Better-performing “25519” elliptic-curve cryptography

Automated reasoning and optimizations specific to CPU microarchitectures improve both performance and assurance of correct implementation.

Cryptographic algorithms are essential to online security, and at Amazon Web Services (AWS), we implement cryptographic algorithms in our open-source cryptographic library, AWS LibCrypto (AWS-LC), based on code from Google’s BoringSSL project. AWS-LC offers AWS customers implementations of cryptographic algorithms that are secure and optimized for AWS hardware.

Two cryptographic algorithms that have become increasingly popular are x25519 and Ed25519, both based on an elliptic curve known as curve25519. To improve the customer experience when using these algorithms, we recently took a deeper look at their implementations in AWS-LC. Henceforth, we use x/Ed25519 as shorthand for “x25519 and Ed25519”.

Related content
Optimizations for Amazon's Graviton2 chip boost efficiency, and formal verification shortens development time.

In 2023, AWS released multiple assembly-level implementations of x/Ed25519 in AWS-LC. By combining automated reasoning and state-of-the-art optimization techniques, these implementations improved performance over the existing AWS-LC implementations and also increased assurance of their correctness.

In particular, we prove functional correctness using automated reasoning and employ optimizations targeted to specific CPU microarchitectures for the instruction set architectures x86_64 and Arm64. We also do our best to execute the algorithms in constant time, to thwart side-channel attacks that infer secret information from the durations of computations.

In this post, we explore different aspects of our work, including the process for proving correctness via automated reasoning, microarchitecture (μarch) optimization techniques, the special considerations for constant-time code, and the quantification of performance gains.

Elliptic-curve cryptography

Elliptic-curve cryptography is a method for doing public-key cryptography, which uses a pair of keys, one public and one private. One of the best-known public-key cryptographic schemes is RSA, in which the public key is a very large integer, and the corresponding private key is prime factors of the integer. The RSA scheme can be used both to encrypt/decrypt data and also to sign/verify data. (Members of our team recently blogged on Amazon Science about how we used automated reasoning to make the RSA implementation on Amazon’s Graviton2 chips faster and easier to deploy.)

Elliptic curve.png
Example of an elliptic curve.

Elliptic curves offer an alternate way to mathematically relate public and private keys; sometimes, this means we can implement schemes more efficiently. While the mathematical theory of elliptic curves is both broad and deep, the elliptic curves used in cryptography are typically defined by an equation of the form y2 = x3 + ax2 + bx + c, where a, b, and c are constants. You can plot the points that satisfy the equation on a 2-D graph.

An elliptic curve has the property that a line that intersects it at two points intersects it at at most one other point. This property is used to define operations on the curve. For instance, the addition of two points on the curve can be defined not, indeed, as the third point on the curve collinear with the first two but as that third point’s reflection around the axis of symmetry.

Elliptic-curve addition.gif
Addition on an elliptic curve.

Now, if the coordinates of points on the curve are taken modulo some integer, the curve becomes a scatter of points in the plane, but a scatter that still exhibits symmetry, so the addition operation remains well defined. Curve25519 is named after a large prime integer — specifically, 2255 – 19. The set of numbers modulo the curve25519 prime, together with basic arithmetic operations such as multiplication of two numbers modulo the same prime, define the field in which our elliptic-curve operations take place.

Successive execution of elliptic-curve additions is called scalar multiplication, where the scalar is the number of additions. With the elliptic curves used in cryptography, if you know only the result of the scalar multiplication, it is intractable to recover the scalar, if the scalar is sufficiently large. The result of the scalar multiplication becomes the basis of a public key, the original scalar the basis of a private key.

The x25519 and Ed25519 cryptographic algorithms

The x/Ed25519 algorithms have distinct purposes. The x25519 algorithm is a key agreement algorithm, used to securely establish a shared secret between two peers; Ed25519 is a digital-signature algorithm, used to sign and verify data.

The x/Ed25519 algorithms have been adopted in transport layer protocols such as TLS and SSH. In 2023, NIST announced an update to its FIPS185-6 Digital Signature Standard that included the addition of Ed25519. The x25519 algorithm also plays a role in post-quantum safe cryptographic solutions, having been included as the classical algorithm in the TLS 1.3 and SSH hybrid scheme specifications for post-quantum key agreement.

Microarchitecture optimizations

When we write assembly code for a specific CPU architecture, we use its instruction set architecture (ISA). The ISA defines resources such as the available assembly instructions, their semantics, and the CPU registers accessible to the programmer. Importantly, the ISA defines the CPU in abstract terms; it doesn’t specify how the CPU should be realized in hardware.

Related content
Prize honors Amazon senior principal scientist and Penn professor for a protocol that achieves a theoretical limit on information-theoretic secure multiparty computation.

The detailed implementation of the CPU is called the microarchitecture, and every μarch has unique characteristics. For example, while the AWS Graviton 2 CPU and AWS Graviton 3 CPU are both based on the Arm64 ISA, their μarch implementations are different. We hypothesized that if we could take advantage of the μarch differences, we could create x/Ed25519 implementations that were even faster than the existing implementations in AWS-LC. It turns out that this intuition was correct.

Let us look closer at how we took advantage of μarch differences. Different arithmetic operations can be defined on curve25519, and different combinations of those operations are used to construct the x/Ed25519 algorithms. Logically, the necessary arithmetic operations can be considered at three levels:

  1. Field operations: Operations within the field defined by the curve25519 prime 2255 – 19.
  2. Elliptic-curve group operations: Operations that apply to elements of the curve itself, such as the addition of two points, P1 and P2.
  3. Top-level operations: Operations implemented by iterative application of elliptic-curve group operations, such as scalar multiplication.
Levels of operations.png
Examples of operations at different levels. Arrows indicate dependency relationships between levels.

Each level has its own avenues for optimization. We focused our μarch-dependent optimizations on the level-one operations, while for levels two and three our implementations employ known state-of-the-art techniques and are largely the same for different μarchs. Below, we give a summary of the different μarch-dependent choices we made in our implementations of x/Ed25519.

  • For modern x86_64 μarchs, we use the instructions MULX, ADCX, and ADOX, which are variations of the standard assembly instructions MUL (multiply) and ADC (add with carry) found in the instruction set extensions commonly called BMI and ADX. These instructions are special because, when used in combination, they can maintain two carry chains in parallel, which has been observed to boost performance up to 30%. For older x86_64 μarchs that don’t support the instruction set extensions, we use more traditional single-carry chains.
  • For Arm64 μarchs, such as AWS Graviton 3 with improved integer multipliers, we use relatively straightforward schoolbook multiplication, which turns out to give good performance. AWS Graviton 2 has smaller multipliers. For this Arm64 μarch, we use subtractive forms of Karatsuba multiplication, which breaks down multiplications recursively. The reason is that, on these μarchs, 64x64-bit multiplication producing a 128-bit result has substantially lower throughput relative to other operations, making the number size at which Karatsuba optimization becomes worthwhile much smaller.

We also optimized level-one operations that are the same for all μarchs. One example concerns the use of the binary greatest-common-divisor (GCD) algorithm to compute modular inverses. We use the “divstep” form of binary GCD, which lends itself to efficient implementation, but it also complicates the second goal we had: formally proving correctness.

Related content
Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

Binary GCD is an iterative algorithm with two arguments, whose initial values are the numbers whose greatest common divisor we seek. The arguments are successively reduced in a well-defined way, until the value of one of them reaches zero. With two n-bit numbers, the standard implementation of the algorithm removes at least one bit total per iteration, so 2n iterations suffice.

With divstep, however, determining the number of iterations needed to get down to the base case seems analytically difficult. The most tractable proof of the bound uses an elaborate inductive argument based on an intricate “stable hull” provably overapproximating the region in two-dimensional space containing the points corresponding to the argument values. Daniel Bernstein, one of the inventors of x25519 and Ed25519, proved the formal correctness of the bound using HOL Light, a proof assistant that one of us (John) created. (For more on HOL Light, see, again, our earlier RSA post.)

Performance results

In this section, we will highlight improvements in performance. For the sake of simplicity, we focus on only three μarchs: AWS Graviton 3, AWS Graviton 2, and Intel Ice Lake. To gather performance data, we used EC2 instances with matching CPU μarchs — c6g.4xlarge, c7g.4xlarge, and c6i.4xlarge, respectively; to measure each algorithm, we used the AWS-LC speed tool.

In the graphs below, all units are operations per second (ops/sec). The “before” columns represent the performance of the existing x/Ed25519 implementations in AWS-LC. The “after” columns represent the performance of the new implementations.

Signing new.png
For the Ed25519 signing operation, the number of operations per second, over the three μarchs, is, on average, 108% higher with the new implementations.
Verification.png
For the Ed25519 verification operation, we increased the number of operations per second, over the three μarchs, by an average of 37%.

We observed the biggest improvement for the x25519 algorithm. Note that an x25519 operation in the graph below includes the two major operations needed for an x25519 key exchange agreement: base-point multiplication and variable-point multiplication.

Ops:sec new.png
With x25519, the new implementation increases the number of operations per second, over the three μarchs, by an average of 113%.

On average, over the AWS Graviton 2, AWS Graviton 3, and Intel Ice Lake microarchitectures, we saw an 86% improvement in performance.

Proving correctness

We develop the core parts of the x/Ed25519 implementations in AWS-LC in s2n-bignum, an AWS-owned library of integer arithmetic routines designed for cryptographic applications. The s2n-bignum library is also where we prove the functional correctness of the implementations using HOL Light. HOL Light is an interactive theorem prover for higher-order logic (hence HOL), and it is designed to have a particularly simple (hence light) “correct by construction” approach to proof. This simplicity offers assurance that anything “proved” has really been proved rigorously and is not the artifact of a prover bug.

Related content
New approach to homomorphic encryption speeds up the training of encrypted machine learning models sixfold.

We follow the same principle of simplicity when we write our implementations in assembly. Writing in assembly is more challenging, but it offers a distinct advantage when proving correctness: our proofs become independent of any compiler.

The diagram below shows the process we use to prove x/Ed25519 correct. The process requires two different sets of inputs: first is the algorithm implementation we’re evaluating; second is a proof script that models both the correct mathematical behavior of the algorithm and the behavior of the CPU. The proof is a sequence of functions specific to HOL Light that represent proof strategies and the order in which they should be applied. Writing the proof is not automated and requires developer ingenuity.

From the algorithm implementation and the proof script, HOL Light either determines that the implementation is correct or, if unable to do so, fails. HOL Light views the algorithm implementation as a sequence of machine code bytes. Using the supplied specification of CPU instructions and the developer-written strategies in the proof script, HOL Light reasons about the correctness of the execution.

CI integration.png
CI integration provides assurance that no changes to the algorithm implementation code can be committed to s2n-bignum’s code repository without successfully passing a formal proof of correctness.

This part of the correctness proof is automated, and we even implement it inside s2n-bignum’s continuous-integration (CI) workflow. The workflow covered in the CI is highlighted by the red dotted line in the diagram below. CI integration provides assurance that no changes to the algorithm implementation code can be committed to s2n-bignum’s code repository without successfully passing a formal proof of correctness.

The CPU instruction specification is one of the most critical ingredients in our correctness proofs. For the proofs to be true in practice, the specification must capture the real-world semantics of each instruction. To improve assurance on this point, we apply randomized testing against the instruction specifications on real hardware, “fuzzing out” inaccuracies.

Constant time

We designed our implementations and optimizations with security as priority number one. Cryptographic code must strive to be free of side channels that could allow an unauthorized user to extract private information. For example, if the execution time of cryptographic code depends on secret values, then it might be possible to infer those values from execution times. Similarly, if CPU cache behavior depends on secret values, an unauthorized user who shares the cache could infer those values.

Our implementations of x/Ed25519 are designed with constant time in mind. They perform exactly the same sequence of basic CPU instructions regardless of the input values, and they avoid any CPU instructions that might have data-dependent timing.

Using x/Ed25519 optimizations in applications

AWS uses AWS-LC extensively to power cryptographic operations in a diverse set of AWS service subsystems. You can take advantage of the x/Ed25519 optimizations presented in this blog by using AWS-LC in your application(s). Visit AWS-LC on Github to learn more about how you can integrate AWS-LC into your application.

To allow easier integration for developers, AWS has created bindings from AWS-LC to multiple programming languages. These bindings expose cryptographic functionality from AWS-LC through well-defined APIs, removing the need to reimplement cryptographic algorithms in higher-level programming languages. At present, AWS has open-sourced bindings for Java and Rust — the Amazon Corretto Cryptographic Provider (ACCP) for Java, and AWS-LC for Rust (aws-lc-rs). Furthermore, we have contributed patches allowing CPython to build against AWS-LC and use it for all cryptography in the Python standard library. Below we highlight some of the open-source projects that are already using AWS-LC to meet their cryptographic needs.

Open-source projects.png
Open-source projects using AWS-LC to meet their cryptographic needs.

We are not done yet. We continue our efforts to improve x/Ed25519 performance as well as pursuing optimizations for other cryptographic algorithms supported by s2n-bignum and AWS-LC. Follow the s2n-bignum and AWS-LC repositories for updates.

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.