Using SAT solving to optimize quantum circuit mapping

In experiments involving real quantum devices and algorithms, automated-reasoning-based method for mapping quantum computations onto quantum circuits is 26 times as fast as predecessors.

Quantum computing (QC) is a new computational paradigm that promises significant speedup over classical computing on some problems. Quantum computations are often represented as complex circuits involving quantum “gates”, which are analogous to the logic gates in conventional computers.

However, the difficulty of building quantum computers means that the circuit layouts available in current quantum hardware are comparatively simple. Quantum compilers are programs that map the complex circuitry of quantum computation specifications onto the simpler circuits available today.

Circuit mapping often involves heavy use of the swap gate, which swaps the states of two adjacent quantum bits, or qubits. Through one or more swaps, a qubit state can move through the circuit until it’s adjacent to the next qubit it needs to interact with. But swap gates are costly and error-prone, so the compiler should minimize them.

Related content
Research on “super-Grover” optimization, quantum algorithms for topological data analysis, and simulation of physical systems displays the range of Amazon’s interests in quantum computing.

In a paper we presented at the 27th International Conference on Theory and Applications of Satisfiability Testing (SAT), we propose a novel method that uses automated reasoning to find circuit mappings that minimize the number of swap gates. Satisfiability (SAT) problems are problems that can be stated as expressions of Boolean (binary) variables and logical operations, and the question is whether there is an assignment of values to the variables that satisfies the expressions’ logical constraints.

In our method, a limit on the number of swap gates is one of the constraints that must be satisfied, and a SAT solver tells us whether it can be or not. In a comprehensive evaluation on practical instances over various quantum devices and algorithms, our approach proved 26 times as fast as state-of-the-art solver-based methods, reducing the compilation time from hours to minutes for important quantum applications. Compared to current heuristic algorithms, our method reduces the swap count by 26%, on average.

This is a joint project between Amazon’s Automated-Reasoning Group (ARG) and quantum team (Amazon Braket). I was a student intern when the work was done, so we were eligible for the SAT 2024 Best Student Paper Award, and we finished as runners-up.

Circuit mapping

In the same way that logic gates are the basic building blocks of classical computation, quantum gates are the building blocks of quantum computation. But quantum gating involves manipulating a quantum system in some way — say, changing its magnetic field — so quantum gates, unlike conventional logic gates, are applied at particular points in time. The swap gate is one of the basic quantum gates; others include the Hadamard gate, which puts a qubit into superposition (a mixture of different possible states), and the rotation gate.

Related content
Automated reasoning and optimizations specific to CPU microarchitectures improve both performance and assurance of correct implementation.

We illustrate the problem of quantum circuit mapping with an example. In the figure below, the schematic at left represents the qubit connectivity of (part of) the Rigetti Aspen M-3 quantum computer. Circles are physical qubits, and lines are physical links that allow the application of two-qubit gates.

The figure at right is the circuit diagram of a three-qubit quantum circuit for the famous quantum Fourier transform (QFT) algorithm. The three horizontal lines represent the time schedules of the quantum gates on the three algorithmic qubits. The boxes labeled H indicate one-qubit Hadamard gates, and the boxes labeled R, with connections to solid dots, represent two-qubit controlled rotation gates. The QFT circuit has a two-qubit rotation gate between each two-qubit subset of the three qubits.

Qubit connectivity graph.png
Qubit connectivity graph (left) of the Rigetti Aspen M-3 quantum computer. An example three-qubit QFT circuit (right).

Executing the QFT circuit on the Aspen M-3 device requires a quantum compiler to do circuit mapping. Circuit mapping involves two steps: initial qubit placement and qubit routing. During initial qubit placement, the quantum compiler maps each algorithmic qubit in the circuit to a physical qubit on the device, as shown below.

The QFT circuit requires each algorithmic qubit to interact with the other two. However, on the qubit connectivity graph of Aspen M-3, no subgraph forms a three-qubit ring that would allow pairwise qubit interaction. As a result, after initial qubit placement (at left in the figure below), the QFT circuit cannot be directly executed. This type of limitation necessitates the second step in circuit mapping: qubit routing.

Qubit routing is performed by inserting quantum swap gates. After a swap, any gates that, in the computation specification, are targeted to one of the swapped qubits must be re-targeted to its new location. The right-hand figure below denotes swap insertion as two crosses connected by a vertical line. From the example, we can see that swap gates can alter the connectivity requirements of the computation specification to match them with the qubit connectivity of the underlying quantum hardware.

Post-swap circuit.png
The qubit placement (left) and the circuit schedule after inserting a swap gate (right).

Optimization

Currently, there are two primary approaches to the circuit-mapping problem, solver-based and heuristics-based algorithms. Both approaches have their drawbacks: solver-based algorithms achieve optimal swap count but suffer from long compilation time; heuristic algorithms are fast, but the swap counts are usually suboptimal.

We propose a novel circuit-mapping method based on incremental and parallel solving for Boolean satisfiability (SAT). The figure below presents the framework of our method. We aim to find the minimum number of swap gates that can accommodate the circuit-mapping requirement by iteratively decreasing the swap gate count (S) and checking feasibility with a SAT solver.

Related content
Solution method uses new infrastructure that reduces proof-checking overhead by more than 90%.

Given three inputs — a quantum circuit, a quantum device (QPU), and an initial swap count (S) — we encode the quantum-circuit-mapping problem into a SAT formula in conjunctive normal form (CNF). A SAT solver takes the CNF as input and checks its satisfiability. A satisfiable (SAT) result indicates that there is a valid mapping that uses no more than S swap gates. In this case, we reduce the swap count S and continue the loop to search for a mapping with fewer swap gates. We exit the loop when the solver returns UNSAT, which indicates that we cannot decrease the swap count. Finally, we decode a mapped circuit from the best result we’ve obtained so far.

We developed an efficient implementation to solve the encoded circuit-mapping problem. We use an incremental SAT encoding to iteratively reduce the swap count S and solve the problem without re-encoding the entire problem at every iteration. Hence, the solver can reuse the internal state from the previous iterations to reduce the overall runtime across iterations. We further designed a tailored solver to utilize parallel solving techniques to improve the incremental solving performance.

Circuit-mapping framework.png
Framework of our approach.

A comprehensive evaluation on real-world quantum algorithms and devices demonstrates that our method is 26 times as fast as the existing solver-based approach and produces better results. Our method also improved on the heuristic approach on 76% of instances and achieved an average of 26% reduction in swap count.

Quantum-circuit-mapping results.png
Results of selected experiments comparing the new SAT-based circuit-mapping method (SATmapper) to two predecessors. The first column gives the instance name in a format that lists device name, algorithm name, and number of algorithmic qubits. The circuit-mapping methods are compared using both number of swap operations and running time.

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.