AWS team wins best-paper award for work on automated reasoning

SOSP paper describes lightweight formal methods for validating new S3 data storage service.

At last week’s ACM Symposium on Operating Systems Principles (SOSP), my colleagues at Amazon Web Services and I won a best-paper award for our work using automated reasoning to validate that ShardStore — our new S3 storage node microservice — will do what it’s supposed to. 

Amazon Simple Storage Service (S3) is our fundamental object storage service — fast, cheap, and reliable. ShardStore is the service we run on our storage hardware, responsible for durably storing S3 object data. It’s a ground-up re-thinking of how we store and access data at the lowest level of S3. Because ShardStore is essential for the reliability of S3, it’s critical that it is free from bugs.

Formal verification involves mathematically specifying the important properties of our software and formally proving that our systems never violate those specifications — in other words, mathematically proving the absence of bugs. Automated reasoning is a way to find those proofs automatically.

ResetOperations_Animation.gif
An example of the ShardStore deletion procedure. Deleting the second data chunk in extent 18 (grey box) requires copying the other three chunks to different extents (extents 19 and 20) and resetting the write pointer for extent 18. The log-structured merge-tree itself is also stored on disk (in this case, in extent 17). See below for details.

Traditionally, formal verification comes with high overhead, requiring up to 10 times as much effort as building the system being verified. That’s just not practical for a system as large as S3.

For ShardStore, we instead developed a new lightweight automated-reasoning approach that gives us nearly all of the benefits of traditional formal proofs but with far lower overhead. 

Our methods found 16 bugs in the ShardStore code that would have required time-consuming and labor-intensive testing to find otherwise — if they could have been found at all. And with our method, specifying the software properties to be verified increased the ShardStore codebase by only about 14% — versus the two- to tenfold increases typical of other formal-verification approaches.

Our method also allows the specifications to be written in the same language as the code — in this case, Rust. That allows developers to write new specifications themselves whenever they extend the functionality of the code. Initially, experts in formal verification wrote the specifications for ShardStore. But as the project has progressed, software engineers have taken over that responsibility. At this point, 18% of the ShardStore specifications have been written by developers.

Reference models

One of the central concepts in our approach is that of reference models, simplified instantiations of program components that can be used to track program state under different input conditions.

For instance, storage systems often use log-structured merge-trees (LSMTs), a sophisticated data structure designed to apportion data between memory and different tiers of storage, with protocols for transferring data that take advantage of the different storage media to maximize efficiency.

The state of an LSMT, however — data locations and the record of data access patterns — can be modeled using a simple hash table. A hash table can thus serve as a reference model for the tree.

In our approach, reference models are specified using executable code. Code verification is then a matter of ensuring that the state of a component instantiated in the code matches that of the reference model, for arbitrary inputs. In practice, we found that specifying reference models required, on average, about 1% as much code as the actual component implementations.

Dependency tracking

ShardStore uses LSMTs to track and update data locations. Each object stored by ShardStore is divided into chunks, and the chunks are written to extents, which are contiguous regions of physical storage on a disk. A typical disk has tens of thousands of extents. Writes within each extent are sequential, tracked by a write pointer that defines the next valid write position.

The simplicity of this model makes data writes very efficient. But it does mean that data chunks within an extent can’t be deleted individually. Deleting a chunk from an extent requires transferring all the other chunks in the extent elsewhere and then moving the write pointer back to the beginning of the extent.

The sequence of procedures required to write a single chunk of data using ShardStore — the updating of the merge-tree, the writing of the chunk, the incrementation of the write pointer, and so on — create sets of dependencies between successive write operations. For instance, the position of the write pointer within an extent depends on the last write performed within that extent.

Dependency graph.png
The dependency graph for a sequence of S3 PUT (write) operations, together with the state of the LSM tree and the locations of the data on-disk after the operations have executed.

Our approach requires that we track dependencies across successive operations, which we do by constructing a dependency graph on the fly. ShardStore uses the dependency graph to decide how to most efficiently write data to disk while still remaining consistent when recovering from crashes. We use formal verification to check that the system always constructs these graphs correctly and so always remains consistent.

Test procedures

In our paper, we describe a range of tests, beyond crash consistency, that our method enables, such as concurrent-execution tests and tests of the serializers that map the separate elements of a data structure to sequential locations in memory or storage.

We also describe some of our optimizations to ensure that our verification is thorough. For instance, our method generates random sequences of inputs to test for specification violations. If a violation is detected, the method systematically pares down the input sequence to identify which specific input or inputs caused the error.

We also bias the random-input selector so that it selects inputs that target the same storage pathways, to maximize the likelihood of detecting an error. If each input read from or wrote to a different object, for instance, there would be no risk of encountering a data inconsistency.

We use our lightweight automated-reasoning techniques to validate every single deployment of ShardStore. Before any change reaches production, we check its behavior in hundreds of millions of scenarios by running our automated tools using AWS Batch

To support this type of scalable checking, we developed and open-sourced the new Shuttle model checker for Rust code, which we use to validate concurrency properties of ShardStore. Together, these approaches provide a continuous and automated correctness mechanism for one of S3’s most important microservices.

Research areas

Related content

US, WA, Seattle
Device Economics is looking for an economist experienced in causal inference, empirical industrial organization, forecasting, and scaled systems to work on business problems to advance critical resource allocation and pricing decisions in the Amazon Devices org. Output will be included in scaled systems to automate existing processes and to maximize business and customer objectives. Amazon Devices designs and builds Amazon first-party consumer electronics products to delight and engage customers. Amazon Devices represents a highly complex space with 100+ products across several product categories (e-readers [Kindle], tablets [Fire Tablets], smart speakers and audio assistants [Echo], wifi routers [eero], and video doorbells and cameras [Ring and Blink]), for sale both online and in offline retailers in several regions. The space becomes more complex with dynamic product offering with new product launches and new marketplace launches. The Device Economics team leads in analyzing these complex marketplace dynamics to enable science-driven decision making in the Devices org. Device Economics achieves this by combining economic expertise with macroeconomic trends, and including both in scientific applications for use by internal analysts, to provide deep understanding of customer preferences. Our team’s outputs inform product development decisions, investments in future product categories, product pricing and promotion, and bundling across complementary product lines. We have achieved substantial impact on the Devices business, and will achieve more. Device Economics seeks an economist adept in measuring customer preferences and behaviors with proven capacity to innovate, scale measurement, and drive rigor. The candidate must be passionate about advancing science for business and customer impact.
US, CA, Sunnyvale
A data scientist focused on conversational AI will be a highly autonomous contributor driving initiatives on the leading edge of Databases and Logs, Machine Learning (ML), Natural Language Processing (NLP), and Information Retrieval (IR). Leveraging expertise across techniques you will architect scalable solutions that extract insights from multimodal data and incorporate those to deliver engaging conversational experiences impacting Alexa's customer experience, design, architecture, and implementation. You will thrive in this fast-paced research environment, working with a smart and passionate team of scientists and engineers. About the team We are a part of Amazon Devices and Services organization, focusing on building Alexa. Our mission is “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing advanced systems to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Data Scientist to invent and build scalable solutions for a state-of-the-art context-aware personal assistant. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions.
GB, Cambridge
The Artificial General Intelligence team (AGI) has an exciting position for an Applied Scientist with a strong background NLP and Large Language Models to help us develop state-of-the-art conversational systems. As part of this team, you will collaborate with talented scientists and software engineers to enable conversational assistants capabilities to support the use of external tools and sources of information, and develop novel reasoning capabilities to revolutionise the user experience for millions of Alexa customers. Key job responsibilities As an Applied Scientist, you will develop innovative solutions to complex problems to extend the functionalities of conversational assistants . You will use your technical expertise to research and implement novel algorithms and modelling solutions in collaboration with other scientists and engineers. You will analyse customer behaviours and define metrics to enable the identification of actionable insights and measure improvements in customer experience. You will communicate results and insights to both technical and non-technical audiences through written reports, presentations and external publications.
US, WA, Seattle
Shape the Future of Human-Machine Interaction Are you a master of natural language processing, eager to push the boundaries of conversational AI? Amazon is seeking exceptional graduate students to join our cutting-edge research team, where they will have the opportunity to explore and push the boundaries of natural language processing (NLP), natural language understanding (NLU), and speech recognition technologies. Imagine waking up each morning, fueled by the excitement of tackling complex research problems that have the potential to reshape the world. You'll dive into production-scale data, exploring innovative approaches to natural language understanding, large language models, reinforcement learning with human feedback, conversational AI, and multimodal learning. Your days will be filled with brainstorming sessions, coding sprints, and lively discussions with brilliant minds from diverse backgrounds. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated.. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Natural Language Processing & Speech Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: NLP/NLU, LLMs, Reinforcement Learning, Human Feedback/HITL, Deep Learning, Speech Recognition, Conversational AI, Natural Language Modeling, Multimodal Learning. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Natural Language Processing and Speech Technologies. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on natural language processing, speech recognition, text-to-speech (TTS), text recognition, question answering, NLP models (e.g., LSTM, transformer-based models), signal processing, information extraction, conversational modeling, audio processing, speaker detection, large language models, multilingual modeling, and more. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in natural language processing, speech recognition, text-to-speech, question answering, and conversational modeling. - Tackle groundbreaking research problems on production-scale data, leveraging techniques such as LSTM, transformer-based models, signal processing, information extraction, audio processing, speaker detection, large language models, and multilingual modeling. - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in NLP/NLU, LLMs, reinforcement learning, human feedback/HITL, deep learning, speech recognition, conversational AI, natural language modeling, and multimodal learning. - Thrive in a fast-paced, ever-changing environment, embracing ambiguity and demonstrating strong attention to detail.
US, WA, Seattle
Unleash Your Potential at the Forefront of AI Innovation At Amazon, we're on a mission to revolutionize the way the world leverages machine learning. Amazon is seeking graduate student scientists who can turn revolutionary theory into awe-inspiring reality. As an Applied Science Intern focused on Information and Knowledge Management in Machine Learning, you will play a critical role in developing the systems and frameworks that power Amazon's machine learning capabilities. You'll be at the epicenter of this transformation, shaping the systems and frameworks that power our cutting-edge AI capabilities. Imagine a role where you develop intuitive tools and workflows that empower machine learning teams to discover, reuse, and build upon existing models and datasets, accelerating innovation across the company. You'll leverage natural language processing and information retrieval techniques to unlock insights from vast repositories of unstructured data, fueling the next generation of AI applications. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Knowledge Graphs and Extraction, Neural Networks/GNNs, Data Structures and Algorithms, Time Series, Machine Learning, Natural Language Processing, Deep Learning, Large Language Models, Graph Modeling, Knowledge Graphs and Extraction, Programming/Scripting Languages In this role, you'll collaborate with brilliant minds to develop innovative frameworks and tools that streamline the lifecycle of machine learning assets, from data to deployed models in areas at the intersection of Knowledge Management within Machine Learning. You will conduct groundbreaking research into emerging best practices and innovations in the field of ML operations, knowledge engineering, and information management, proposing novel approaches that could further enhance Amazon's machine learning capabilities. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.
US, WA, Seattle
Revolutionize the Future of AI at the Frontier of Applied Science Are you a brilliant mind seeking to push the boundaries of what's possible with artificial intelligence? Join our elite team of researchers and engineers at the forefront of applied science, where we're harnessing the latest advancements in natural language processing, deep learning, and generative AI to reshape industries and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge technologies such as large language models, transformers, and neural networks. You'll dive deep into complex challenges, fine-tuning state-of-the-art models, developing novel algorithms for named entity recognition, and exploring the vast potential of generative AI. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in statistics, recommender systems, and question answering to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated.. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for LLM & GenAI Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: LLMs, NLP/NLU, Gen AI, Transformers, Fine-Tuning, Recommendation Systems, Deep Learning, NER, Statistics, Neural Networks, Question Answering. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and GenAI. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on recommendation systems, question answering, deep learning and generative AI. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Collaborate with cross-functional teams to tackle complex challenges in natural language processing, computer vision, and generative AI. - Fine-tune state-of-the-art models and develop novel algorithms to push the boundaries of what's possible. - Explore the vast potential of generative AI and its applications across industries. - Attend cutting-edge research seminars and engage in thought-provoking discussions with industry luminaries. - Leverage state-of-the-art computing infrastructure and access to the latest research papers to fuel your innovation. - Present your groundbreaking work and insights to the team, fostering a culture of knowledge-sharing and continuous learning
US, WA, Seattle
Shape the Future of Visual Intelligence Are you passionate about pushing the boundaries of computer vision and shaping the future of visual intelligence? Join Amazon and embark on an exciting journey where you'll develop cutting-edge algorithms and models that power our groundbreaking computer vision services, including Amazon Rekognition, Amazon Go, Visual Search, and more! At Amazon, we're combining computer vision, mobile robots, advanced end-of-arm tooling, and high-degree of freedom movement to solve real-world problems at an unprecedented scale. As an intern, you'll have the opportunity to build innovative solutions where visual input helps customers shop, anticipate technological advances, work with leading-edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers worldwide. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated.. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Computer Vision Applied Science Internships in, but not limited to, Arlington, VA; Boston, MA; Cupertino, CA; Minneapolis, MN; New York, NY; Portland, OR; Santa Clara, CA; Seattle, WA; Bellevue, WA; Santa Clara, CA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: Vision - Language Models, Object Recognition/Detection, Computer Vision, Large Language Models (LLMs), Programming/Scripting Languages, Facial Recognition, Image Retrieval, Deep Learning, Ranking, Video Understanding, Robotics In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas of visual intelligence. You will tackle challenging, groundbreaking research problems to help build solutions where visual input helps the customers shop, anticipate technological advances, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Collaborate with Amazon scientists and cross-functional teams to develop and deploy cutting-edge computer vision solutions into production. - Dive into complex challenges, leveraging your expertise in areas such as Vision-Language Models, Object Recognition/Detection, Large Language Models (LLMs), Facial Recognition, Image Retrieval, Deep Learning, Ranking, Video Understanding, and Robotics. - Contribute to technical white papers, create technical roadmaps, and drive production-level projects that will support Amazon Science. - Embrace ambiguity, strong attention to detail, and a fast-paced, ever-changing environment as you own the design and development of end-to-end systems. - Engage in knowledge-sharing, mentorship, and career-advancing resources to grow as a well-rounded professional.
US, WA, Seattle
Shape the Future of Cloud Computing Are you a graduate student passionate about Automated Reasoning and its real-world applications? Join our team of innovators and embark on a journey to revolutionize cloud computing through cutting-edge automated reasoning techniques.Our tools are called billions of times daily, powering the backbone of Amazon's products and services. We are changing the way computer systems are developed and operated, raising the bar for security, durability, availability, and quality. As an Applied Science Intern, you'll have the opportunity to work alongside our brilliant scientists and contribute to groundbreaking projects. From distributed proof search and SAT/SMT solvers to program analysis, synthesis, and verification, you'll tackle complex challenges at the intersection of theory and practice, driving innovation and delivering tangible value to our customers. This internship is not just about executing tasks – you'll explore novel approaches to solving intricate automated reasoning problems. You'll dive deep into cutting-edge research, leveraging your expertise to develop innovative solutions. You'll work on deploying your solutions into production, witnessing the real-world impact of your contributions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment. Join us and be part of a team that is shaping the future of cloud computing through the power of Automated Reasoning. Apply now and unlock your potential! Amazon has positions available for Automated Reasoning Applied Science Internships in, but not limited to, Arlington, VA; Boston, MA; Cupertino, CA; Minneapolis, MN; New York, NY; Portland, OR; Santa Clara, CA; Seattle, WA; Bellevue, WA; Santa Clara, CA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: Theorem Proving, Boolean Satisfiability Solvers, Bounded Model Checking, Deductive Verification, Programming/Scripting Languages, Abstract Interpretation, Automated Reasoning, Static/Program Analysis, Program Synthesis In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Natural Language Processing and Speech Technologies. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on natural language processing, speech recognition, text-to-speech (TTS), text recognition, question answering, NLP models (e.g., LSTM, transformer-based models), signal processing, information extraction, conversational modeling, audio processing, speaker detection, large language models, multilingual modeling, and more. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. Key job responsibilities We are particularly interested in candidates with expertise in: Theorem Proving, Boolean Satisfiability Solvers, Bounded Model Checking, Deductive Verification, Programming/Scripting Languages, Abstract Interpretation, Automated Reasoning, Static/Program Analysis, Program Synthesis In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Natural Language Processing and Speech Technologies. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on natural language processing, speech recognition, text-to-speech (TTS), text recognition, question answering, NLP models (e.g., LSTM, transformer-based models), signal processing, information extraction, conversational modeling, audio processing, speaker detection, large language models, multilingual modeling, and more. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment.
US, WA, Seattle
Unleash Your Potential as an AI Trailblazer At Amazon, we're on a mission to revolutionize the way people discover and access information. Our Applied Science team is at the forefront of this endeavor, pushing the boundaries of recommender systems and information retrieval. We're seeking brilliant minds to join us as interns and contribute to the development of cutting-edge AI solutions that will shape the future of personalized experiences. As an Applied Science Intern focused on Recommender Systems and Information Retrieval in Machine Learning, you'll have the opportunity to work alongside renowned scientists and engineers, tackling complex challenges in areas such as deep learning, natural language processing, and large-scale distributed systems. Your contributions will directly impact the products and services used by millions of Amazon customers worldwide. Imagine a role where you immerse yourself in groundbreaking research, exploring novel machine learning models for product recommendations, personalized search, and information retrieval tasks. You'll leverage natural language processing and information retrieval techniques to unlock insights from vast repositories of unstructured data, fueling the next generation of AI applications. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Knowledge Graphs and Extraction, Programming/Scripting Languages, Time Series, Machine Learning, Natural Language Processing, Deep Learning,Neural Networks/GNNs, Large Language Models, Data Structures and Algorithms, Graph Modeling, Collaborative Filtering, Learning to Rank, Recommender Systems In this role, you'll collaborate with brilliant minds to develop innovative frameworks and tools that streamline the lifecycle of machine learning assets, from data to deployed models in areas at the intersection of Knowledge Management within Machine Learning. You will conduct groundbreaking research into emerging best practices and innovations in the field of ML operations, knowledge engineering, and information management, proposing novel approaches that could further enhance Amazon's machine learning capabilities. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Design, implement, and experimentally evaluate new recommendation and search algorithms using large-scale datasets - Develop scalable data processing pipelines to ingest, clean, and featurize diverse data sources for model training - Conduct research into the latest advancements in recommender systems, information retrieval, and related machine learning domains - Collaborate with cross-functional teams to integrate your innovative solutions into production systems, impacting millions of Amazon customers worldwide - Communicate your findings through captivating presentations, technical documentation, and potential publications, sharing your knowledge with the global AI community
US, WA, Seattle
Do you have a strong science background and want to help build new technologies? Do you have a physics background and want to help build and test superconducting circuits? Would you love to help develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? Join the quantum revolution at Amazon and be part of a team that's pushing the boundaries of what's possible in quantum computing and quantum technologies. As a Research Science Intern focused on Quantum Technologies, you'll have the opportunity to work alongside leading experts in the field, contributing to cutting-edge research and driving innovation in areas such as quantum algorithms, quantum simulation, superconducting qubits, quantum key distribution, and quantum optics. We are looking for builders, innovators, and entrepreneurs who want to bring their ideas to reality and improve the lives of millions of customers. Research interns at Amazon work passionately to apply cutting-edge advances in technology to solve real-world problems. As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes and work with massive datasets. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Operations Research Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with the following skills: Quantum Algorithms, Quantum Simulators, Superconducting Qubits, Quantum Key Distribution , Optics In this role, you ain hands-on experience in applying cutting-edge analytical techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights to drive operational excellence, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Conduct research and develop new quantum algorithms to solve complex computational problems - Design and implement quantum simulation models to study the behavior of quantum systems - Investigate the properties and performance of superconducting qubits, a promising platform for building large-scale quantum computers - Explore the application of quantum key distribution protocols for secure communication and data encryption, ensuring the privacy and integrity of sensitive information - Explore the application of quantum optics principles to develop novel quantum sensing and communication technologies