Formal verification makes RSA faster — and faster to deploy

Optimizations for Amazon's Graviton2 chip boost efficiency, and formal verification shortens development time.

Most secure transactions online are protected by public-key encryption schemes like RSA, whose security depends on the difficulty of factoring large numbers. Public-key encryption improves security because it enables the encrypted exchange of private keys. But because it depends on operations like modular exponentiation of large integers, it introduces significant computational overhead.

Researchers and engineers have introduced all kinds of optimizations to make public-key encryption more efficient, but the resulting complexity makes it difficult to verify that the encryption algorithms are behaving properly. And a bug in an encryption algorithm can be disastrous.

This post explains how Amazon’s Automated Reasoning group improved the throughput of RSA signatures on Amazon’s Graviton2 chip by 33% to 94%, depending on the key size, while also proving the functional correctness of our optimizations using formal verification.

Graviton chip.png
An AWS Graviton chip.

Graviton2 is a server-class CPU developed by Amazon Annapurna Labs, based on Arm Neoverse N1 cores. To improve the throughput of RSA signatures on Graviton2, we combined various techniques for fast modular arithmetic with assembly-level optimizations specific to Graviton2. To show that the optimized code is functionally correct, we formally verified it using the HOL Light interactive theorem prover, which was developed by a member of our team (John Harrison).

Our code is written in a constant-time style (for example, no secret-dependent branches or memory access patterns) to avoid side-channel attacks, which can learn secret information from operational statistics like function execution time. The optimized functions and their proofs are included in Amazon Web Services’ s2n-bignum library of formally verified big-number operations. The functions are also adopted by AWS-LC, the cryptographic library maintained by AWS, and by its bindings Amazon Corretto Crypto Provider (ACCP) and AWS Libcrypto for Rust (AWS-LC-RS).

Key size (bits)

Baseline throughput (ops/sec)

Improved throughput (ops/sec)

Speedup (%)

2048

299

541

81.00%

3072

95

127

33.50%

4096

42

81

94.20%

Improvements in the throughput times of RSA signatures in AWS-LC on Graviton2. 

Step 1. Making RSA fast on Graviton2

Optimizing the execution of RSA algorithms on Graviton2 requires the careful placement and use of multiplication instructions. On 64-bit Arm CPUs, the multiplication of two 64-bit numbers, with a product of up to 128 bits (conventionally designated 64×64→128), are accomplished by two instructions: MUL, producing the lower 64 bits, and UMULH, producing the upper 64 bits. On Graviton2, MUL has a latency of four cycles and stalls the multiplier pipeline for two cycles after issue, while UMULH has a latency of five cycles and stalls the multiplier pipeline for three cycles after issue. Since Neoverse N1 has a single multiplier pipeline but three addition pipelines, multiplication throughput is around one-tenth the throughput of 64-bit addition.

To improve throughput, we (1) applied a different multiplication algorithm, trading multiplication for addition instructions, and (2) used single-instruction/multiple-data (SIMD) instructions to offload a portion of multiplication work to the vector units of the CPU.

Algorithmic optimization

For fast and secure modular arithmetic, Montgomery modular multiplication is a widely used technique. Montgomery multiplication represents numbers in a special form called Montgomery form, and when a sequence of modular operations needs to be executed — as is the case with the RSA algorithm — keeping intermediary products in Montgomery form makes computation more efficient.

We implement Montgomery multiplication as the combination of big-integer multiplication and a separate Montgomery reduction, which is one of its two standard implementations.

Related content
Solution method uses new infrastructure that reduces proof-checking overhead by more than 90%.

On Graviton2, the benefit of this approach is that we can use the well-known Karatsuba algorithm to trade costly multiplications for addition operations. The Karatsuba algorithm decomposes a multiplication into three smaller multiplications, together with some register shifts. It can be performed recursively, and for large numbers, it’s more efficient than the standard multiplication algorithm.

We used Karatsuba’s algorithm for power-of-two bit sizes, such as 2,048 bits and 4,096 bits. For other sizes (e.g., 3072 bits), we still use a quadratic multiplication. The Karatsuba multiplication can be further optimized when the two operands are equal, and we wrote functions specialized for squaring as well.

With these optimizations we achieved a 31–49% speedup in 2,048- and 4,096-bit RSA signatures compared with our original code.

Microarchitectural optimization

Many Arm CPUs implement the Neon single-instruction/multiple-data (SIMD) architecture extension. It adds a file of 128-bit registers, which are viewed as vectors of various sizes (8/16/32/64 bit), and SIMD instructions that can operate on some or all of those vectors in parallel. Furthermore, SIMD instructions use different pipelines than scalar instructions, so both types of instructions can be executed in parallel.

Vectorization strategy. Vectorization is a process that replaces sequential executions of the same operation with a single operation over multiple values; it usually increases efficiency. Using SIMD instructions, we vectorized scalar 64-bit multiplications.

For big-integer multiplication, vectorized 64-bit multiply-low code nicely overlapped with scalar 64-bit multiply-high instructions (UMULH). For squaring, vectorizing two 64×64→128-bit squaring operations worked well. For multiplications occurring in Montgomery reduction, vectorizing 64×64→128-bit multiplications and 64×64→64 multiply-lows worked. To choose which scalar multiplications to vectorize, we wrote a script that enumerated differently vectorized codes and timed their execution. For short code fragments, exhaustive enumeration was possible, but for larger code fragments, we had to rely on experience. The overall solution was chosen only after extensive experiments with other alternatives, such as those described by Seo et. al. at ICISC’14.

Related content
Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

Although the scalar and SIMD units are able to operate in parallel, it is sometimes necessary to move inputs and intermediate results between integer and SIMD registers, and this brings significant complications. The FMOV instruction copies data from a 64-bit scalar register to a SIMD register, but it uses the same pipeline as the scalar multiplier, so its use would reduce scalar-multiplier throughput.

The alternative of loading into a vector register first and then using MOV to copy it to a scalar register has lower latency, but it occupies the SIMD pipeline and hence lowers the throughput of SIMD arithmetic operations. Somewhat counterintuitively, the best solution was to make two separate memory loads into the integer and SIMD registers, with care for their relative placement. We did still use MOV instructions to copy certain SIMD results into integer registers when the SIMD results were already placed at SIMD registers because it was faster than a round trip via store-load instructions.

Fast constant-time table lookup code. Another independent improvement was the reimplementation of a vectorized constant-time lookup table for a fast modular-exponentiation algorithm. Combining this with our earlier optimization further raises our speedup to 80–94% when compared to the throughput of 2,048-/4,096-bit RSA signatures from our initial code, as well as a 33% speedup for 3,072-bit signatures.

Instruction scheduling. Even though Graviton2 is an out-of-order CPU, carefully scheduling instructions is important for performance, due to the finite capacity of components like reorder buffers and issue queues. The implementations discussed here were obtained by manual instruction scheduling, which led to good results but was time consuming.

We also investigated automating the process using the SLOTHY superoptimizer, which is based on constraint solving and a (simplified) microarchitecture model. With additional tweaks to Montgomery reduction to precalculate some numbers used in Karatsuba, SLOTHY optimization enabled a 95–120% improvement on 2,048-/4,096-bit throughputs and 46% on 3,072-bit! However, this method is not yet incorporated into AWS-LC since verifying the automated scheduling proved to be challenging. Studying the potential for automatically proving correctness of scheduling optimizations is a work in progress.

Step 2. Formally verifying the code

To deploy the optimized code in production we need to ensure that it works correctly. Random testing is a cheap approach for quickly checking simple and known cases, but to deliver a higher level of assurance, we rely on formal verification. In this section we explain how we apply formal verification to prove functional correctness of cryptographic primitives.

Introduction to s2n-bignum

AWS’s s2n-bignum is both (1) a framework for formally verifying assembly code in x86-64 and Arm and (2) a collection of fast assembly functions for cryptography, verified using the framework itself.

Related content
New IAM Access Analyzer feature uses automated reasoning to ensure that access policies written in the IAM policy language don’t grant unintended access.

Specification in s2n-bignum. Every assembly function in s2n-bignum — including the new assembly functions used in RSA — has a specification stating its functional correctness. A specification states that for any program state satisfying some precondition, the output state of the program must satisfy some postcondition. For example, bignum_mul_4_8(uint64_t *z, uint64_t *x, uint64_t *y) is intended to multiply two 256-bit (four-word) numbers producing a 512-bit (eight-word) result. Its (abbreviated) precondition over an input state s is

  aligned_bytes_loaded s (word pc) bignum_mul_4_8_mc
∧ read PC s = word pc
∧ C_ARGUMENTS [z, x, y] s
∧ bignum_from_memory (x,4) s = a
∧ bignum_from_memory (y,4) s = b

This means that the machine code of bignum_mul_4_8 is loaded at the address currently contained in the program counter PC (aligned_bytes_loaded), symbolic values are assigned to the function arguments according to C’s application binary interface (C_ARGUMENTS ...), and big integers logically represented by the symbols a and b are stored in the memory location pointed to by x and y for four words (bignum_from_memory ...).

The (abbreviated) postcondition over an output state s is

bignum_from_memory (z,8) s = a * b

This means that the multiplied result a * b is stored in the eight-word buffer starting at location z.

One more component is a relation between the input and output states that must be satisfied:

(MAYCHANGE_REGS_AND_FLAGS_PERMITTED_BY_ABI;
MAYCHANGE [memory :> bytes(z,8 * 8)]) (s_in,s_out)

This means that executing the code may change registers/flags permitted by the application binary interface (ABI) and the eight-word buffer starting at z, but all other state components must remain unchanged.

Verifying assembly using HOL Light. To prove that the implementation is correct with respect to the specification, we use the HOL Light interactive theorem prover. In contrast to “black-box” automated theorem provers, tools like HOL Light emphasize a balance between automating routine proof steps and allowing explicit, and programmable, user guidance. When a proof exists on paper or inside someone’s head, a proficient user can effectively rewrite the proof in an interactive theorem prover. S2n-bignum uses a combination of two strategies to verify a program:

Related content
Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

Symbolic execution. Given a representation of the input program state using symbolic variables in place of specific values, symbolic execution infers a symbolic output state at the end of some code snippet, in effect doing a more rigorous and generalized form of program execution. While this still leaves the postcondition to be proved, it strips away artifacts of program execution and leaves a purely mathematical problem.

Intermediate annotations in the style of Floyd-Hoare logic. Each intermediate assertion serves as a postcondition for the preceding code and a precondition for the subsequent code. The assertion need contain only the details that are necessary to prove its corresponding postcondition. This abstraction helps make symbolic simulation more tractable, in terms of both automated-reasoning capacity and the ease with which humans can understand the result.

We assume that the Arm hardware behaves in conformance with the model of s2n-bignum, but the model was developed with care, and it was validated by extensively cross-checking its interpretations against hardware.

Future formal-verification improvements. The formal verification for s2n-bignum does not yet cover nonfunctional properties of the implementation, including whether it may leak information through side channels such as the running time of the code. Rather, we handle this through a disciplined general style of implementation: never using instructions having variable timing, such as division, and no conditional branching/memory access patterns that depend on secret data. Also, we sanity-check some of these properties using simple static checks, and we execute the code on inputs with widely differing bit densities to analyze the corresponding run times and investigate any unexpected correlations.

These disciplines and sanity checks are standard practice with us, and we apply them to all the new implementations described here. In ongoing work, we are exploring the possibility of formally verifying the absence of information leakage.

Research areas

Related content

RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
US, WA, Seattle
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities Key job responsibilities include: * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Fabrication group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of device fabrication techniques. Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities In this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data through automation, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, VA, Herndon
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. AWS Infrastructure Services Science (AISS) researches and builds machine learning models that influence the power utilization at our data centers to ensure the health of our thermal and electrical infrastructure at high infrastructure utilization. As a Data Scientist, you will work on our Science team and partner closely with other scientists and data engineers as well as Business Intelligence, Technical Program Management, and Software teams to accurately model and optimize our power infrastructure. Outputs from your models will directly influence our data center topology and will drive exceptional cost savings. You will be responsible for building data science prototypes that optimize our power and thermal infrastructure, working across AWS to solve data mapping and quality issues (e.g. predicting when we might have bad sensor readings), and contribute to our Science team vision. You are skeptical. When someone gives you a data source, you pepper them with questions about sampling biases, accuracy, and coverage. When you’re told a model can make assumptions, you actively try to break those assumptions. You have passion for excellence. The wrong choice of data could cost the business dearly. You maintain rigorous standards and take ownership of the outcome of your data pipelines and code. You do whatever it takes to add value. You don’t care whether you’re building complex ML models, writing blazing fast code, integrating multiple disparate data-sets, or creating baseline models - you care passionately about stakeholders and know that as a curator of data insight you can unlock massive cost savings and preserve customer availability. You have a limitless curiosity. You constantly ask questions about the technologies and approaches we are taking and are constantly learning about industry best practices you can bring to our team. You have excellent business and communication skills to be able to work with product owners to understand key business questions and earn the trust of senior leaders. You will need to learn Data Center architecture and components of electrical engineering to build your models. You are comfortable juggling competing priorities and handling ambiguity. You thrive in an agile and fast-paced environment on highly visible projects and initiatives. The tradeoffs of cost savings and customer availability are constantly up for debate among senior leadership - you will help drive this conversation. Key job responsibilities - Proactively seek to identify opportunities and insights through analysis and provide solutions to automate and optimize power utilization based on a broad and deep knowledge of AWS data center systems and infrastructure. - Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult customer or business problems and cases in which the solution approach is unclear. - Collaborate with Engineering teams to obtain useful data by accessing data sources and building the necessary SQL/ETL queries or scripts. - Build models and automated tools using statistical modeling, econometric modeling, network modeling, machine learning algorithms and neural networks. - Validate these models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. - Collaborate with Engineering teams to implement these models in a manner which complies with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. About the team Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Why AWS* Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Diverse Experiences* Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. *Work/Life Balance* We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. *Inclusive Team Culture* Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) conferences, inspire us to never stop embracing our uniqueness. *Mentorship and Career Growth* We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Data Scientist you will investigate business problems using data, invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include named entity recognition, product substitutes, pricing optimization, agentic AI, and large language models. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Perform data analysis and build data pipelines to drive business decisions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team seeks an experienced Principal Data Scientist to join our ProServe Shared Delivery Team (SDT). In this role, you will serve as a technical leader and strategic advisor to AWS enterprise customers, partners, and internal AWS teams on transformative AI/ML projects. You will leverage your deep technical expertise to architect and implement innovative machine learning and generative AI solutions that drive significant business outcomes. As a Principal Data Scientist, you will lead complex, high-impact AI/ML initiatives across multiple customer engagements. You will collaborate with Director and C-level executives to translate business challenges into technical solutions. You will drive innovation through thought leadership, establish technical standards, and develop reusable solution frameworks that accelerate customer adoption of AWS AI/ML services. Your work will directly influence the strategic direction of AWS Professional Services AI/ML offerings and delivery approaches. Your extensive experience in designing and implementing sophisticated AI/ML solutions will enable you to tackle the most challenging customer problems. You will provide technical mentorship to other data scientists, establish best practices, and represent AWS as a subject matter expert in customer-facing engagements. You will build trusted advisor relationships with customers and partners, helping them achieve their business outcomes through innovative applications of AWS AI/ML services. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities Architecting and implementing complex, enterprise-scale AI/ML solutions that solve critical customer business challenges Providing technical leadership across multiple customer engagements, establishing best practices and driving innovation Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to design and deploy AI/ML solutions Developing reusable solution frameworks, reference architectures, and technical assets that accelerate customer adoption of AWS AI/ML services Representing AWS as a subject matter expert in customer-facing engagements, including executive briefings and technical workshops Identifying and driving new business opportunities through technical innovation and thought leadership Mentoring junior data scientists and contributing to the growth of AI/ML capabilities within AWS Professional Services
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team seeks an experienced Principal Data Scientist to join our ProServe Shared Delivery Team (SDT). In this role, you will serve as a technical leader and strategic advisor to AWS enterprise customers, partners, and internal AWS teams on transformative AI/ML projects. You will leverage your deep technical expertise to architect and implement innovative machine learning and generative AI solutions that drive significant business outcomes. As a Principal Data Scientist, you will lead complex, high-impact AI/ML initiatives across multiple customer engagements. You will collaborate with Director and C-level executives to translate business challenges into technical solutions. You will drive innovation through thought leadership, establish technical standards, and develop reusable solution frameworks that accelerate customer adoption of AWS AI/ML services. Your work will directly influence the strategic direction of AWS Professional Services AI/ML offerings and delivery approaches. Your extensive experience in designing and implementing sophisticated AI/ML solutions will enable you to tackle the most challenging customer problems. You will provide technical mentorship to other data scientists, establish best practices, and represent AWS as a subject matter expert in customer-facing engagements. You will build trusted advisor relationships with customers and partners, helping them achieve their business outcomes through innovative applications of AWS AI/ML services. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities Architecting and implementing complex, enterprise-scale AI/ML solutions that solve critical customer business challenges Providing technical leadership across multiple customer engagements, establishing best practices and driving innovation Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to design and deploy AI/ML solutions Developing reusable solution frameworks, reference architectures, and technical assets that accelerate customer adoption of AWS AI/ML services Representing AWS as a subject matter expert in customer-facing engagements, including executive briefings and technical workshops Identifying and driving new business opportunities through technical innovation and thought leadership Mentoring junior data scientists and contributing to the growth of AI/ML capabilities within AWS Professional Services