Automated reasoning's scientific frontiers

Distributing proof search, reasoning about distributed systems, and automating regulatory compliance are just three fruitful research areas.

Automated reasoning is the algorithmic search through the infinite set of theorems in mathematical logic. We can use automated reasoning to answer questions about what systems such as biological models and computer programs can and cannot do in the wild.

In the 1990s, AMD, IBM, Intel, and other companies invested in automated reasoning for circuit and microprocessor design, leading to today’s widely used and industry-standard hardware formal-verification tools (e.g., JasperGold). In the 2000s, automated reasoning expanded to niche software domains such as device drivers (e.g., Static Driver Verifier) or transportation systems (e.g., Prover technology). In the 2010s, we saw automated reasoning increasingly applied to our foundational computing infrastructure, such as cryptography, networking, storage, and virtualization.

Related content
Meet Amazon Science’s newest research area.

With recently launched cloud services such as IAM Access Analyzer and VPC Network Access Analyzer, automated reasoning is now beginning to change how computer systems built on top of the cloud are developed and operated.

All these applications of automated reasoning rest on a common foundation: automated and semi-automated mechanical theorem provers. ACL2, CVC5, HOL-light’s Meson_tac, MiniSat, and Vampire are a few examples, but there are many more we could name. They are all, in outline, working on the same problem: the search for proofs in mathematical logic.

Over the past 30 years, slowly but surely, a virtuous cycle has formed: automated reasoning in specific and critical application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

SAT graph comparison.png
The propositional-satisfiability problem (a.k.a. SAT) is NP-complete, and in the case of unstructured decision graphs (left), the problem instances can be prohibitively time consuming to solve. But when the decision graphs have some inherent structure (right), automatic solvers can exploit that structure to find solutions efficiently.
Visualizations produced by Carsten Sinz, using his 3DVis visualization tool

The increasingly difficult benchmarks driving the development of these tools present new science opportunities. International competitions such as CASC, SAT-COMP, SMT-COMP, SV-COMP, and the Termination competition have accelerated this virtuous cycle. On the application side, with increasing power from the tools come new research opportunities in the design of customer-intuitive tools (such as models of cellular signaling pathways or Amazon's abstraction of control policies for cloud computing).

As an example of the virtuous cycle at work, consider the following graph, which shows the results for all of the winners of SAT-COMP from 2002 to 2021, compared apples-to-apples in a competition with the same hardware and same benchmarks:

Winners 2021.png

This graph plots the number of benchmarks that each solver can solve in 200 seconds, 400 seconds, etc. The higher the line, the more benchmarks the solver could solve. By looking at the plot we can see, for example, that the 2010 winner (cryptominisat) solved approximately 50 benchmarks within the allotted 1,000 seconds, whereas the 2021 winner (kissat) can solve nearly four times as many benchmarks in the same time, using the same hardware. Why did the tools get better? Because members of the scientific community pushing on the application submitted benchmarks to the competitions, which helped tool developers take the tools to new heights of performance and scale.

At Amazon we see the velocity of the virtuous cycle dramatically increasing. Our automated-reasoning tools are now called billions of times daily, with growth rates exceeding 100% year-over-year. For example, AWS customers now have access to automated-reasoning-based features such as IAM Access Analyzer, S3 Block Public Access, or VPC Reachability Analyzer. We also see Amazon development teams using tools such as Dafny, P, and SAW.

Related content
In a pilot study, an automated code checker found about 100 possible errors, 80% of which turned out to require correction.

What’s most exciting to me as an automated-reasoning scientist is that our research area seems to be entering a golden era. I think we are beginning to witness a transformation in automated reasoning that is similar to what happened in virtualized computing as the cloud’s virtuous cycle spun up. As described in Werner Vogels’s 2019 re:Invent keynote, AWS’s EC2 team was driven by unprecedented customer adoption to reinvent its hypervisor, microprocessor, and networking stack, capturing significant improvements in security, cost, and team agility made possible by economies of scale.

There are parallels in automated reasoning today. Dramatic new infrastructure is needed for viable business reasons, putting a spotlight on research questions that were previously obscure and unsolved. Below I outline three examples of open research areas driven by the increasing scale of automated-reasoning tools and our underlying computing infrastructure.

Example: Distributed proof search

For over two decades the automated-reasoning scientific community has postulated that distributed-systems-based proof search could be faster than sequential proof search. But we didn’t have the economic scale to justify serious investigation of the question.

At Amazon, with our increased reliance on automated reasoning, we now have that kind of scale. For example, we sponsored the new cloud-based-tool tracks in several international competitions.

Compare the mallob-mono solver, the winner of SAT-COMP’s new cloud-solver track, to the single-microprocessor solvers:

2 Mallob-mono.png

Mallob-mono is now, by a wide margin, the most powerful SAT solver on the planet. And like the sequential solvers, the distributed solvers are improving.

As described in Kuhn’s seminal book The Structure of Scientific Revolutions, major perspective shifts like this tend to trigger scientific revolutions. The success of distributed proof search raises the possibility of similar revolutions. For example, we may need to re-evaluate our assumptions about when to use eager vs. lazy reduction techniques when converting between formalisms.

Related content
Rungta had a promising career with NASA, but decided the stars aligned for her at Amazon.

Here at Amazon, we recently reconsidered the PhD dissertation of University of California, Berkeley, professor Sanjit Seshia in light of mallob-mono and were able to quickly (in about 2,000 lines of Rust) develop a new eager-reduction-based solver that outperforms today’s leading lazy-reduction tools on the notoriously difficult SMT-COMP bcnscheduling and job_shop benchmarks. Here we are solving SAT problems that go beyond Booleans, to involve integers, real numbers, strings, or functions. We call this SAT modulo theories, or SMT.

In the graph below we compare the performance of leading lazy SMT solvers CVC5 and Z3 to a Seshia-style eager solver based on the SAT solvers Kissat and mallob-mono on those benchmarks:

Solver performance.png

We’ve published the code for our Seshia-style eager solver on GitHub.

There are many other open questions driven by distributed proof search. For example, is there an effective lookahead-solver strategy for SMT that would facilitate cube-and-conquer? Or as the Zoncolan service does when analyzing programs for security vulnerabilities, can we memoize intermediate lemmas in a cloud database and reuse them, rather than recomputing for each query? Can Monte Carlo tree search in the cloud on past proofs be used to synthesize more-effective proof search strategies?

Another example: Reasoning about distributed systems

Recent examples of formal reasoning within AWS at the level of distributed-protocol design include a proof of S3’s recently announced strong consistency and the protocol-level proof of secrecy in AWS's KMS service. The problem with these proofs is that they apply to the protocols that power the distributed services, not necessarily to the code running on the servers that use those protocols.

Related content
SOSP paper describes lightweight formal methods for validating new S3 data storage service.

Here at Amazon, we believe that automated reasoning at the level of protocol design has the greatest long-term value when the investment cost is amortized and protected via continuous integration/continuous delivery (CI/CD) integrations with the code that implements the protocols. That is, the benefit of upfront effort is often seen later, when protocol compliance proofs fail on buggy changes to implementation source code. The code doesn’t make it to production until the developers have fixed it.

Again: major perspective shifts like those resulting from successful proofs about S3 and KMS could trigger a revolution, à la Kuhn. For years, we have had tools for reasoning about distributed systems, such as TLA+ and P. But with the success of the work with S3 and KMS, it’s now clear that protocol design should be a first-class concept for engineering, with tools that support it, proactively finding errors and proving properties.

These tools should also connect to the source code that speaks the protocols by (i) constructing specifications that can be proved with existing code-level tools and (ii) synthesizing implementation code in languages such as C, Go, Rust, or Java. The tools would facilitate integration into our CI/CD, code review, and ticketing systems, allowing service teams to (iii) synthesize “runtime monitors” to exploit enterprise-level operations strength by providing telemetry about the status of a service’s conformance to a proved protocol.

Final example: Automating regulatory compliance

At the recent Computer-Aided Verification (CAV ’21) workshop called Formal Approaches to Certifying Compliance (talks recorded and available), we heard from NIST, Coalfire, Collins Aerospace, DARPA, and Amazon about the use of automated reasoning to lower the cost and the time-to-market added by regulatory compliance.

Karthik Amrutesh of the AWS security assurance team reported that automated reasoning enabled a 91% reduction in the time it took for our third-party auditor to produce evidence for checking controls. For perhaps the first time in the more than 2,500-year history of mathematical logic, we see a business use case that exploits the difference between finding proofs and checking proofs. What's the difference? Finding is usually the hard part, the creative part, the part that requires sophisticated algorithms. Finding is usually undecidable or NP-complete, depending on the context.

Meanwhile, not only is checking proofs decidable in most cases, but it’s often linear in the size of the proof. To check proofs, compliance auditors can use well-understood and trusted small solvers such as HOL-light.

Using cloud-scale automation to find the proofs lowers cost. That lets the auditor offer its services for less, saving the customer money. It also reduces the latency of audits, a major pain point for developers looking to go to market quickly.

An audit check involves constraints on the form that valid text strings can take. The set of constraints is known as a string theory, and the imposition of that theory means that audit checks are SMT problems.

From the perspective of automated-reasoning science, it becomes important to build string theory solvers that can efficiently construct easily checkable proof artifacts. In the realm of propositional satisfiability — SAT problems — the DRAT proof checker is now the standard methodology for communicating proofs. But in SMT, no such standard exists. What would a general-purpose theory-agnostic SMT format and checker look like?

Conclusion

We've come a long way from days when automated reasoning was the exclusive domain of circuit designers or aerospace engineers. Success in these early domains kicked off a virtuous cycle for the makers of the theorem provers that power automated reasoning. With applications for mainstream applications such as cloud computing, the automated-reasoning virtuous cycle is now radically accelerating. After 2,500 years of mathematical-logic research and 70+ years of automated-reasoning science, we live in a heady time. With wider adoption of and investment in automated reasoning, we are seeing economies of scale where what we can do now would have been unimaginable even two or three years ago. Welcome to the future!

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
Do you want to create intelligent, adaptable robots with global impact? We are seeking an experienced Applied Science Manager to lead a team of talented applied scientists and software engineers developing and deploying advanced manipulation strategies and algorithms. You will drive innovation that enables manipulation in high-contact, high-density, and diverse conditions with the speed and reliability that will delight our customers. Collaborating with cross-functional teams across hardware, software, and science, you will deliver reliable and high-performing solutions that will scale across geographies, applications, and conditions. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a disruptor, prolific innovator, and a reputed problem solver—someone who truly enables robotics to significantly impact the lives of millions of consumers. A day in the life - Prioritize being a great people manager: motivating, rewarding, and coaching your diverse team is the most important part of this role. You will recruit and retain top talent and excel in people and performance management tasks. - Set a vision for the team and create the technical roadmap that deliver results for customers while thinking big for future applications. - Guide the research, design, deployment, and evaluation of complex motion planning and control algorithms for contact-rich, cluttered, real-world manipulation problems. - Work closely with perception, hardware, and software teams to create integrated robotic solutions that are better than the sum of their parts. - Implement best practices in applied research and software development, managing project timelines, resources, and deliverables effectively. Amazon offers a full range of benefits for you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
CA, BC, Vancouver
The Alexa Daily Essentials team delivers experiences critical to how customers interact with Alexa as part of daily life. Alexa users engage with our products across experiences connected to Timers, Alarms, Calendars, Food, and News. Our experiences include critical time saving techniques, ad-supported news audio and video, and in-depth kitchen guidance aimed at serving the needs of the family from sunset to sundown. As a Data Scientist on our team, you'll work with complex data, develop statistical methodologies, and provide critical product insights that shape how we build and optimize our solutions. You will work closely with your Analytics and Applied Science teammates. You will build frameworks and mechanisms to scale data solutions across our organization. If you are passionate about redefining how AI can improves everyone's daily life, we’d love to hear from you. Key job responsibilities Problem-Solving - Analyze complex data (including healthcare data, experimental data, and large-scale datasets) to identify patterns, inform product decisions, and understand root causes of anomalies. - Develop analysis and modeling approaches to drive product and engineering actions to identify patterns, insights, and understand root causes of anomalies. Your solutions directly improve the customer experience. - Independently work with product partners to identify problems and opportunities. Apply a range of data science techniques and tools to solve these problems. Use data driven insights to inform product development. Work with cross-disciplinary teams to mechanize your solution into scalable and automated frameworks. Data Infrastructure - Build data pipelines, and identify novel data sources to leverage in analytical work - both from within Alexa and from cross Amazon - Acquire data by building the necessary SQL / ETL queries Communication - Excel at communicating complex ideas to technical and non-technical audiences. - Build relationships with stakeholders and counterparts. Work with stakeholders to translate causal insights into actionable recommendations - Force multiply the work of the team with data visualizations, presentations, and/or dashboards to drive awareness and adoption of data assets and product insights - Collaborate with cross-functional teams. Mentor teammates to foster a culture of continuous learning and development
US, WA, Seattle
The Automated Reasoning Group in the AWS Neuron Compiler team is looking for an Applied Scientist to work on the intersection of Artificial Intelligence and program analysis to raise the code quality bar in our state-of-the-art deep learning compiler stack. This stack is designed to optimize application models across diverse domains, including Large Language and Vision, originating from leading frameworks such as PyTorch, TensorFlow, and JAX. Your role will involve working closely with our custom-built Machine Learning accelerators, Inferentia and Trainium, which represent the forefront of AWS innovation for advanced ML capabilities, and is the underpinning of Generative AI. In this role as an Applied Scientist, you'll be instrumental in designing, developing, and deploying analyzers for ML compiler stages and compiler IRs. You will architect and implement business-critical tooling, publish cutting-edge research, and mentor a brilliant team of experienced scientists and engineers. You will need to be technically capable, credible, and curious in your own right as a trusted AWS Neuron engineer, innovating on behalf of our customers. Your responsibilities will involve tackling crucial challenges alongside a talented engineering team, contributing to leading-edge design and research in compiler technology and deep-learning systems software. Strong experience in programming languages, compilers, program analyzers, and program synthesis engines will be a benefit in this role. A background in machine learning and AI accelerators is preferred but not required. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.