Amazon Scholar solves century-old problem with automated reasoning

Solution method uses new infrastructure that reduces proof-checking overhead by more than 90%.

Marijn Heule, an Amazon Scholar and professor of computer science at Carnegie Mellon University, together with his colleague Manfred Scheucher of Technische Universität Berlin, have solved a geometry problem posed almost 100 years ago by the Hungarian-Australian mathematician Esther Szekeres.

Marijn.jpg
Marijn Heule, an Amazon Scholar and professor of computer science at Carnegie Mellon University.

Paul Erdős, the legendary Hungarian mathematician who gave his name to the Erdős number, dubbed it the “happy-ending problem”, because work on it led to the marriage of Esther, née Klein, and Erdős’s long-time collaborator George Szekeres.

The problem asks the minimum number of points in a plane, no three of which are collinear, required to guarantee that n of the points constitute a convex polygon that does not contain any of the other points. (“Convex” means that a line segment connecting any two points within the polygon itself lies entirely within the polygon.)

Esther Szekeres dispatched the case of n = 4 in the 1930s. It was almost 50 years before Heiko Harborth determined that 10 points are needed to guarantee an empty pentagon. Around the same time, Joseph Horton showed that the problem is insoluble for polygons with seven or more sides: no number of points will guarantee that a convex 7-gon can be found that contains no other points in the collection.

But the remaining case — the empty hexagon — was still outstanding. That’s the problem that Heule and Scheucher solved. They showed that 30 points is sufficient to guarantee a convex hexagon that doesn’t contain any of the other points.

To prove this result, Heule and Scheucher used a SAT solver, an automated-reasoning tool that determines whether long chains of logical constraints can be satisfied. The SAT solver generates a proof that particular assignments of values to variables are prohibited by the constraints. Verifying the correctness of the proof requires another automated-reasoning tool, a proof checker.

Related content
To mark the occasion of the eighth Federated Logic Conference (FloC), Amazon’s Byron Cook, Daniel Kröning, and Marijn Heule discussed automated reasoning’s prospects.

Proofs, however, can be hundreds of terabytes in size, and just managing input-output (I/O) and data retrieval during the proof-checking process can be hugely time consuming. “The cost of checking can be, say, 100% to 200% of the original solving time,” Heule says.

Heule, who is a member of Amazon Web Services’ (AWS’s) Automated Reasoning group, worked with his AWS colleagues to develop the infrastructure for a new streaming approach to proof checking, where a dedicated server core checks the proof as it is generated. This reduces the proof-checking overhead from 100% to 200% to somewhere around 10%.

This innovation, in turn, will be of use to the Automated Reasoning group in its future work on, say, software security, provably correct software, and hardware validation. Of course, those applications still require developers to create rigorous formal models of the systems they’re validating. But during the proof-checking phase, “if we can do things with say 10% overhead instead of 150%, that's a clear win,” Heule says.

Geometric constraints

SAT problems are NP-complete, meaning that SAT problems can be devised that would be insoluble by all the computers in the world in the lifetime of the universe.

But that doesn’t mean that all SAT problems, or even SAT problems with large numbers of variables, are insoluble, and part of the automated-reasoning researcher’s art is formulating problems in such a way that a SAT solver can solve them.

“Marijn is best-in-the-world at mapping complex problems to solvers,” says Robert Jones, a senior principal applied scientist in the AWS Automated Reasoning group.

Related content
CAV keynote lecture by the director of applied science for AWS Identity explains how AWS is making the power of automated reasoning available to all customers.

The setup of the happy-ending problem can be described using binary (Boolean) variables each of which describes the orientations of three points. The variables all have the same general form: given three points in general position (i.e., not collinear), A, B, and C, C is above the line through A and B. (If the variable is false, C is necessarily below the line.) Chain enough of these together, and you can specify the 30 points of the 6-gon case (or 29 points, or any other number).

Within that framework, the difficulty is to describe the condition that there be at least one hexagon with no point inside it. Scheucher’s group had been batting that problem about for years without arriving at a formulation that a SAT solver could handle. That’s where Heule came in.

People mapping problems to SAT expressions often focus on concision, Heule explains; the more concise the expression, they reason, the fewer possibilities the solver will need to consider. That may be true in general, Heule says, but in his experience, long chains of simple constraints are often easier to reason about than short chains of more complex constraints.

Simplifying the problem

The natural way to approach the empty-hexagon problem is to break hexagons into triangles and reason about whether each triangle has a point in its interior. Prior attempts to map this problem to a SAT expression had taken a general approach, specifying a set of logical constraints that could be applied to any triangle in the collection and all hexagons that included that triangle. The resulting expression, Heule says, was easy to formulate but hard to reason about.

Heule suggested that he and Scheucher take the opposite tack, explicitly labeling every possible configuration of each hexagon, specifying the individual triangles using those labels, and checking each of the named triangles for points in its interior.

Three hexagons, with vertices labeled with the letters a through f. Each hexagon is divided into four triangles — one "inner" triangle, which shares all of its sides with other triangles, and three "outer" triangles. In all three triangles, the line segment af is the longest line segment connecting any two vertices. In the first hexagon, no vertices are below the line segment af; in the second triangle, one vertex is; and in the third triangle, two vertices are.
These three hexagons differ in the number of points that lie below the line segment af. Any other arrangement of points can be mapped to one of these structures. In all three hexagons, establishing that the central (pink) triangle is empty is sufficient to conclude that the point set contains an empty hexagon.

“In this case, you really need to blow it up in order to get much smaller later,” Heule explains. “I made it 10 times bigger and afterward realized that the new expression could be compressed substantially. This compression step is also possible with existing automated-reasoning tools.”

Related content
Distributing proof search, reasoning about distributed systems, and automating regulatory compliance are just three fruitful research areas.

One of the ways that SAT solvers reduce the complexity of the problems they’re tackling is by looking for logical redundancies and removing them. In his initial specification of the empty-hexagon problem, Heule divided each hexagon in the point set into four triangles and checked each triangle for a point in its interior.

He noticed, however, that the SAT solver reduced this step to checking only one triangle per hexagon. After thinking it through, Heule and Scheucher realized that in each hexagon, there was a single triangle — call it the inner triangle — that shared all its sides with the hexagon’s other three triangles — call them the outer triangles. If that inner triangle was empty, then it was possible to deduce the existence of an empty hexagon from the points in the point set.

Suppose that one of the outer triangles contains a point. Then it’s possible to draw a new triangle that contains that point and shares a side with the inner triangle. Repeating this process as needed is guaranteed to yield a convex hexagon with no points in its interior.

An animation that begins with a blue hexagon divided into four triangles, one "inner triangle" that shares all its sides with other triangles and three "outer triangles". Two of the outer triangles enclose dots. First, the inner triangle turns orange. Then, two dotted lines connect each dot with the two corners of the corresponding outer triangle that are shared by the inner triangle. The dotted lines solidify, creating a new hexagon, and the sides of the old hexagon dissolve. The new hexagon turns orange.
In a hexagon constructed from points in a prespecified set, if any of the "outer triangles" enclose points in the set, it's possible to draw a new hexagon — still constructed from the same set — that does not enclose them.

Heule and Scheucher extracted this line of reasoning from the SAT solver itself. “I have frequently seen that the solver provides useful feedback, although it's feedback for an expert,” Heule says. “I think it's really important that this feedback becomes available for nonexperts. For example, you implement something, and the solver says, ‘Okay, you're trying to do this, but that part of the expression is not needed.’ This feedback can be used to reformulate the expression in such a way that that it is much easier to solve.”

Related content
Method enables machine-checkable proofs of SAT solvers’ decisions on incremental SAT problems, in which problem constraints are gradually imposed over time.

Once Heule and Scheucher understood what the solver was telling them, they were able to devise a more practical specification of the SAT problem. The solver was able to reason through all the possibilities for a 30-point point set and prove that, within that set, there must exist at least one hexagon whose inner triangle contained no other points.

It was still an extremely long proof, but Heule and his AWS colleagues’ new proof-checking mechanism was able to confirm its validity relatively quickly.

“One of the issues here is that many users of these tools don't know how to get the most out of them,” Heule says. “And that's not only for this specific problem but for many other problems as well. Within Amazon, there are a lot of applications where SAT solvers could verify developers’ work or find better solutions. I can help by writing an effective encoding, but ideally, everything would be done automatically. I would love to see myself being taken out of the equation.”

Research areas

Related content

AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel sensing and actuation technologies for dexterous manipulation - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, MA, North Reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of systems that: • Enables unprecedented generalization across diverse tasks • Enables contact-rich manipulation in different environments • Seamlessly integrates mobility and manipulation • Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration!
US, WA, Seattle
We are a passionate team applying the latest advances in technology to solve real-world challenges. As a Data Scientist working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. At Amazon, we cultivate an inclusive culture through our Leadership Principles, which emphasize seeking diverse perspectives, continuous learning, and building trust. Our global community includes thirteen employee-led affinity groups with 40,000 members across 190 chapters, showcasing our commitment to embracing differences and fostering continuous learning through local, regional, and global programs. We prioritize work-life balance, recognizing it as fundamental to long-term happiness and fulfillment. Our team is committed to supporting your career development through challenging projects, mentorship opportunities, and targeted training programs that help you reach your full potential. Key job responsibilities Key job responsibilities * Deliver data analyses that optimize overall team process and guide decision-making * Deep dive to understand source of anomalies across a variety of datasets including low-level sequencing read data * Identify key metrics that are drivers to achieve team goals; work with senior stakeholders to refine your results * Use modern statistical methods to highlight insights for predictive & generative ML models and assay process * Perform correlation analysis, significance testing, and simulation on high- and low-fidelity datasets for various types of readouts * Generate reports with tables and visualization that support operational cycle analysis and one-off POC experiments * Collaborate with multi-disciplinary domain experts to support your findings and their experiments * Write well-tested scripts that can be promoted by our software teams to production pipelines * Learn about new statistical methods for our domain and adopt them in your work * Work fluently in SQL and Python. Be skilled in generating compelling visualizations. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. We are seeking a Principal Applied Scientist working on machine learning applications in life sciences. This role combines scientific leadership with hands-on innovation, driving solutions from exploratory research through production-ready solutions deployment, while maintaining high scientific standards. You will work with Amazon's large-scale computing resources to accelerate advances in machine learning applications. Key job responsibilities - Lead ML for life science efforts using computational design approaches and ML-based tools. - Guide teams in applying SOTA ML methods, experimentation design, and modeling approaches. - Transform complex real world problems into scientific challenges and allocate resources effectively. - Review requirements, conduct technical architecture reviews, and make informed judgments around technical and business tradeoffs. - Provide mentorship to Applied Scientists, Research Scientists and Data Scientists while maintaining scientific rigor. - Collaborate with cross functional teams.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.