Latency from post-quantum cryptography shrinks as data increases

Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

The risk that a quantum computer might break cryptographic standards widely used today has ignited numerous efforts to standardize quantum-resistant algorithms and introduce them into transport encryption protocols like TLS 1.3. The choice of post-quantum algorithm will naturally affect TLS 1.3’s performance. So far, studies of those effects have focused on the “handshake time” required for two parties to establish a quantum-resistant encrypted connection, known as the time to first byte.

Although these studies have been important in quantifying increases in handshake time, they do not provide a full picture of the effect of post-quantum cryptography on real-world TLS 1.3 connections, which often carry sizable amounts of data. At the 2024 Workshop on Measurements, Attacks, and Defenses for the Web (MADweb), we presented a paper advocating time to last byte (TTLB) as a metric for assessing the total impact of data-heavy, quantum-resistant algorithms such as ML-KEM and ML-DSA on real-world TLS 1.3 connections. Our paper shows that the new algorithms will have a much lower net effect on connections that transfer sizable amounts of data than they do on the TLS 1.3 handshake itself.

Post-quantum cryptography

TLS 1.3, the latest version of the transport layer security protocol, is used to negotiate and establish secure channels that encrypt and authenticate data passing between a client and a server. TLS 1.3 is used in numerous Web applications, including e-banking and streaming media.

Related content
Prize honors Amazon senior principal scientist and Penn professor for a protocol that achieves a theoretical limit on information-theoretic secure multiparty computation.

Asymmetric cryptographic algorithms, such as the one used in TLS 1.3, depend for their security on the difficulty of the discrete-logarithm or integer factorization problems, which a cryptanalytically relevant quantum computer could solve efficiently. The US National Institute of Standards and Technology (NIST) has been working on standardizing quantum-resistant algorithms and has selected ML-Key Encapsulation Mechanism (KEM) for key exchange. NIST has also selected ML-DSA for signatures, or cryptographic authentication.

As these algorithms have kilobyte-size public keys, ciphertexts, and signatures — versus the 50- to 400-byte sizes of the existing algorithms — they would inflate the amount of data exchanged in a TLS handshake. A number of works have compared handshake time using traditional TLS 1.3 key exchange and authentication to that using post-quantum (PQ) key exchange and authentication.

These comparisons were useful to quantify the overhead that each new algorithm introduces to the time to first byte, or completion of the handshake protocol. But they ignored the data transfer time over the secure connection that, together with the handshake time, constitutes the total delay before the application can start processing data. The total time from the start of the connection to the end of data transfer is, by contrast, the time to last byte (TTLB). How much TTLB slowdown is acceptable depends highly on the application.

Experiments

We designed our experiments to simulate various network conditions and measured the TTLB of classical and post-quantum algorithms in TLS 1.3 connections where the client makes a small request and the server responds with hundreds of kilobytes (KB) of data. We used Linux namespaces in a Ubuntu 22.04 virtual-machine instance. The namespaces were interconnected using virtual ethernet interfaces. To emulate the “network” between the namespaces, we used the Linux kernel’s netem utility, which can introduce variable network delays, bandwidth fluctuations, and packet loss between the client and server.

A standard AWS EC2 instance icon (which looks like a stylized integrated circuit) in which a netem emulation is running, with an emulated cloud server (represented by cloud icon) passing data back and forth with a server namespace (represented by a server-stack icon) and a client namespace (represented by a desktop-computer icon).
The experimental setup, with client and server Linux namespaces and netem-emulated network conditions.

Our experiments had several configurable parameters that allowed us to compare the effect of the PQ algorithm on TTLB under stable, unstable, fast, and slow network conditions:

  • TLS key exchange mechanism (classical ECDH or ECDH+ML-KEM post-quantum hybrid)
  • TLS certificate chain size corresponding to classical RSA or ML-DSA certificates.
  • TCP initial congestion window (initcwnd)
  • Network delay between client and server, or round-trip time (RTT)
  • Bandwidth between client and server
  • Loss probability per packet
  • Amount of data transferred from the server to the client

Results

The results of our testing are thoroughly analyzed in the paper. They essentially show that a few extra KB in the TLS 1.3 handshake due to the post-quantum public keys, ciphertexts, and signatures will not be noticeable in connections transferring hundreds of KB or more. Connections that transfer less than 10-20 KB of data will probably be more affected by the new data-heavy handshakes.

PQTLS fig. 1.png
Figure 1: Percentage increase in TLS 1.3 handshake time between traditional and post-quantum TLS 1.3 connections. Bandwidth = 1Mbps; loss probability = 0%, 1%, 3%, and 10%; RTT = 35ms and 200ms; TCP initcwnd=20.
A bar graph whose y-axis is "handshake time % increase" and whose x-axis is a sequence of percentiles (50th, 75th, and 90th). At each percentile are two bars, one blue (for the traditional handshake protocol) and one orange (for post-quantum handshakes). In all three instances, the orange bar is around twice as high as the blue one.

Figure 1 shows the percentage increase in the duration of the TLS 1.3 handshake for the 50th, 75th, and 90th percentiles of the aggregate datasets collected for 1Mbps bandwidth; 0%, 1%, 3%, and 10% loss probability; and 35-millisecond and 200-millisecond RTT. We can see that the ML-DSA size (16KB) certificate chain takes almost twice as much time as the 8KB chain. This means that if we manage to keep the volume of ML-DSA authentication data low, it would significantly benefit the speed of post-quantum handshakes in low-bandwidth connections.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. They start at almost the same value and all drop precipitously from 0 KiB to 50 KiB, continuing to decline from 50 KiB to 200 KiB, with the 90th-percentile line declining slightly more rapidly than the other two.
Figure 2: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections at 0% loss probability. Bandwidth = 1Gbps; RTT = 35ms; TCP initcwnd = 20.

Figure 2 shows the percentage increase in the duration of the post-quantum handshake relative to the existing algorithm for all percentiles and different data sizes at 0% loss and 1Gbps bandwidth. We can observe that although the slowdown is low (∼3%) at 0 kibibytes (KiB, or multiples of 1,024 bytes, the nearest power of 2 to 1,000) from the server (equivalent to the handshake), it drops even more (∼1%) as the data from the server increases. At the 90th percentile the slowdown is slightly lower.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. They start at exactly the same value and all decline in lockstep, dropping precipitously from 0 KiB to 50 KiB and continuing a steady decline from 50 KiB to 200 KiB.
Figure 3: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections at 0% loss probability. Bandwidth = 1Mbps; RTT = 200ms; TCP initcwnd = 20.

Figure 3 shows the percentage increase in the TTLB between existing and post-quantum TLS 1.3 connections carrying 0-200KiB of data from the server for each percentile at 1Mbps bandwidth, 200ms RTT, and 0% loss probability. We can see that increases for the three percentiles are almost identical. They start high (∼33%) at 0KiB from the server, but as the data size from the server increases, they drop to ∼6% because the handshake data size is amortized over the connection.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. The 50th-percentile line drops precipitously from 0 KiB to 50 KiB, declines more gradually from 50 to 100, then increases slightly from 100 to 200. The 90th-percentile line starts much lower but increases slightly to 50 KiB, before declining to 100 and 200. The 75th-percentile line starts lower still, declines to 100 KiB, the increases slightly from 100 to 200.
Figure 4: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections. Loss = 10%; bandwidth = 1Mbps; RTT = 200ms; TCP initcwnd = 20.
Related content
Amazon is helping develop standards for post-quantum cryptography and deploying promising technologies for customers to experiment with.

Figure 4 shows the percentage increase in TTLB between existing and post-quantum TLS 1.3 connections carrying 0-200 KiB of data from the server for each percentile at 1Mbps bandwidth, 200ms RTT, and 10% loss probability. It shows that at 10% loss, the TTLB increase settles between 20-30% for all percentiles. The same experiments for 35ms RTT produced similar results. Although a 20-30% increase may seem high, we note that re-running the experiments could sometimes lead to smaller or higher percentage increases because of the general network instability of the scenario. Also, bear in mind that TTLBs for the existing algorithm at 200KiB from the server, 200ms RTT, and 10% loss were 4,644ms, 7,093ms, and 10,178ms, whereas their post-quantum-connection equivalents were 6,010ms, 8,883ms, and 12,378ms. At 0% loss they were 2,364ms, 2,364ms, and 2,364ms. So, although the TTLBs for the post-quantum connections increased by 20-30% relative to the conventional connections, the conventional connections are already impaired (by 97-331%) due to network loss. An extra 20-30% is not likely to make much difference in an already highly degraded connection time.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. They start at different values but all decline precipitously from 0 KiB to 50 KiB. From 50KiB to 100 KiB, the 75th-percentile line and the 50th-percentile line continue to decline, but the 90th-percentile line increases slightly. All three increase slightly between 100 KiB and 200.
Figure 5: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections for 0% loss probability under “volatile network” conditions. Bandwidth = 1Gbps; RTT = 35ms; TCP initcwnd = 20.

Figure 5 shows the percentage increase in TTLB between existing and post-quantum TLS 1.3 connections for 0% loss probability and 0-200KiB data sizes transferred from the server. To model a highly volatile RTT, we used a Pareto-normal distribution with a mean of 35ms and 35/4ms jitter. We can see that the increase in post-quantum connection TTLB starts high at 0KiB server data and drops to 4-5%. As with previous experiments, the percentages were more volatile the higher the loss probabilities, but overall, the results show that even under “volatile network conditions” the TTLB drops to acceptable levels as the amount of transferred data increases.

A line graph whose y-axis is the cumulative distribution function (CDF), from 0.0 to 1.0, and whose x-axis is time to last byte (TTLB) in milliseconds. There are five differently colored lines. The first four all have the same round-trip time. Two of them have bandwidth of 1Gbps and two bandwidth of 1Mbps. Within each bandwidth tier, the two lines represent 0% and 5% loss. The fifth line is Pareto-normal round-trip time. The high-bandwidth lines and the Pareto-normal line all begin near the origin. The high-bandwidth, low-loss line is almost vertical, reaching 1.0 almost immediately. The high-bandwidth, high-loss line and Pareto-normal line look like offsets of each other, with the Pareto-normal line increasing at a slightly lower rate; both rise fairly quickly, reaching 0.8 at about 1,000 milliseconds. The low-bandwidth lines both begin at TTLB values of of about 2,000. Again, the low-loss line is almost vertical; the higher-loss line rises at a slower rate.
Figure 6: TTLB cumulative distribution function for post-quantum TLS 1.3 connections. 200KiB from the server; RTT = 35ms; TCP initcwnd = 20.

To confirm the volatility under unstable network conditions, we used the TTLB cumulative distribution function (CDF) for post-quantum TLS 1.3 connections transferring 200KiB from the server (figure 6). We observe that under all types of volatile conditions (1Gbps and 5% loss, 1Mbps and 10% loss, Pareto-normal distributed network delay), the TTLB increases very early in the experimental measurement sample, which demonstrates that the total connection times are highly volatile. We made the same observation with TLS 1.3 handshake times under unstable network conditions.

Conclusion

This work demonstrated that the practical effect of data-heavy, post-quantum algorithms on TLS 1.3 connections is lower than their effect on the handshake itself. Low-loss, low- or high-bandwidth connections will see little impact from post-quantum handshakes when transferring sizable amounts of data. We also showed that although the effects of PQ handshakes could vary under unstable conditions with higher loss rates or high-variability delays, they stay within certain limits and drop as the total amount of transferred data increases. Additionally, we saw that unstable connections inherently provide poor completion times; a small latency increase due to post-quantum handshakes would not render them less usable than before. This does not mean that trimming the amount of handshake data is undesirable, especially if little application data is sent relative to the size of the handshake messages.

For more details, please see our paper.

Related content

IN, TS, Hyderabad
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Hyderabad office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant and durable - Can span tasks from power grasps to fine dexterity and nonprehensile manipulation - Can navigate the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement robust sensing for dexterous manipulation, including but not limited to: Tactile sensing, Position sensing, Force sensing, Non-contact sensing - Prototype the various identified sensing strategies, considering the constraints of the rest of the hand design - Build and test full hand sensing prototypes to validate the performance of the solution - Develop testing and validation strategies, supporting fast integration into the rest of the robot - Partner with cross-functional teams to iterate on concepts and prototypes - Work with Amazon's robotics engineering and operations customers to deeply understand their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement innovative systems and algorithms, working hands-on with our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows from Originals and Exclusive content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at any time and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on We are seeking an exceptional Applied Scientist to join our Prime Video Sports personalization team in Israel. Our team is dedicated to developing state-of-the-art science to personalize the customer experience and help customers seamlessly find any live event in our selection. You will have the opportunity to work on innovative, large-scale projects that push the boundaries of what's possible in sports content delivery and engagement. Your expertise will be crucial in tackling complex challenges such as information retrieval, sequential modeling, realtime model optimizations, utilizing Large Language Models (LLMs), and building state-of-the-art complex recommender systems. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Personalization, Information Retrieval, and Recommender Systems, or general ML to develop new algorithms and end-to-end solutions. As part of our team of applied scientists and software development engineers, you will be responsible for researching, designing, developing, and deploying algorithms into production pipelines. Your role will involve working with cutting-edge technologies in recommender systems and search. You'll also tackle unique challenges like temporal information retrieval to improve real-time sports content recommendations. As a technologist, you will drive the publication of original work in top-tier conferences in Machine Learning and Recommender Systems. We expect you to thrive in ambiguous situations, demonstrating outstanding analytical abilities and comfort in collaborating with cross-functional teams and systems. The ideal candidate is a self-starter with the ability to learn and adapt quickly in our fast-paced environment. About the team We are the Prime Video Sports team. In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis majors like Roland-Garros and English Premier League to list a few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
US, WA, Seattle
Within Amazon’s Corporate Financial Planning & Analysis team (FP&A), we enjoy a unique vantage point into everything happening within Amazon. This is exciting opportunity for scientist to join our Financial Transformation team, where you will get to harness the power of statistical and machine learning models to revolutionize finance forecasting that spans entire company and business units. As a key player in this innovative group, you'll be at the forefront of applying state-of-the-art scientific approaches and emerging technologies to solve complex financial challenges. Your deep domain expertise will be instrumental in identifying and addressing customer needs, often venturing into uncharted territories where textbook solutions don't exist. You'll have the chance to author Finance AI articles, showcasing your novel work to both internal and external audiences. Key job responsibilities Your role will involve developing production-ready science models/components that directly impact large-scale systems and services, making critical decisions on implementation complexity and technology adoption. You'll be a driving force in MLOps, optimizing compute and inference usage and enhancing system performance. Beyond technical prowess, you'll contribute to financial strategic planning, mentor team members, and represent our tech. organization in the broader scientific community. This role offers a perfect blend of hands-on development, strategic thinking, and thought leadership in the exciting intersection of finance and advanced analytics. Ready to shape the future of financial forecasting? Join us and let's transform the industry together!
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is transforming advertising through generative AI technologies. We help millions of customers discover products and engage with brands across Amazon.com and beyond. Our team combines human creativity with artificial intelligence to reinvent the entire advertising lifecycle—from ad creation and optimization to performance analysis and customer insights. We develop responsible AI technologies that balance advertiser needs, enhance shopping experiences, and strengthen the marketplace. Our team values innovation and tackles complex challenges that push the boundaries of what's possible with AI. Join us in shaping the future of advertising. Key job responsibilities This role will redesign how ads create personalized, relevant shopping experiences with customer value at the forefront. Key responsibilities include: - Design and develop solutions using GenAI, deep learning, multi-objective optimization and/or reinforcement learning to transform ad retrieval, auctions, whole-page relevance, and shopping experiences. - Partner with scientists, engineers, and product managers to build scalable, production-ready science solutions. - Apply industry advances in GenAI, Large Language Models (LLMs), and related fields to create innovative prototypes and concepts. - Improve the team's scientific and technical capabilities by implementing algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor junior scientists and engineers to build a high-performing, collaborative team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value.