Automated reasoning's scientific frontiers

Distributing proof search, reasoning about distributed systems, and automating regulatory compliance are just three fruitful research areas.

Automated reasoning is the algorithmic search through the infinite set of theorems in mathematical logic. We can use automated reasoning to answer questions about what systems such as biological models and computer programs can and cannot do in the wild.

In the 1990s, AMD, IBM, Intel, and other companies invested in automated reasoning for circuit and microprocessor design, leading to today’s widely used and industry-standard hardware formal-verification tools (e.g., JasperGold). In the 2000s, automated reasoning expanded to niche software domains such as device drivers (e.g., Static Driver Verifier) or transportation systems (e.g., Prover technology). In the 2010s, we saw automated reasoning increasingly applied to our foundational computing infrastructure, such as cryptography, networking, storage, and virtualization.

Related content
Meet Amazon Science’s newest research area.

With recently launched cloud services such as IAM Access Analyzer and VPC Network Access Analyzer, automated reasoning is now beginning to change how computer systems built on top of the cloud are developed and operated.

All these applications of automated reasoning rest on a common foundation: automated and semi-automated mechanical theorem provers. ACL2, CVC5, HOL-light’s Meson_tac, MiniSat, and Vampire are a few examples, but there are many more we could name. They are all, in outline, working on the same problem: the search for proofs in mathematical logic.

Over the past 30 years, slowly but surely, a virtuous cycle has formed: automated reasoning in specific and critical application areas drives more investment in foundational tools, while improvements in the foundational tools drive further applications. Around and around.

SAT graph comparison.png
The propositional-satisfiability problem (a.k.a. SAT) is NP-complete, and in the case of unstructured decision graphs (left), the problem instances can be prohibitively time consuming to solve. But when the decision graphs have some inherent structure (right), automatic solvers can exploit that structure to find solutions efficiently.
Visualizations produced by Carsten Sinz, using his 3DVis visualization tool

The increasingly difficult benchmarks driving the development of these tools present new science opportunities. International competitions such as CASC, SAT-COMP, SMT-COMP, SV-COMP, and the Termination competition have accelerated this virtuous cycle. On the application side, with increasing power from the tools come new research opportunities in the design of customer-intuitive tools (such as models of cellular signaling pathways or Amazon's abstraction of control policies for cloud computing).

As an example of the virtuous cycle at work, consider the following graph, which shows the results for all of the winners of SAT-COMP from 2002 to 2021, compared apples-to-apples in a competition with the same hardware and same benchmarks:

Winners 2021.png

This graph plots the number of benchmarks that each solver can solve in 200 seconds, 400 seconds, etc. The higher the line, the more benchmarks the solver could solve. By looking at the plot we can see, for example, that the 2010 winner (cryptominisat) solved approximately 50 benchmarks within the allotted 1,000 seconds, whereas the 2021 winner (kissat) can solve nearly four times as many benchmarks in the same time, using the same hardware. Why did the tools get better? Because members of the scientific community pushing on the application submitted benchmarks to the competitions, which helped tool developers take the tools to new heights of performance and scale.

At Amazon we see the velocity of the virtuous cycle dramatically increasing. Our automated-reasoning tools are now called billions of times daily, with growth rates exceeding 100% year-over-year. For example, AWS customers now have access to automated-reasoning-based features such as IAM Access Analyzer, S3 Block Public Access, or VPC Reachability Analyzer. We also see Amazon development teams using tools such as Dafny, P, and SAW.

Related content
In a pilot study, an automated code checker found about 100 possible errors, 80% of which turned out to require correction.

What’s most exciting to me as an automated-reasoning scientist is that our research area seems to be entering a golden era. I think we are beginning to witness a transformation in automated reasoning that is similar to what happened in virtualized computing as the cloud’s virtuous cycle spun up. As described in Werner Vogels’s 2019 re:Invent keynote, AWS’s EC2 team was driven by unprecedented customer adoption to reinvent its hypervisor, microprocessor, and networking stack, capturing significant improvements in security, cost, and team agility made possible by economies of scale.

There are parallels in automated reasoning today. Dramatic new infrastructure is needed for viable business reasons, putting a spotlight on research questions that were previously obscure and unsolved. Below I outline three examples of open research areas driven by the increasing scale of automated-reasoning tools and our underlying computing infrastructure.

Example: Distributed proof search

For over two decades the automated-reasoning scientific community has postulated that distributed-systems-based proof search could be faster than sequential proof search. But we didn’t have the economic scale to justify serious investigation of the question.

At Amazon, with our increased reliance on automated reasoning, we now have that kind of scale. For example, we sponsored the new cloud-based-tool tracks in several international competitions.

Compare the mallob-mono solver, the winner of SAT-COMP’s new cloud-solver track, to the single-microprocessor solvers:

2 Mallob-mono.png

Mallob-mono is now, by a wide margin, the most powerful SAT solver on the planet. And like the sequential solvers, the distributed solvers are improving.

As described in Kuhn’s seminal book The Structure of Scientific Revolutions, major perspective shifts like this tend to trigger scientific revolutions. The success of distributed proof search raises the possibility of similar revolutions. For example, we may need to re-evaluate our assumptions about when to use eager vs. lazy reduction techniques when converting between formalisms.

Related content
Rungta had a promising career with NASA, but decided the stars aligned for her at Amazon.

Here at Amazon, we recently reconsidered the PhD dissertation of University of California, Berkeley, professor Sanjit Seshia in light of mallob-mono and were able to quickly (in about 2,000 lines of Rust) develop a new eager-reduction-based solver that outperforms today’s leading lazy-reduction tools on the notoriously difficult SMT-COMP bcnscheduling and job_shop benchmarks. Here we are solving SAT problems that go beyond Booleans, to involve integers, real numbers, strings, or functions. We call this SAT modulo theories, or SMT.

In the graph below we compare the performance of leading lazy SMT solvers CVC5 and Z3 to a Seshia-style eager solver based on the SAT solvers Kissat and mallob-mono on those benchmarks:

Solver performance.png

We’ve published the code for our Seshia-style eager solver on GitHub.

There are many other open questions driven by distributed proof search. For example, is there an effective lookahead-solver strategy for SMT that would facilitate cube-and-conquer? Or as the Zoncolan service does when analyzing programs for security vulnerabilities, can we memoize intermediate lemmas in a cloud database and reuse them, rather than recomputing for each query? Can Monte Carlo tree search in the cloud on past proofs be used to synthesize more-effective proof search strategies?

Another example: Reasoning about distributed systems

Recent examples of formal reasoning within AWS at the level of distributed-protocol design include a proof of S3’s recently announced strong consistency and the protocol-level proof of secrecy in AWS's KMS service. The problem with these proofs is that they apply to the protocols that power the distributed services, not necessarily to the code running on the servers that use those protocols.

Related content
SOSP paper describes lightweight formal methods for validating new S3 data storage service.

Here at Amazon, we believe that automated reasoning at the level of protocol design has the greatest long-term value when the investment cost is amortized and protected via continuous integration/continuous delivery (CI/CD) integrations with the code that implements the protocols. That is, the benefit of upfront effort is often seen later, when protocol compliance proofs fail on buggy changes to implementation source code. The code doesn’t make it to production until the developers have fixed it.

Again: major perspective shifts like those resulting from successful proofs about S3 and KMS could trigger a revolution, à la Kuhn. For years, we have had tools for reasoning about distributed systems, such as TLA+ and P. But with the success of the work with S3 and KMS, it’s now clear that protocol design should be a first-class concept for engineering, with tools that support it, proactively finding errors and proving properties.

These tools should also connect to the source code that speaks the protocols by (i) constructing specifications that can be proved with existing code-level tools and (ii) synthesizing implementation code in languages such as C, Go, Rust, or Java. The tools would facilitate integration into our CI/CD, code review, and ticketing systems, allowing service teams to (iii) synthesize “runtime monitors” to exploit enterprise-level operations strength by providing telemetry about the status of a service’s conformance to a proved protocol.

Final example: Automating regulatory compliance

At the recent Computer-Aided Verification (CAV ’21) workshop called Formal Approaches to Certifying Compliance (talks recorded and available), we heard from NIST, Coalfire, Collins Aerospace, DARPA, and Amazon about the use of automated reasoning to lower the cost and the time-to-market added by regulatory compliance.

Karthik Amrutesh of the AWS security assurance team reported that automated reasoning enabled a 91% reduction in the time it took for our third-party auditor to produce evidence for checking controls. For perhaps the first time in the more than 2,500-year history of mathematical logic, we see a business use case that exploits the difference between finding proofs and checking proofs. What's the difference? Finding is usually the hard part, the creative part, the part that requires sophisticated algorithms. Finding is usually undecidable or NP-complete, depending on the context.

Meanwhile, not only is checking proofs decidable in most cases, but it’s often linear in the size of the proof. To check proofs, compliance auditors can use well-understood and trusted small solvers such as HOL-light.

Using cloud-scale automation to find the proofs lowers cost. That lets the auditor offer its services for less, saving the customer money. It also reduces the latency of audits, a major pain point for developers looking to go to market quickly.

An audit check involves constraints on the form that valid text strings can take. The set of constraints is known as a string theory, and the imposition of that theory means that audit checks are SMT problems.

From the perspective of automated-reasoning science, it becomes important to build string theory solvers that can efficiently construct easily checkable proof artifacts. In the realm of propositional satisfiability — SAT problems — the DRAT proof checker is now the standard methodology for communicating proofs. But in SMT, no such standard exists. What would a general-purpose theory-agnostic SMT format and checker look like?

Conclusion

We've come a long way from days when automated reasoning was the exclusive domain of circuit designers or aerospace engineers. Success in these early domains kicked off a virtuous cycle for the makers of the theorem provers that power automated reasoning. With applications for mainstream applications such as cloud computing, the automated-reasoning virtuous cycle is now radically accelerating. After 2,500 years of mathematical-logic research and 70+ years of automated-reasoning science, we live in a heady time. With wider adoption of and investment in automated reasoning, we are seeing economies of scale where what we can do now would have been unimaginable even two or three years ago. Welcome to the future!

Research areas

Related content

IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Bellevue
Are you excited about customer-facing research and reinventing the way people think about long-held assumptions? At Amazon, we are constantly inventing and re-inventing to be the most customer-centric company in the world. To get there, we need exceptionally talented, bright, and driven people. Amazon is one of the most recognizable brand names in the world and we distribute millions of products each year to our loyal customers. A day in the life The ideal candidate will be responsible for quantitative data analysis, building models and prototypes for supply chain systems, and developing state-of-the-art optimization algorithms to scale. This team plays a significant role in various stages of the innovation pipeline from identifying business needs, developing new algorithms, prototyping/simulation, to implementation by working closely with colleagues in engineering, product management, operations, retail and finance. As a senior member of the research team, you will play an integral part on our Supply Chain team with the following technical and leadership responsibilities: * Interact with engineering, operations, science and business teams to develop an understanding and domain knowledge of processes, system structures, and business requirements * Apply domain knowledge and business judgment to identify opportunities and quantify the impact aligning research direction to business requirements and make the right judgment on research project prioritization * Develop scalable mathematical models to derive optimal or near-optimal solutions to existing and new supply chain challenges * Create prototypes and simulations to test devised solutions * Advocate technical solutions to business stakeholders, engineering teams, as well as executive-level decision makers * Work closely with engineers to integrate prototypes into production system * Create policy evaluation methods to track the actual performance of devised solutions in production systems, identify areas with potential for improvement and work with internal teams to improve the solution with new features * Mentor team members for their career development and growth * Present business cases and document models, analyses, and their results in order to influence important decisions About the team Our organization leads the innovation of Amazon’s ultra-fast grocery product initiatives. Our key vision is to transform the online grocery experience and provide a wide grocery selection in order to be the primary destination to fulfill customer’s food shopping needs. We are a team of passionate tech builders who work endlessly to make life better for our customers through amazing, thoughtful, and creative new grocery shopping experiences. To succeed, we need senior technical leaders to forge a path into the future by building innovative, maintainable, and scalable systems.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.