Better-performing “25519” elliptic-curve cryptography

Automated reasoning and optimizations specific to CPU microarchitectures improve both performance and assurance of correct implementation.

Cryptographic algorithms are essential to online security, and at Amazon Web Services (AWS), we implement cryptographic algorithms in our open-source cryptographic library, AWS LibCrypto (AWS-LC), based on code from Google’s BoringSSL project. AWS-LC offers AWS customers implementations of cryptographic algorithms that are secure and optimized for AWS hardware.

Two cryptographic algorithms that have become increasingly popular are x25519 and Ed25519, both based on an elliptic curve known as curve25519. To improve the customer experience when using these algorithms, we recently took a deeper look at their implementations in AWS-LC. Henceforth, we use x/Ed25519 as shorthand for “x25519 and Ed25519”.

Related content
Optimizations for Amazon's Graviton2 chip boost efficiency, and formal verification shortens development time.

In 2023, AWS released multiple assembly-level implementations of x/Ed25519 in AWS-LC. By combining automated reasoning and state-of-the-art optimization techniques, these implementations improved performance over the existing AWS-LC implementations and also increased assurance of their correctness.

In particular, we prove functional correctness using automated reasoning and employ optimizations targeted to specific CPU microarchitectures for the instruction set architectures x86_64 and Arm64. We also do our best to execute the algorithms in constant time, to thwart side-channel attacks that infer secret information from the durations of computations.

In this post, we explore different aspects of our work, including the process for proving correctness via automated reasoning, microarchitecture (μarch) optimization techniques, the special considerations for constant-time code, and the quantification of performance gains.

Elliptic-curve cryptography

Elliptic-curve cryptography is a method for doing public-key cryptography, which uses a pair of keys, one public and one private. One of the best-known public-key cryptographic schemes is RSA, in which the public key is a very large integer, and the corresponding private key is prime factors of the integer. The RSA scheme can be used both to encrypt/decrypt data and also to sign/verify data. (Members of our team recently blogged on Amazon Science about how we used automated reasoning to make the RSA implementation on Amazon’s Graviton2 chips faster and easier to deploy.)

Elliptic curve.png
Example of an elliptic curve.

Elliptic curves offer an alternate way to mathematically relate public and private keys; sometimes, this means we can implement schemes more efficiently. While the mathematical theory of elliptic curves is both broad and deep, the elliptic curves used in cryptography are typically defined by an equation of the form y2 = x3 + ax2 + bx + c, where a, b, and c are constants. You can plot the points that satisfy the equation on a 2-D graph.

An elliptic curve has the property that a line that intersects it at two points intersects it at at most one other point. This property is used to define operations on the curve. For instance, the addition of two points on the curve can be defined not, indeed, as the third point on the curve collinear with the first two but as that third point’s reflection around the axis of symmetry.

Elliptic-curve addition.gif
Addition on an elliptic curve.

Now, if the coordinates of points on the curve are taken modulo some integer, the curve becomes a scatter of points in the plane, but a scatter that still exhibits symmetry, so the addition operation remains well defined. Curve25519 is named after a large prime integer — specifically, 2255 – 19. The set of numbers modulo the curve25519 prime, together with basic arithmetic operations such as multiplication of two numbers modulo the same prime, define the field in which our elliptic-curve operations take place.

Successive execution of elliptic-curve additions is called scalar multiplication, where the scalar is the number of additions. With the elliptic curves used in cryptography, if you know only the result of the scalar multiplication, it is intractable to recover the scalar, if the scalar is sufficiently large. The result of the scalar multiplication becomes the basis of a public key, the original scalar the basis of a private key.

The x25519 and Ed25519 cryptographic algorithms

The x/Ed25519 algorithms have distinct purposes. The x25519 algorithm is a key agreement algorithm, used to securely establish a shared secret between two peers; Ed25519 is a digital-signature algorithm, used to sign and verify data.

The x/Ed25519 algorithms have been adopted in transport layer protocols such as TLS and SSH. In 2023, NIST announced an update to its FIPS185-6 Digital Signature Standard that included the addition of Ed25519. The x25519 algorithm also plays a role in post-quantum safe cryptographic solutions, having been included as the classical algorithm in the TLS 1.3 and SSH hybrid scheme specifications for post-quantum key agreement.

Microarchitecture optimizations

When we write assembly code for a specific CPU architecture, we use its instruction set architecture (ISA). The ISA defines resources such as the available assembly instructions, their semantics, and the CPU registers accessible to the programmer. Importantly, the ISA defines the CPU in abstract terms; it doesn’t specify how the CPU should be realized in hardware.

Related content
Prize honors Amazon senior principal scientist and Penn professor for a protocol that achieves a theoretical limit on information-theoretic secure multiparty computation.

The detailed implementation of the CPU is called the microarchitecture, and every μarch has unique characteristics. For example, while the AWS Graviton 2 CPU and AWS Graviton 3 CPU are both based on the Arm64 ISA, their μarch implementations are different. We hypothesized that if we could take advantage of the μarch differences, we could create x/Ed25519 implementations that were even faster than the existing implementations in AWS-LC. It turns out that this intuition was correct.

Let us look closer at how we took advantage of μarch differences. Different arithmetic operations can be defined on curve25519, and different combinations of those operations are used to construct the x/Ed25519 algorithms. Logically, the necessary arithmetic operations can be considered at three levels:

  1. Field operations: Operations within the field defined by the curve25519 prime 2255 – 19.
  2. Elliptic-curve group operations: Operations that apply to elements of the curve itself, such as the addition of two points, P1 and P2.
  3. Top-level operations: Operations implemented by iterative application of elliptic-curve group operations, such as scalar multiplication.
Levels of operations.png
Examples of operations at different levels. Arrows indicate dependency relationships between levels.

Each level has its own avenues for optimization. We focused our μarch-dependent optimizations on the level-one operations, while for levels two and three our implementations employ known state-of-the-art techniques and are largely the same for different μarchs. Below, we give a summary of the different μarch-dependent choices we made in our implementations of x/Ed25519.

  • For modern x86_64 μarchs, we use the instructions MULX, ADCX, and ADOX, which are variations of the standard assembly instructions MUL (multiply) and ADC (add with carry) found in the instruction set extensions commonly called BMI and ADX. These instructions are special because, when used in combination, they can maintain two carry chains in parallel, which has been observed to boost performance up to 30%. For older x86_64 μarchs that don’t support the instruction set extensions, we use more traditional single-carry chains.
  • For Arm64 μarchs, such as AWS Graviton 3 with improved integer multipliers, we use relatively straightforward schoolbook multiplication, which turns out to give good performance. AWS Graviton 2 has smaller multipliers. For this Arm64 μarch, we use subtractive forms of Karatsuba multiplication, which breaks down multiplications recursively. The reason is that, on these μarchs, 64x64-bit multiplication producing a 128-bit result has substantially lower throughput relative to other operations, making the number size at which Karatsuba optimization becomes worthwhile much smaller.

We also optimized level-one operations that are the same for all μarchs. One example concerns the use of the binary greatest-common-divisor (GCD) algorithm to compute modular inverses. We use the “divstep” form of binary GCD, which lends itself to efficient implementation, but it also complicates the second goal we had: formally proving correctness.

Related content
Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

Binary GCD is an iterative algorithm with two arguments, whose initial values are the numbers whose greatest common divisor we seek. The arguments are successively reduced in a well-defined way, until the value of one of them reaches zero. With two n-bit numbers, the standard implementation of the algorithm removes at least one bit total per iteration, so 2n iterations suffice.

With divstep, however, determining the number of iterations needed to get down to the base case seems analytically difficult. The most tractable proof of the bound uses an elaborate inductive argument based on an intricate “stable hull” provably overapproximating the region in two-dimensional space containing the points corresponding to the argument values. Daniel Bernstein, one of the inventors of x25519 and Ed25519, proved the formal correctness of the bound using HOL Light, a proof assistant that one of us (John) created. (For more on HOL Light, see, again, our earlier RSA post.)

Performance results

In this section, we will highlight improvements in performance. For the sake of simplicity, we focus on only three μarchs: AWS Graviton 3, AWS Graviton 2, and Intel Ice Lake. To gather performance data, we used EC2 instances with matching CPU μarchs — c6g.4xlarge, c7g.4xlarge, and c6i.4xlarge, respectively; to measure each algorithm, we used the AWS-LC speed tool.

In the graphs below, all units are operations per second (ops/sec). The “before” columns represent the performance of the existing x/Ed25519 implementations in AWS-LC. The “after” columns represent the performance of the new implementations.

Signing new.png
For the Ed25519 signing operation, the number of operations per second, over the three μarchs, is, on average, 108% higher with the new implementations.
Verification.png
For the Ed25519 verification operation, we increased the number of operations per second, over the three μarchs, by an average of 37%.

We observed the biggest improvement for the x25519 algorithm. Note that an x25519 operation in the graph below includes the two major operations needed for an x25519 key exchange agreement: base-point multiplication and variable-point multiplication.

Ops:sec new.png
With x25519, the new implementation increases the number of operations per second, over the three μarchs, by an average of 113%.

On average, over the AWS Graviton 2, AWS Graviton 3, and Intel Ice Lake microarchitectures, we saw an 86% improvement in performance.

Proving correctness

We develop the core parts of the x/Ed25519 implementations in AWS-LC in s2n-bignum, an AWS-owned library of integer arithmetic routines designed for cryptographic applications. The s2n-bignum library is also where we prove the functional correctness of the implementations using HOL Light. HOL Light is an interactive theorem prover for higher-order logic (hence HOL), and it is designed to have a particularly simple (hence light) “correct by construction” approach to proof. This simplicity offers assurance that anything “proved” has really been proved rigorously and is not the artifact of a prover bug.

Related content
New approach to homomorphic encryption speeds up the training of encrypted machine learning models sixfold.

We follow the same principle of simplicity when we write our implementations in assembly. Writing in assembly is more challenging, but it offers a distinct advantage when proving correctness: our proofs become independent of any compiler.

The diagram below shows the process we use to prove x/Ed25519 correct. The process requires two different sets of inputs: first is the algorithm implementation we’re evaluating; second is a proof script that models both the correct mathematical behavior of the algorithm and the behavior of the CPU. The proof is a sequence of functions specific to HOL Light that represent proof strategies and the order in which they should be applied. Writing the proof is not automated and requires developer ingenuity.

From the algorithm implementation and the proof script, HOL Light either determines that the implementation is correct or, if unable to do so, fails. HOL Light views the algorithm implementation as a sequence of machine code bytes. Using the supplied specification of CPU instructions and the developer-written strategies in the proof script, HOL Light reasons about the correctness of the execution.

CI integration.png
CI integration provides assurance that no changes to the algorithm implementation code can be committed to s2n-bignum’s code repository without successfully passing a formal proof of correctness.

This part of the correctness proof is automated, and we even implement it inside s2n-bignum’s continuous-integration (CI) workflow. The workflow covered in the CI is highlighted by the red dotted line in the diagram below. CI integration provides assurance that no changes to the algorithm implementation code can be committed to s2n-bignum’s code repository without successfully passing a formal proof of correctness.

The CPU instruction specification is one of the most critical ingredients in our correctness proofs. For the proofs to be true in practice, the specification must capture the real-world semantics of each instruction. To improve assurance on this point, we apply randomized testing against the instruction specifications on real hardware, “fuzzing out” inaccuracies.

Constant time

We designed our implementations and optimizations with security as priority number one. Cryptographic code must strive to be free of side channels that could allow an unauthorized user to extract private information. For example, if the execution time of cryptographic code depends on secret values, then it might be possible to infer those values from execution times. Similarly, if CPU cache behavior depends on secret values, an unauthorized user who shares the cache could infer those values.

Our implementations of x/Ed25519 are designed with constant time in mind. They perform exactly the same sequence of basic CPU instructions regardless of the input values, and they avoid any CPU instructions that might have data-dependent timing.

Using x/Ed25519 optimizations in applications

AWS uses AWS-LC extensively to power cryptographic operations in a diverse set of AWS service subsystems. You can take advantage of the x/Ed25519 optimizations presented in this blog by using AWS-LC in your application(s). Visit AWS-LC on Github to learn more about how you can integrate AWS-LC into your application.

To allow easier integration for developers, AWS has created bindings from AWS-LC to multiple programming languages. These bindings expose cryptographic functionality from AWS-LC through well-defined APIs, removing the need to reimplement cryptographic algorithms in higher-level programming languages. At present, AWS has open-sourced bindings for Java and Rust — the Amazon Corretto Cryptographic Provider (ACCP) for Java, and AWS-LC for Rust (aws-lc-rs). Furthermore, we have contributed patches allowing CPython to build against AWS-LC and use it for all cryptography in the Python standard library. Below we highlight some of the open-source projects that are already using AWS-LC to meet their cryptographic needs.

Open-source projects.png
Open-source projects using AWS-LC to meet their cryptographic needs.

We are not done yet. We continue our efforts to improve x/Ed25519 performance as well as pursuing optimizations for other cryptographic algorithms supported by s2n-bignum and AWS-LC. Follow the s2n-bignum and AWS-LC repositories for updates.

Research areas

Related content

US, WA, Seattle
The Automated Reasoning Group in the AWS Neuron Compiler team is looking for an Applied Scientist to work on the intersection of Artificial Intelligence and program analysis to raise the code quality bar in our state-of-the-art deep learning compiler stack. This stack is designed to optimize application models across diverse domains, including Large Language and Vision, originating from leading frameworks such as PyTorch, TensorFlow, and JAX. Your role will involve working closely with our custom-built Machine Learning accelerators, Inferentia and Trainium, which represent the forefront of AWS innovation for advanced ML capabilities, and is the underpinning of Generative AI. In this role as an Applied Scientist, you'll be instrumental in designing, developing, and deploying analyzers for ML compiler stages and compiler IRs. You will architect and implement business-critical tooling, publish cutting-edge research, and mentor a brilliant team of experienced scientists and engineers. You will need to be technically capable, credible, and curious in your own right as a trusted AWS Neuron engineer, innovating on behalf of our customers. Your responsibilities will involve tackling crucial challenges alongside a talented engineering team, contributing to leading-edge design and research in compiler technology and deep-learning systems software. Strong experience in programming languages, compilers, program analyzers, and program synthesis engines will be a benefit in this role. A background in machine learning and AI accelerators is preferred but not required. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities • Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges • Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production • Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization • Provide customer and market feedback to product and engineering teams to help define product direction
CA, BC, Vancouver
Are you ready to be at the forefront of Agentic AI innovation and redefine the future of communication? Join our dynamic Alexa Connections team as a Sr. Applied Scientist, and lead futuristic initiatives that will shape the next generation of intelligent, conversational experiences. In this role, you'll work at the intersection of disruptive AI technologies and real-world impact, making a difference for millions of customers. You'll collaborate with a team of passionate professionals who are as excited about innovation as you are, and together, you'll push the boundaries of what's possible with Alexa+. As a Sr. Applied Scientist, you'll drive the development of novel algorithms and modeling techniques to advance the state of the art with LLMs and real-time Agentic AI solutions that power our next-generation communication features. You'll work closely with cross-functional teams, including product management, engineering, design, and data, to design and deliver innovative solutions that leverage these AI technologies to enable seamless, intelligent communication experiences. You'll also lead the integration of these advanced AI systems into Alexa's core capabilities, ensuring a seamless and intuitive user experience. Key job responsibilities - Develop new inference and training techniques to improve the performance of Large Language Models for Smart Home control and Automation - Develop robust techniques for synthetic data generation for training large models and maintaining model generalization - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environment, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues - Mentoring junior scientists to improve their skills, knowledge, and their ability to get things done About the team Alexa Connections aspires to make Alexa+ the world’s most trusted connection assistant for getting things done and creating moments of joy. Our vision emphasizes a) Trust as our foundation for becoming a daily habit, knowing our customers have plentiful choices, b) Completion of end-to-end customer journeys, beyond shipping features, and c) Joy through personalized, proactive experiences, that create a memory.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for a Data Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and big-data challenges, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities - Design and deliver big data architectures for experimental and production consumption between scientists and software engineering. - Develop the end-to-end automation of data pipelines, making datasets readily-consumable by science and engineering teams. - Create automated alarming and dashboards to monitor data integrity. - Create and manage capacity and performance plans. - Act as the subject matter expert for the data structure and usage.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Lead design and implement control algorithms for robot locomotion - Develop behaviors that enable the robot to traverse diverse terrain - Develop methods that seamlessly integrate stability, locomotion, and manipulation tasks - Create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
US, WA, Seattle
AWS Training & Certification is seeking an exceptional Senior Applied Scientist to provide strategic scientific leadership for our industry-leading learning technology initiatives. We have an ambitious vision to revolutionize training experiences through multimodal LLMs, agentic AI systems, and complex multi-lingual GenAI solutions, leveraging Amazon's unique expertise and scale. You will drive the scientific agenda for our team, identify and frame ill-defined customer problems, and invent new methodologies to deliver breakthrough learning experiences that enable customers to solve challenging business problems through workforce upskilling. AWS Global Services includes experts from across AWS who help our customers design, build, operate, and secure their cloud environments. Customers innovate with AWS Professional Services, upskill with AWS Training and Certification, optimize with AWS Support and Managed Services, and meet objectives with AWS Security Assurance Services. Our expertise and emerging technologies include AWS Partners, AWS Sovereign Cloud, AWS International Product, and the Generative AI Innovation Center. You’ll join a diverse team of technical experts in dozens of countries who help customers achieve more with the AWS cloud. Key job responsibilities The Senior Applied Scientist will provide strategic scientific leadership for AI-powered learning and certification systems across our product portfolio. This role requires deep expertise in research areas strategic to our organization and the ability to identify and devise new research solutions for ill-defined problems at the product level. You will drive our team's scientific agenda, mentor junior scientists, and ensure our innovations meet the highest standards of scientific rigor while delivering measurable customer impact. You should be comfortable articulating key scientific challenges for future customer needs and presenting interventions to address complex, multi-faceted problems in educational AI. • Drive strategic scientific direction for complex multi-lingual GenAI solutions, LLM-powered learning experiences, and agentic AI systems at the product level • Identify and frame customer problems, devising new research methodologies and paradigms to address educational AI challenges • Design and oversee AI systems for personalized learning recommendations, content discovery, and adaptive assessment technologies • Establish and maintain core reusable scientific components including advanced evaluation frameworks, prompt optimization strategies, and knowledge distillation techniques • Mentor and provide technical leadership to 6+ Applied Scientists, ensuring research methodology excellence and publication-quality standards • Role model the publishing of research results at top-tier peer-reviewed internal and external venues, driving the team's publication strategy About the team The AWS Training and Certifications team is dedicated to cultivating millions of highly skilled cloud professionals by delivering industry-leading training products and experiences, and certifications. Starting with Skill Builder – a comprehensive hub for all AWS skill acquisition – the team is dedicated to offering deeply personalized experiences for individuals, and highly customizable experiences for organizations across modalities, assessments and certificates. Customers can access training content – both free and paid – from a wide variety of training products such as digital courses, learning plans, instructor led classroom training, simulated learning environments, game based learning formats, hands-on labs, and social cohorts. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!