# Building machine learning models with encrypted data

## New approach to homomorphic encryption speeds up the training of encrypted machine learning models sixfold.

The prevalence and success of machine learning have given rise to services that enable customers to train machine learning models in the cloud. In one scenario, a customer would upload training data to a cloud-based service and receive a trained model in return.

Homomorphic encryption (HE), a technology that allows computation on encrypted data, would give this procedure an extra layer of security. With HE, a customer would upload encrypted training data, and the service would use the encrypted data to directly produce an encrypted machine learning model, which only the customer could then decrypt.

At the 2020 Workshop on Encrypted Computing and Applied Homomorphic Cryptography, we presented a paper exploring the application of homomorphic encryption to logistic regression, a statistical model used for myriad machine learning applications, from genomics to tax compliance. Our paper shows how to train logistic-regression models on encrypted data six times as fast as prior work.

## Homomorphic encryption

Homomorphic encryption provides an application programming interface (API) for evaluating functions on encrypted data. We refer to a message as m and its encryption as m with a box around it. Two of the operations in this API are the HE versions of addition and multiplication, which we present at right. The inputs are encrypted values, and the output is the encryption of the sum or product of the plaintext values.

The eval operation takes a description of an arbitrary function ƒ as a circuit ƒ-hat (ƒ with a circumflex accent above it) expressed using only the HE versions of addition and multiplication, as in the example at left. Given ƒ-hat and an encrypted input, eval produces an encryption of the output of evaluating ƒ on the input m.

For example, to evaluate ƒ(x) = x4 + 2 on encrypted data, we could use the circuit ƒ1-hat at right. This would be to use ƒ1-hat and the encrypted version of x as the inputs to the eval operation and x4 + 2 as ƒ(m).

## Multiplicative depth

The efficiency of the eval operation depends on a property called multiplicative depth, the maximum number of multiplications along any path through a circuit. In the example at right, ƒ1-hat has a multiplicative depth of three, since there is a path that contains three multiplications but no path that has more than three multiplications. However, this is not the most efficient circuit for computing ƒ(x) = x4 + 2 .

Consider, instead, the circuit at left. This circuit also computes x4 + 2 but has a multiplicative depth of only two. It is therefore more efficient to evaluate ƒ2-hat than to evaluate ƒ1-hat.

## Model training with homomorphic encryption

We can now see how homomorphic encryption could be used to securely outsource the training of a logistic-regression model. Customers would encrypt training data with keys they generate and control and send the encrypted training data to a cloud service. The service would compute an encrypted model based on the encrypted data and send it back to the customer; the model could then be decrypted with the customer’s key.

The most challenging part of deploying this solution is expressing the logistic-regression-model training function as a low-depth circuit. Prior research on encrypted logistic-regression-model training has explored several variations on the logistic-regression training function. For example:

• Training on all samples at once versus using minibatches;
• Training with variations of the fixed-Hessian method.

Previously, the lowest-depth (and therefore most efficient) circuits for logistic-regression training had multiplicative depth 5k, where k is the number of minibatches of data that the model is trained on.

We revisited one of these existing solutions and created a circuit with multiplicative depth 2.5k for k minibatches — half the multiplicative depth. This effectively doubles the number of minibatches that can be incorporated into the model in the same amount of time.

## Techniques

The logistic-regression-training algorithm can be expressed as a sequence of linear-algebra computations. Prior work showed how to evaluate a limited number of linear-algebra expressions on encrypted data when certain conditions apply. Our paper generalizes those results, providing a complete “toolkit” of homomorphic linear-algebra operations, enabling addition and multiplication of scalars, encrypted vectors, and encrypted matrices. The toolkit is generic and can be used with a variety of linear-algebra applications.

We combine the algorithms in the toolkit with well-established compiler techniques to reduce the circuit depth for logistic-regression model training. First, we use loop unrolling, which replaces the body of a loop with two or more copies of itself and adjusts the loop indices accordingly. Loop unrolling enables further optimizations that may not be possible with just a single copy of the loop body.

We also employ pipelining, which allows us to start one iteration of a loop while still working on the previous iteration. Finally, we remove data dependencies by duplicating some computations. This has the effect of increasing the circuit width (the number of operations that can be performed in parallel), while reducing the circuit depth.

We note that despite the increased circuit width, computing this lower-depth circuit is faster than computing previous circuits even on a single core. If the server has many cores, we can further improve training time, since our wide circuit provides ample opportunity for parallelism.

## Results

We compared our circuit for logistic-regression training to an earlier baseline circuit, using the MNIST data set, an image-processing data set consisting of handwritten digits. Both circuits were configured to incorporate six minibatches into the resulting model. In practice, both circuits would have to be applied multiple times to accommodate a realistic number of minibatches.

Our circuit requires more encrypted inputs than the baseline; with the circuit parameters we chose, that corresponded to about an 80% increase in bandwidth requirements. Even though our circuit involves four times as many multiplications as the baseline, we can evaluate it more than six times as rapidly (13 seconds, compared to 80 seconds for the baseline) using a parallel implementation. Our homomorphically trained model had the same accuracy as a model trained on the plaintext data for the MNIST data set.

## Training other model types

Creating efficient homomorphic circuits is a manual, time-consuming process. To make it easier for Amazon Web Services (AWS) and others to create circuits for other functions — such as training functions for other machine learning models — we created the Homomorphic Implementor’s Toolkit (HIT), a C++ library that provides high-level APIs and evaluators for homomorphic circuits. HIT is available today on GitHub

Research areas

## Related content

• May 17, 2024
A novel loss function and a way to aggregate multimodal input data are key to dramatic improvements on some test data.
• March 25, 2024
Automated method that uses gradients to identify salient layers prevents regression on previously seen data.
• May 10, 2024
Using large language models to discern commonsense relationships can improve performance on downstream tasks by as much as 60%.

## Work with us

GB, London
"Are you a MS or PhD student interested in the fields of Computer Science or Operational Research? Do you enjoy diving deep into hard technical problems and coming up with solutions that enable successful products? If this describes you, come join our research teams at Amazon. " Key job responsibilities The candidate will be responsible for the design and implementation of optimization algorithms. The candidate will translate high-level business problems into mathematical ones. Then, they will design and implement optimization algorithms to solve them. The candidate will be responsible also for the analysis and design of KPIs and input data quality. About the team ATS stands for Amazon Transportation Service, we are the middle-mile planners: we carry the packages from the warehouses to the cities in a limited amount of time to enable the “Amazon experience”. As the core research team, we grow with ATS business to support decision making in an increasingly complex ecosystem of a data-driven supply chain and e-commerce giant. We take pride in our algorithmic solutions: We schedule more than 1 million trucks with Amazon shipments annually; our algorithms are key to reducing CO2 emissions, protecting sites from being overwhelmed during peak days, and ensuring a smile on Amazon’s customer lips. We do not shy away from responsibility. Our mathematical algorithms provide confidence in leadership to invest in programs of several hundreds millions euros every year. Above all, we are having fun solving real-world problems, in real-world speed, while failing & learning along the way. We employ the most sophisticated tools: We use modular algorithmic designs in the domain of combinatorial optimization, solving complicated generalizations of core OR problems with the right level of decomposition, employing parallelization and approximation algorithms. We use deep learning, bandits, and reinforcement learning to put data into the loop of decision making. We like to learn new techniques to surprise business stakeholders by making possible what they cannot anticipate. For this reason, we work closely with Amazon scholars and experts from Academic institutions. We are open to hiring candidates to work out of one of the following locations: London, GBR
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly-skilled Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and push the boundaries of efficient inference for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will play a critical role in driving the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Design and execute experiments to evaluate the performance of different decoding algorithms and models, and iterate quickly to improve results - Develop deep learning models for compression, system optimization, and inference - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | New York, NY, USA
US, WA, Bellevue
ES, B, Barcelona
"Are you a MS or PhD student interested in the fields of Computer Science or Operational Research? Do you enjoy diving deep into hard technical problems and coming up with solutions that enable successful products? If this describes you, come join our research teams at Amazon. " Key job responsibilities The candidate will be responsible for the design and implementation of optimization algorithms. The candidate will translate high-level business problems into mathematical ones. Then, they will design and implement optimization algorithms to solve them. The candidate will be responsible also for the analysis and design of KPIs and input data quality. About the team ATS stands for Amazon Transportation Service, we are the middle-mile planners: we carry the packages from the warehouses to the cities in a limited amount of time to enable the “Amazon experience”. As the core research team, we grow with ATS business to support decision making in an increasingly complex ecosystem of a data-driven supply chain and e-commerce giant. We take pride in our algorithmic solutions: We schedule more than 1 million trucks with Amazon shipments annually; our algorithms are key to reducing CO2 emissions, protecting sites from being overwhelmed during peak days, and ensuring a smile on Amazon’s customer lips. We do not shy away from responsibility. Our mathematical algorithms provide confidence in leadership to invest in programs of several hundreds millions euros every year. Above all, we are having fun solving real-world problems, in real-world speed, while failing & learning along the way. We employ the most sophisticated tools: We use modular algorithmic designs in the domain of combinatorial optimization, solving complicated generalizations of core OR problems with the right level of decomposition, employing parallelization and approximation algorithms. We use deep learning, bandits, and reinforcement learning to put data into the loop of decision making. We like to learn new techniques to surprise business stakeholders by making possible what they cannot anticipate. For this reason, we work closely with Amazon scholars and experts from Academic institutions. We are open to hiring candidates to work out of one of the following locations: Barcelona, B, ESP
IN, TN, Chennai
DESCRIPTION The Digital Acceleration (DA) team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms for solving Digital businesses problems. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues BASIC QUALIFICATIONS - Experience building machine learning models or developing algorithms for business application - PhD, or a Master's degree and experience in CS, CE, ML or related field - Knowledge of programming languages such as C/C++, Python, Java or Perl - Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. PREFERRED QUALIFICATIONS - 3+ years of building machine learning models or developing algorithms for business application experience - Have publications at top-tier peer-reviewed conferences or journals - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment We are open to hiring candidates to work out of one of the following locations: Chennai, TN, IND
US, VA, Arlington
US, WA, Seattle
Prime Video offers customers a vast collection of movies, series, and sports—all available to watch on hundreds of compatible devices. U.S. Prime members can also subscribe to 100+ channels including Max, discovery+, Paramount+ with SHOWTIME, BET+, MGM+, ViX+, PBS KIDS, NBA League Pass, MLB.TV, and STARZ with no extra apps to download, and no cable required. Prime Video is just one of the savings, convenience, and entertainment benefits included in a Prime membership. More than 200 million Prime members in 25 countries around the world enjoy access to Amazon’s enormous selection, exceptional value, and fast delivery. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As a Data Scientist at Amazon Prime Video, you will work with massive customer datasets, provide guidance to product teams on metrics of success, and influence feature launch decisions through statistical analysis of the outcomes of A/B experiments. You will develop machine learning models to facilitate understanding of customer's streaming behavior and build predictive models to inform personalization and ranking systems. You will work closely other scientists, economists and engineers to research new ways to improve operational efficiency of deployed models and metrics. A successful candidate will have a strong proven expertise in statistical modeling, machine learning, and experiment design, along with a solid practical understanding of strength and weakness of various scientific approaches. They have excellent communication skills, and can effectively communicate complex technical concepts with a range of technical and non-technical audience. They will be agile and capable of adapting to a fast-paced environment. They have an excellent track-record on delivering impactful projects, simplifying their approaches where necessary. A successful data scientist will own end-to-end team goals, operates with autonomy and strive to meet key deliverables in a timely manner, and with high quality. About the team Prime Video discovery science is a central team which defines customer and business success metrics, models, heuristics and econometric frameworks. The team develops, owns and operates a suite of data science and machine learning models that feed into online systems that are responsible for personalization and search relevance. The team is responsible for Prime Video’s experimentation practice and continuously innovates and upskills teams across the organization on science best practices. The team values diversity, collaboration and learning, and is excited to welcome a new member whose passion and creativity will help the team continue innovating and enhancing customer experience. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: 1 Washington Street, Newark, NJ, 07102 Duties: Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL/ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3/edX storage systems. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports into Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s in Statistics, Computer Science, Data Science, Machine Learning, Applied Math, Operations Research, Economics, or a related field plus two (2) years of Data Scientist or other occupation/position/job title with research or work experience related to data processing and predictive Machine Learning modeling at scale. Experience may be gained concurrently and must include: Two (2) years in each of the following: - Building statistical models and machine learning models using large datasets from multiple resources - Non-linear models including Neural Nets or Deep Learning, and Gradient Boosting - Applying specialized modelling software including Python, R, SAS, MATLAB, or Stata. One (1) year in the following: - Using database technologies including SQL or ETL. Alternatively, will accept a Bachelor's and five (5) years of experience. Multiple positions. Apply online: www.amazon.jobs Job Code: ADBL135. We are open to hiring candidates to work out of one of the following locations: Newark, NJ, USA
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of audio technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in AGI in audio domain. About the team Our team has a mission to push the envelope of AGI in audio domain, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA
DE, BE, Berlin
Are you fascinated by revolutionizing Alexa user experience with LLM? The Artificial General Intelligence (AGI) team is looking for an Applied Scientist with background in Large Language Model, Natural Language Process, Machine/Deep learning. You will be at the heart of the Alexa LLM transition working with a team of applied and research scientists to bring classic Alexa features and beyond into LLM empowered Alexa. You will interact in a cross-functional capacity with science, product and engineering leaders. Key job responsibilities * Work on core LLM technologies (supervised fine tuning, prompt optimization, etc.) to enable Alexa use cases * Research and develop novel metrics and algorithms for LLM evaluation * Communicating effectively with leadership team as well as with colleagues from science, engineering and business backgrounds. We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU