which is why at Amazon, we are increasingly getting so much value from it. In fact, we see automated reasoning forming its own Amazon-style virtuous cycle, where more input problems to our tools drive improvements to the tools, which encourages more use of the tools.

A slightly more complex example. Now that we know the rough outlines of what automated reasoning is, the next small example gives a slightly more realistic taste of the sort of complexity that the tools are managing for us.

void g(int x, int y) {
   if (y > 0)
      while (x > y)
         x = x - y;
}

Or, alternatively, consider a similar Python program over unbounded integers:

def g(x, y):
   assert isinstance(x, int) and isinstance(y, int)
   if y > 0:
      while x > y:
         x = x - y

Try to answer this question: “Does g always eventually return control back to its caller?”

When we show this program to industry professionals, they usually figure out the right answer quickly. A few, especially those who are aware of results in theoretical computer science, sometimes mistakenly think that we can't answer this question, with the rationale “This is an example of the halting problem, which has been proved insoluble”. In fact, we can reason about the halting behavior for specific programs, including this one. We’ll talk more about that later.

Here’s the reasoning that most industry professionals use when looking at this problem:

  1. In the case where y is not positive, execution jumps to the end of the function g. That’s the easy case.
  2. If, in every iteration of the loop, the value of the variable x decreases, then eventually, the loop condition x > y will fail, and the end of g will be reached.
  3. The value of x always decreases only if y is always positive, because only then does the update to x (i.e., x = x - y) decrease x. But y’s positivity is established by the conditional expression, so x always decreases.

The experienced programmer will usually worry about underflow in the x = x - y command of the C program but will then notice that x > y before the update to x and thus cannot underflow.

If you carried out the three steps above yourself, you now have a very intuitive view of the type of thinking an automated-reasoning tool is performing on our behalf when reasoning about a computer program. There are many nitty-gritty details that the tools have to face (e.g., heaps, stacks, strings, pointer arithmetic, recursion, concurrency, callbacks, etc.), but there’s also decades of research papers on techniques for handling these and other topics, along with various practical tools that put these ideas to work.

Policy-code.gif
Automated reasoning can be applied to both policies (top) and code (bottom). In both cases, an essential step is reasoning about what's always true.

The main takeaway is that automated-reasoning tools are usually working through the three steps above on our behalf: Item 1 is reasoning about the program’s control structure. Item 2 is reasoning about what is eventually true within the program. Item 3 is reasoning about what is always true in the program.

Note that configuration artifacts such as AWS resource policies, VPC network descriptions, or even makefiles can be thought of as code. This viewpoint allows us to use the same techniques we use to reason about C or Python code to answer questions about the interpretation of configurations. It’s this insight that gives us tools like IAM Access Analyzer or VPC Reachability Analyzer.

An end to testing?

As we saw above when looking at f and g, automated reasoning can be dramatically faster than exhaustive testing. With tools available today, we can show properties of f or g in milliseconds, rather than waiting lifetimes with exhaustive testing.

Can we throw away our testing tools now and just move to automated reasoning? Not quite. Yes, we can dramatically reduce our dependency on testing, but we will not be completely eliminating it any time soon, if ever. Consider our first example:

bool f(unsigned int x, unsigned int y) {
   return (x + y == y + x);
}

Recall the worry that a buggy compiler or microprocessor could in fact cause an executable program constructed from this source code to return false. We might also need to worry about the language runtime. For example, the C math library or the Python garbage collector might have bugs that cause a program to misbehave.

What’s interesting about testing, and something we often forget, is that it’s doing much more than just telling us about the C or Python source code. It’s also testing the compiler, the runtime, the interpreter, the microprocessor, etc. A test failure could be rooted in any of those tools in the stack.

Automated reasoning, in contrast, is usually applied to just one layer of that stack — the source code itself, or sometimes the compiler or the microprocessor. What we find so valuable about reasoning is it allows us to clearly define both what we do know and what we do not know about the layer under inspection.

Furthermore, the models of the surrounding environment (e.g., the compiler or the procedure calling our procedure) used by the automated-reasoning tool make our assumptions very precise. Separating the layers of the computational stack helps make better use of our time, energy, and money and the capabilities of the tools today and tomorrow.

Unfortunately, we will almost always need to make assumptions about something when using automated reasoning — for example, the principles of physics that govern our silicon chips. Thus, testing will never be fully replaced. We will want to perform end-to-end testing to try and validate our assumptions as best we can.

An impossible program

I previously mentioned that automated-reasoning tools sometimes return “Don’t know” rather than “yes” or “no”. They also sometimes run forever (or time out), thus never returning an answer. Let’s look at the famous "halting problem" program, in which we know tools cannot return “yes” or “no”.

Imagine that we have an automated-reasoning API, called terminates, that returns “yes” if a C function always terminates or “no” when the function could execute forever. As an example, we could build such an API using the tool described here (shameless self-promotion of author’s previous work). To get the idea of what a termination tool can do for us, consider two basic C functions, g (from above),

void g(int x, int y) {
   if (y > 0)
      while (x > y)
         x = x - y;
}

and g2:

void g2(int x, int y) {
   while (x > y)
      x = x - y;
}

For the reasons we have already discussed, the function g always returns control back to its caller, so terminates(g) should return true. Meanwhile, terminates(g2) should return false because, for example, g2(5, 0) will never terminate.

Now comes the difficult function. Consider h:

void h() {
   if terminates(h) while(1){}
}

Notice that it's recursive. What’s the right answer for terminates(h)? The answer cannot be "yes". It also cannot be "no". Why?

Imagine that terminates(h) were to return "yes". If you read the code of h, you’ll see that in this case, the function does not terminate because of the conditional statement in the code of h that will execute the infinite loop while(1){}. Thus, in this case, the terminates(h) answer would be wrong, because h is defined recursively, calling terminates on itself.

Similarly, if terminates(h) were to return "no", then h would in fact terminate and return control to its caller, because the if case of the conditional statement is not met, and there is no else branch. Again, the answer would be wrong. This is why the “Don’t know” answer is actually unavoidable in this case.

The program h is a variation of examples given in Turing’s famous 1936 paper on decidability and Gödel’s incompleteness theorems from 1931. These papers tell us that problems like the halting problem cannot be “solved”, if bysolved” we mean that the solution procedure itself always terminates and answers either “yes” or “no” but never “Don’t know”. But that is not the definition of “solved” that many of us have in mind. For many of us, a tool that sometimes times out or occasionally returns “Don’t know” but, when it gives an answer, always gives the right answer is good enough.

This problem is analogous to airline travel: we know it’s not 100% safe, because crashes have happened in the past, and we are sure that they will happen in the future. But when you land safely, you know it worked that time. The goal of the airline industry is to reduce failure as much as possible, even though it’s in principle unavoidable.

To put that in the context of automated reasoning: for some programs, like h, we can never improve the tool enough to replace the "Don't know" answer. But there are many other cases where today's tools answer "Don't know", but future tools may be able to answer "yes" or "no". The modern scientific challenge for automated-reasoning subject-matter experts is to get the practical tools to return “yes” or “no” as often as possible. As an example of current work, check out CMU professor and Amazon Scholar Marijn Heule and his quest to solve the Collatz termination problem.

Another thing to keep in mind is that automated-reasoning tools are regularly trying to solve “intractable” problems, e.g., problems in the NP complexity class. Here, the same thinking applies that we saw in the case of the halting problem: automated-reasoning tools have powerful heuristics that often work around the intractability problem for specific cases, but those heuristics can (and sometimes do) fail, resulting in “Don’t know” answers or impractically long execution time. The science is to improve the heuristics to minimize that problem.

Nomenclature

A host of names are used in the scientific literature to describe interrelated topics, of which automated reasoning is just one. Here’s a quick glossary:

  • logic is a formal and mechanical system for defining what is true and untrue. Examples: propositional logic or first-order logic.
  • theorem is a true statement in logic. Example: the four-color theorem.
  • proof is a valid argument in logic of a theorem. Example: Gonthier's proof of the four-color theorem
  • mechanical theorem prover is a semi-automated-reasoning tool that checks a machine-readable expression of a proof often written down by a human. These tools often require human guidance. Example: HOL-light, from Amazon researcher John Harrison
  • Formal verification is the use of theorem proving when applied to models of computer systems to prove desired properties of the systems. Example: the CompCert verified C compiler
  • Formal methods is the broadest term, meaning simply the use of logic to reason formally about models of systems. 
  • Automated reasoning focuses on the automation of formal methods. 
  • semi-automated-reasoning tool is one that requires hints from the user but still finds valid proofs in logic. 

As you can see, we have a choice of monikers when working in this space. At Amazon, we’ve chosen to use automated reasoning, as we think it best captures our ambition for automation and scale. In practice, some of our internal teams use both automated and semi-automated reasoning tools, because the scientists we've hired can often get semi-automated reasoning tools to succeed where the heuristics in fully automated reasoning might fail. For our externally facing customer features, we currently use only fully automated approaches.

Next steps

In this essay, I’ve introduced the idea of automated reasoning, with the smallest of toy programs. I haven’t described how to handle realistic programs, with heap or concurrency. In fact, there are a wide variety of automated-reasoning tools and techniques, solving problems in all kinds of different domains, some of them quite narrow. To describe them all and the many branches and sub-disciplines of the field (e.g. “SMT solving”, “higher-order logic theorem proving”, “separation logic”) would take thousands of blogs posts and books.

Automated reasoning goes back to the early inventors of computers. And logic itself (which automated reasoning attempts to solve) is thousands of years old. In order to keep this post brief, I’ll stop here and suggest further reading. Note that it’s very easy to get lost in the weeds reading depth-first into this area, and you could emerge more confused than when you started. I encourage you to use a bounded depth-first search approach, looking sequentially at a wide variety of tools and techniques in only some detail and then moving on, rather than learning only one aspect deeply.

Suggested books:

International conferences/workshops:

Tool competitions:

Some tools:

Interviews of Amazon staff about their use of automated reasoning:

AWS Lectures aimed at customers and industry:

AWS talks aimed at the automated-reasoning science community:

AWS blog posts and informational videos:

Some course notes by Amazon Scholars who are also university professors:

A fun deep track:

Some algorithms found in the automated theorem provers we use today date as far back as 1959, when Hao Wang used automated reasoning to prove the theorems from Principia Mathematica.

Research areas

Related content

US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, NY, New York
The Ads Measurement Science team in the Measurement, Ad Tech, and Data Science (MADS) team of Amazon Ads serves a centralized role developing solutions for a multitude of performance measurement products. We create solutions which measure the comprehensive impact of advertiser's ad spend, including sales impacts both online and offline and across timescales, and provide actionable insights that enable our advertisers to optimize their media portfolios. We also own the science solutions for AI tools that unlock new insights and automate high-effort customer workflows, such as custom query and report generation based on natural language user requests. We leverage a host of scientific technologies to accomplish this mission, including Generative AI, classical ML, Causal Inference, Natural Language Processing, and Computer Vision. As an Applied Scientist on the team, you will lead measurement solutions end-to-end from inception to production. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. Key job responsibilities - Leverage deep expertise in one or more scientific disciplines to invent solutions to ambiguous ads measurement problems - Disambiguate problems to propose clear evaluation frameworks and success criteria - Work autonomously and write high quality technical documents - Implement a significant portion of critical-path code, and partner with engineers to directly carry solutions into production - Partner closely with other scientists to deliver large, multi-faceted technical projects - Share and publish works with the broader scientific community through meetings and conferences - Communicate clearly to both technical and non-technical audiences - Contribute new ideas that shape the direction of the team's work - Mentor more junior scientists and participate in the hiring process About the team We are a team of scientists across Applied, Research, Data Science and Economist disciplines. You will work with colleagues with deep expertise in ML, NLP, CV, Gen AI, and Causal Inference with a diverse range of backgrounds. We partner closely with top-notch engineers, product managers, sales leaders, and other scientists with expertise in the ads industry and on building scalable modeling and software solutions.
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a highly innovative product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Science manager to join our Applied AI team and lead a cross-functional team of scientists and engineers who work on LLM-based solutions. On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. You will be responsible for leading a cross functional team of scientists and engineer and developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Senior Applied Science Manager who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in leading teams that build highly scalable systems and system design, have excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. Your work will directly impact our customers in the form of novel products and services.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. The Sr. Applied Scientist will be in a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in Natural Language Processing (NLP) or Computer Vision (CV) related tasks. They will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. They will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Their work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve solutions powering customer experience on Alexa+. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership.
US, VA, Arlington
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: - Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) - Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards - Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence - Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity - Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap - Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders - Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, VA, Arlington
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Redmond
Project Kuiper is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Kuiper's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, Santa Clara
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Economist III Job Location: Arlington, Virginia Job Number: AMZ9442487 Position Responsibilities: Develop advanced structural demand and econometric frameworks for products and services in Amazon Devices. Create and drive the scientific roadmap for the team, and influence partner science teams. Drive cross-functional collaboration with scientists, engineers, and business leaders to integrate economic insights into strategic decision-making processes and shape future initiatives. Communicate insights in writing and verbally, to senior leaders on Product and Finance teams within the company. Actively mentor junior scientists on advanced econometric techniques. Position Requirements: Ph.D. or foreign equivalent degree in Economics or a related field and three years of research or work experience in the job offered or a related occupation. Must have three years of research or work experience in the following skill(s): (1) working with and using econometrics (including with program evaluation, forecasting, time series, panel data, or high dimensional problems), economic theory, and quantitative methods; and (2) building statistical models using R, Python, STATA, or a related software. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $159,200/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000