Formal verification makes RSA faster — and faster to deploy

Optimizations for Amazon's Graviton2 chip boost efficiency, and formal verification shortens development time.

Most secure transactions online are protected by public-key encryption schemes like RSA, whose security depends on the difficulty of factoring large numbers. Public-key encryption improves security because it enables the encrypted exchange of private keys. But because it depends on operations like modular exponentiation of large integers, it introduces significant computational overhead.

Researchers and engineers have introduced all kinds of optimizations to make public-key encryption more efficient, but the resulting complexity makes it difficult to verify that the encryption algorithms are behaving properly. And a bug in an encryption algorithm can be disastrous.

This post explains how Amazon’s Automated Reasoning group improved the throughput of RSA signatures on Amazon’s Graviton2 chip by 33% to 94%, depending on the key size, while also proving the functional correctness of our optimizations using formal verification.

Graviton chip.png
An AWS Graviton chip.

Graviton2 is a server-class CPU developed by Amazon Annapurna Labs, based on Arm Neoverse N1 cores. To improve the throughput of RSA signatures on Graviton2, we combined various techniques for fast modular arithmetic with assembly-level optimizations specific to Graviton2. To show that the optimized code is functionally correct, we formally verified it using the HOL Light interactive theorem prover, which was developed by a member of our team (John Harrison).

Our code is written in a constant-time style (for example, no secret-dependent branches or memory access patterns) to avoid side-channel attacks, which can learn secret information from operational statistics like function execution time. The optimized functions and their proofs are included in Amazon Web Services’ s2n-bignum library of formally verified big-number operations. The functions are also adopted by AWS-LC, the cryptographic library maintained by AWS, and by its bindings Amazon Corretto Crypto Provider (ACCP) and AWS Libcrypto for Rust (AWS-LC-RS).

Key size (bits)

Baseline throughput (ops/sec)

Improved throughput (ops/sec)

Speedup (%)

2048

299

541

81.00%

3072

95

127

33.50%

4096

42

81

94.20%

Improvements in the throughput times of RSA signatures in AWS-LC on Graviton2. 

Step 1. Making RSA fast on Graviton2

Optimizing the execution of RSA algorithms on Graviton2 requires the careful placement and use of multiplication instructions. On 64-bit Arm CPUs, the multiplication of two 64-bit numbers, with a product of up to 128 bits (conventionally designated 64×64→128), are accomplished by two instructions: MUL, producing the lower 64 bits, and UMULH, producing the upper 64 bits. On Graviton2, MUL has a latency of four cycles and stalls the multiplier pipeline for two cycles after issue, while UMULH has a latency of five cycles and stalls the multiplier pipeline for three cycles after issue. Since Neoverse N1 has a single multiplier pipeline but three addition pipelines, multiplication throughput is around one-tenth the throughput of 64-bit addition.

To improve throughput, we (1) applied a different multiplication algorithm, trading multiplication for addition instructions, and (2) used single-instruction/multiple-data (SIMD) instructions to offload a portion of multiplication work to the vector units of the CPU.

Algorithmic optimization

For fast and secure modular arithmetic, Montgomery modular multiplication is a widely used technique. Montgomery multiplication represents numbers in a special form called Montgomery form, and when a sequence of modular operations needs to be executed — as is the case with the RSA algorithm — keeping intermediary products in Montgomery form makes computation more efficient.

We implement Montgomery multiplication as the combination of big-integer multiplication and a separate Montgomery reduction, which is one of its two standard implementations.

Related content
Solution method uses new infrastructure that reduces proof-checking overhead by more than 90%.

On Graviton2, the benefit of this approach is that we can use the well-known Karatsuba algorithm to trade costly multiplications for addition operations. The Karatsuba algorithm decomposes a multiplication into three smaller multiplications, together with some register shifts. It can be performed recursively, and for large numbers, it’s more efficient than the standard multiplication algorithm.

We used Karatsuba’s algorithm for power-of-two bit sizes, such as 2,048 bits and 4,096 bits. For other sizes (e.g., 3072 bits), we still use a quadratic multiplication. The Karatsuba multiplication can be further optimized when the two operands are equal, and we wrote functions specialized for squaring as well.

With these optimizations we achieved a 31–49% speedup in 2,048- and 4,096-bit RSA signatures compared with our original code.

Microarchitectural optimization

Many Arm CPUs implement the Neon single-instruction/multiple-data (SIMD) architecture extension. It adds a file of 128-bit registers, which are viewed as vectors of various sizes (8/16/32/64 bit), and SIMD instructions that can operate on some or all of those vectors in parallel. Furthermore, SIMD instructions use different pipelines than scalar instructions, so both types of instructions can be executed in parallel.

Vectorization strategy. Vectorization is a process that replaces sequential executions of the same operation with a single operation over multiple values; it usually increases efficiency. Using SIMD instructions, we vectorized scalar 64-bit multiplications.

For big-integer multiplication, vectorized 64-bit multiply-low code nicely overlapped with scalar 64-bit multiply-high instructions (UMULH). For squaring, vectorizing two 64×64→128-bit squaring operations worked well. For multiplications occurring in Montgomery reduction, vectorizing 64×64→128-bit multiplications and 64×64→64 multiply-lows worked. To choose which scalar multiplications to vectorize, we wrote a script that enumerated differently vectorized codes and timed their execution. For short code fragments, exhaustive enumeration was possible, but for larger code fragments, we had to rely on experience. The overall solution was chosen only after extensive experiments with other alternatives, such as those described by Seo et. al. at ICISC’14.

Related content
Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

Although the scalar and SIMD units are able to operate in parallel, it is sometimes necessary to move inputs and intermediate results between integer and SIMD registers, and this brings significant complications. The FMOV instruction copies data from a 64-bit scalar register to a SIMD register, but it uses the same pipeline as the scalar multiplier, so its use would reduce scalar-multiplier throughput.

The alternative of loading into a vector register first and then using MOV to copy it to a scalar register has lower latency, but it occupies the SIMD pipeline and hence lowers the throughput of SIMD arithmetic operations. Somewhat counterintuitively, the best solution was to make two separate memory loads into the integer and SIMD registers, with care for their relative placement. We did still use MOV instructions to copy certain SIMD results into integer registers when the SIMD results were already placed at SIMD registers because it was faster than a round trip via store-load instructions.

Fast constant-time table lookup code. Another independent improvement was the reimplementation of a vectorized constant-time lookup table for a fast modular-exponentiation algorithm. Combining this with our earlier optimization further raises our speedup to 80–94% when compared to the throughput of 2,048-/4,096-bit RSA signatures from our initial code, as well as a 33% speedup for 3,072-bit signatures.

Instruction scheduling. Even though Graviton2 is an out-of-order CPU, carefully scheduling instructions is important for performance, due to the finite capacity of components like reorder buffers and issue queues. The implementations discussed here were obtained by manual instruction scheduling, which led to good results but was time consuming.

We also investigated automating the process using the SLOTHY superoptimizer, which is based on constraint solving and a (simplified) microarchitecture model. With additional tweaks to Montgomery reduction to precalculate some numbers used in Karatsuba, SLOTHY optimization enabled a 95–120% improvement on 2,048-/4,096-bit throughputs and 46% on 3,072-bit! However, this method is not yet incorporated into AWS-LC since verifying the automated scheduling proved to be challenging. Studying the potential for automatically proving correctness of scheduling optimizations is a work in progress.

Step 2. Formally verifying the code

To deploy the optimized code in production we need to ensure that it works correctly. Random testing is a cheap approach for quickly checking simple and known cases, but to deliver a higher level of assurance, we rely on formal verification. In this section we explain how we apply formal verification to prove functional correctness of cryptographic primitives.

Introduction to s2n-bignum

AWS’s s2n-bignum is both (1) a framework for formally verifying assembly code in x86-64 and Arm and (2) a collection of fast assembly functions for cryptography, verified using the framework itself.

Related content
New IAM Access Analyzer feature uses automated reasoning to ensure that access policies written in the IAM policy language don’t grant unintended access.

Specification in s2n-bignum. Every assembly function in s2n-bignum — including the new assembly functions used in RSA — has a specification stating its functional correctness. A specification states that for any program state satisfying some precondition, the output state of the program must satisfy some postcondition. For example, bignum_mul_4_8(uint64_t *z, uint64_t *x, uint64_t *y) is intended to multiply two 256-bit (four-word) numbers producing a 512-bit (eight-word) result. Its (abbreviated) precondition over an input state s is

  aligned_bytes_loaded s (word pc) bignum_mul_4_8_mc
∧ read PC s = word pc
∧ C_ARGUMENTS [z, x, y] s
∧ bignum_from_memory (x,4) s = a
∧ bignum_from_memory (y,4) s = b

This means that the machine code of bignum_mul_4_8 is loaded at the address currently contained in the program counter PC (aligned_bytes_loaded), symbolic values are assigned to the function arguments according to C’s application binary interface (C_ARGUMENTS ...), and big integers logically represented by the symbols a and b are stored in the memory location pointed to by x and y for four words (bignum_from_memory ...).

The (abbreviated) postcondition over an output state s is

bignum_from_memory (z,8) s = a * b

This means that the multiplied result a * b is stored in the eight-word buffer starting at location z.

One more component is a relation between the input and output states that must be satisfied:

(MAYCHANGE_REGS_AND_FLAGS_PERMITTED_BY_ABI;
MAYCHANGE [memory :> bytes(z,8 * 8)]) (s_in,s_out)

This means that executing the code may change registers/flags permitted by the application binary interface (ABI) and the eight-word buffer starting at z, but all other state components must remain unchanged.

Verifying assembly using HOL Light. To prove that the implementation is correct with respect to the specification, we use the HOL Light interactive theorem prover. In contrast to “black-box” automated theorem provers, tools like HOL Light emphasize a balance between automating routine proof steps and allowing explicit, and programmable, user guidance. When a proof exists on paper or inside someone’s head, a proficient user can effectively rewrite the proof in an interactive theorem prover. S2n-bignum uses a combination of two strategies to verify a program:

Related content
Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

Symbolic execution. Given a representation of the input program state using symbolic variables in place of specific values, symbolic execution infers a symbolic output state at the end of some code snippet, in effect doing a more rigorous and generalized form of program execution. While this still leaves the postcondition to be proved, it strips away artifacts of program execution and leaves a purely mathematical problem.

Intermediate annotations in the style of Floyd-Hoare logic. Each intermediate assertion serves as a postcondition for the preceding code and a precondition for the subsequent code. The assertion need contain only the details that are necessary to prove its corresponding postcondition. This abstraction helps make symbolic simulation more tractable, in terms of both automated-reasoning capacity and the ease with which humans can understand the result.

We assume that the Arm hardware behaves in conformance with the model of s2n-bignum, but the model was developed with care, and it was validated by extensively cross-checking its interpretations against hardware.

Future formal-verification improvements. The formal verification for s2n-bignum does not yet cover nonfunctional properties of the implementation, including whether it may leak information through side channels such as the running time of the code. Rather, we handle this through a disciplined general style of implementation: never using instructions having variable timing, such as division, and no conditional branching/memory access patterns that depend on secret data. Also, we sanity-check some of these properties using simple static checks, and we execute the code on inputs with widely differing bit densities to analyze the corresponding run times and investigate any unexpected correlations.

These disciplines and sanity checks are standard practice with us, and we apply them to all the new implementations described here. In ongoing work, we are exploring the possibility of formally verifying the absence of information leakage.

Research areas

Related content

  • Amazon Research Awards team
    June 3, 2025
    Awardees, who represent 46 universities in 10 countries, have access to Amazon public datasets, along with AWS AI/ML services and tools.
  • October 16, 2025
    Amazon vice president and distinguished engineer Marc Brooker explains how agentic systems work under the hood — and how AWS’s new AgentCore framework implements their essential components.
  • September 11, 2025
    The language AI agents might speak, sharing context without compromising privacy, modeling agentic negotiations, and understanding users’ commonsense policies are some of the open scientific questions that researchers in agentic AI will need to grapple with.
ES, Barcelona
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, San Francisco
The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Key job responsibilities - Develop multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Science Manager to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will lead a strong science team and work closely with other science and engineering leaders, product and business partners together to build the best personalized customer experience for Prime Video. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Lead to develop AI solutions for various Prime Video recommendation and personalization systems using Deep learning, GenAI, Reinforcement Learning, recommendation system and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Hire and grow a science team working in this exciting video personalization domain. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on methodologies for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will be responsible for leading the development of novel algorithms and modeling techniques to advance the state of the art. Your work will directly impact our customers and will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI. You will have significant influence on our overall strategy by working at the intersection of engineering and applied science to scale pre-training and post-training workflows and build efficient models. You will support the system architecture and the best practices that enable a quality infrastructure. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Pre-training and post-training multimodal LLMs - Scale training, optimization methods, and learning objectives - Utilize, build, and extend upon industry-leading frameworks - Work with other team members to investigate design approaches, prototype new technology, scientific techniques and evaluate technical feasibility - Deliver results independently in a self-organizing Agile environment while constantly embracing and adapting new scientific advances About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Sr. Data Scientist you will invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include entity resolution, agentic AI, large language models, and product substitutes. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, WA, Seattle
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As an Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - Participate in the design, development, evaluation, deployment and updating of data-driven models for computer vision applications. - Research and implement the state-of-the-art computer vision and Vision Language models algorithms. - Collaborate with product managers and engineering teams to design and implement computer vision and machine learning based features for Ring devices - Influence system design and product vision by making informed decisions on the selection of technology, data sources, algorithms, and sensors.
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. You will be part of a team committed to pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work on scale. This position requires experience with developing Multi-modal LLMs and Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - Participate in the design, development, evaluation, deployment and updating of data-driven models for computer vision applications. - Research and implement the state-of-the-art computer vision and Vision Language models algorithms. - Collaborate with product managers and engineering teams to design and implement computer vision and machine learning based features for Ring devices - Influence system design and product vision by making informed decisions on the selection of technology, data sources, algorithms, and sensors.