Amazon’s quantum computing papers at QIP 2023

Research on “super-Grover” optimization, quantum algorithms for topological data analysis, and simulation of physical systems displays the range of Amazon’s interests in quantum computing.

At this year’s Quantum Information Processing Conference (QIP), members of Amazon Web Services' Quantum Technologies group are coauthors on three papers, which indicate the breadth of the group’s research interests.

In “Mind the gap: Achieving a super-Grover quantum speedup by jumping to the end”, Amazon research scientist Alexander Dalzell, Amazon quantum research scientist Nicola Pancotti, Earl Campbell of the University of Sheffield and Riverlane, and I present a quantum algorithm that improves on the efficiency of Grover’s algorithm, one of the few quantum algorithms to offer provable speedups relative to conventional algorithms. Although the improvement on Grover’s algorithm is small, it breaks a performance barrier that hadn’t previously been broken, and it points to a methodology that could enable still greater improvements.

Related content
As the major quantum computing conference celebrates its anniversary, we ask the conference chair and the head of Amazon’s quantum computing program to take stock.

In “A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits”, Amazon research scientist Sam McArdle, Mario Berta of Aachen University, and András Gilyén of the Alfréd Rényi Institute of Mathematics in Budapest consider topological data analysis, a technique for analyzing big data. They present a new quantum algorithm for topological data analysis that, compared to the existing quantum algorithm, enables a quadratic speedup and an exponentially more efficient use of quantum memory.

For “Sparse random Hamiltonians are quantumly easy”, Chi-Fang (Anthony) Chen, a Caltech graduate student who was an Amazon intern when the work was done, won the conference's best-student-paper award. He's joined on the paper by Alex Dalzell and me, Mario Berta, and Caltech's Joel Tropp. The paper investigates the use of quantum computers to simulate physical properties of quantum systems. We prove that a particular model of physical systems — specifically, sparse, random Hamiltonians — can, with high probability, be efficiently simulated on a quantum computer.

Super-Grover quantum speedup

Grover’s algorithm is one of the few quantum algorithms that are known to provide speedups relative to classical computing. For instance, for the 3-SAT problem, which involves finding values for N variables that satisfy the constraints of an expression in formal logic, the running time of a brute-force classical algorithm is proportional to 2N; the running time of Grover’s algorithm is proportional to 2N/2.

Related content
Watch as the panel talks about everything from what got them interested in quantum research to where they see the field headed in the future.

Adiabatic quantum computing is an approach to quantum computing in which a quantum system is prepared so that, in its lowest-energy state (the “ground state”), it encodes the solution to a relatively simple problem. Then, some parameter of the system — say, the strength of a magnetic field — is gradually changed, so that the system encodes a more complex problem. If the system stays in its ground state through those changes, it will end up encoding the solution to the complex problem.

As the parameter is changed, however, the gaps between the system’s ground state and its first excited states vary, sometimes becoming infinitesimally small. If the parameter changes too quickly, the system may leap into one of its excited states, ruining the computation.

Hamiltonian energies.jpg
In adiabatic quantum computing, as the parameters (b) of a quantum system change, the gap between the system’s ground energy and its first excited state may vary.

In “Mind the gap: Achieving a super-Grover quantum speedup by jumping to the end”, we show that for an important class of optimization problems, it’s possible to compute an initial jump in the parameter setting that runs no risk of kicking the system into a higher energy state. Then, a second jump takes the parameter all the way to its maximum value.

Most of the time this will fail, but every once in a while, it will work: the system will stay in its ground state, solving the problem. The larger the initial jump, the greater the increase in success rate.

Super-Grover leap.gif
An initial, risk-free jump in the quantum system’s parameter setting (b) decreases the chances that jumping to the final setting will kick the system into an excited energy state.

Our paper proves that the algorithm has an infinitesimal but quantifiable advantage over Grover’s algorithm, and it reports a set of numerical experiments to determine the practicality of the approach. Those experiments suggest that the method, in fact, increases efficiency more than could be mathematically proven, although still too little to yield large practical benefits. The hope is that the method may lead to further improvements that could make a practical difference to quantum computers of the future.

Topological data analysis

Topology is a branch of mathematics that treats geometry at a high level of abstraction: on a topological description, any two objects with the same number of holes in them (say, a coffee cup and a donut) are identical.

Related content
New phase estimation technique reduces qubit count, while learning framework enables characterization of noisy quantum systems.

Mapping big data to a topological object — or manifold — can enable analyses that are difficult at lower levels of abstraction. Because topological descriptions are invariant to shape transformations, for instance, they are robust against noise in the data.

Topological data analysis often involves the computation of persistent Betti numbers, which characterize the number of holes in the manifold, a property that can carry important implications about the underlying data. In “A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits”, the authors propose a new quantum algorithm for computing persistent Betti numbers. It offers a quadratic speedup relative to classical algorithms and uses quantum memory exponentially more efficiently than existing quantum algorithms.

Topological mapping.png
Connecting points in a data cloud produces closed surfaces (or “simplices”, such as the triangle ABC) that can be mapped to the surface of a topological object, such as a toroid (donut shape).

Data can be represented as points in a multidimensional space, and topological mapping can be thought of as drawing line segments between points in order to produce a surface, much the way animators create mesh outlines of 3-D objects. The maximum length of the lines defines the length scale of the mapping.

At short enough length scales, the data would be mapped to a large number of triangles, tetrahedra, and their higher-dimensional analogues, which are known as simplices. As the length scale increases, simplices link up to form larger complexes, and holes in the resulting manifold gradually disappear. The persistent Betti number is the number of holes that persist across a range of longer length scales.

Related content
Researchers affiliated with Amazon Web Services' Center for Quantum Computing are presenting their work this week at the Conference on Quantum Information Processing.

The researchers’ chief insight is, though the dimension of the representational space may be high, in most practical cases, the dimension of the holes is much lower. The researchers define a set of boundary operators, which find the boundaries (e.g., the surfaces of 3-D shapes) of complexes (combinations of simplices) in the representational space. In turn, the boundary operators (or more precisely, their eigenvectors) provide a new geometric description of the space, in which regions of the space are classified as holes or not-holes.

Since the holes are typically low dimensional, so is the space, which enables the researchers to introduce an exponentially more compact mapping of simplices to qubits, dramatically reducing the spatial resources required for the algorithm.

Sparse random Hamiltonians

The range of problems on which quantum computing might enable useful speedups, compared to classical computing, is still unclear. But one area where quantum computing is likely to offer advantages is in the simulation of quantum systems, such as molecules. Such simulations could yield insights in biochemistry and materials science, among other things.

Related content
New approach reduces the number of ancillary qubits required to implement the crucial T gate by at least an order of magnitude.

Often, in quantum simulation, we're interested in quantum systems' low-energy properties. But in general, it’s difficult to prove that a given quantum algorithm can prepare a quantum system in a low-energy state.

The energy of a quantum system is defined by its Hamiltonian, which can be represented as a matrix. In “Sparse random Hamiltonians are quantumly easy”, we show that for almost any Hamiltonian matrix that is sparse — meaning it has few nonzero entries — and random — meaning the locations of the nonzero entries are randomly assigned — it is possible to prepare a low-energy state.

Moreover, we show that the way to prepare such a state is simply to initialize the quantum memory that stores the model to a random state (known as preparing a maximally mixed state).

Semicircular distribution.png
The semicircular distribution of eigenvalues for a particular quantum system, the Pauli string ensemble.

The key to our proof is to generalize a well-known result for dense matrices — Wigner's semicircle distribution for Gaussian unitary ensembles (GUEs) — to sparse matrices. Computing the energy level of a quantum system from its Hamiltonian involves calculating the eigenvalues of the Hamiltonian matrix, a standard operation in linear algebra. Wigner showed that the eigenvalues of random dense matrices form a semicircular distribution. That is, the possible eigenvalues of random matrices don’t trail off to infinity in a long tail; instead, they have sharp demarcation points. There are no possible values above and below some clearly defined thresholds.

Related content
The noted physicist answers 3 questions about the challenges of quantum computing and why he’s excited to be part of a technology development project.

Dense Hamiltonians, however, are rare in nature. The Hamiltonians describing most of the physical systems that physicists and chemists care about are sparse. By showing that sparse Hamiltonians conform to the same semicircular distribution that dense Hamiltonians do, we prove that the number of experiments required to measure a low-energy state of a quantum simulation will not proliferate exponentially.

In the paper, we also show that any low-energy state must have non-negligible quantum circuit complexity, suggesting that it could not be computed efficiently by a classical computer — an argument for the necessity of using quantum computers to simulate quantum systems.

Research areas

Related content

US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Research Scientist in the Flight Sciences High-Fidelity Methods (HFM) team within Flight Sciences, you will develop and verify aerodynamics models used for engineering analyses and vehicle simulation. These models are the backbone of every flight simulation performed within Prime Air and are a critical element in the aircraft design, verification and certification process. These models are used to predict many attributes of the vehicle performance including range, maneuverability, tracking error, and aircraft stability. They are a key input to design decisions, vehicle component sizing and flight software algorithm development. The accuracy and reliability of these flight model are critical to the success of Prime Air. For this role we are looking for a scientist to develop surrogate or machine learning models to represent the complex aerodynamic behavior of our drones. This scientist will develop techniques to validate these models using flight testing, quantify the model uncertainty, and assess the impact of this uncertainty on downstream engineering analyses. Key job responsibilities A Research Scientist in this role is responsible for owning the development, deployment, verification, and maintenance of models from end-to-end. This includes the initial gathering of the downstream customer needs, identifying the most suitable modelling approach, coordinating the generation of input data, training models, developing and maintaining software interfaces, and verifying the model accuracy. A Research Scientist in this role is responsible for determining the most suitable modeling approach for a given physical phenomena. They need to possess knowledge of various machine learning techniques, and their respective advantages and limitations. They will need to have a detailed understanding of the types of physics to be modelled including vehicle aerodynamics, multibody dynamics, and atmosphere physics. This role is responsible for designing experiments for generating data used to train and verify surrogate models. They need to have a basic understanding of the methods used to generate high-fidelity aerodynamics predictions including CFD, wind tunnel testing, and flight testing. They will be responsible for validating the models by leveraging uncertainty quantification, system identification, and statical analyses. Export Control License This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf. A day in the life A Research Scientist in the High-Fidelity Methods (HFM) team will have the opportunity to work on a wide variety of tasks. The ideal candidate should be adaptable and thrive in an everchanging environment. Depending on the phase of model or vehicle development, a typical day might consist of reading research papers on machine learning techniques, developing test plans for wind tunnel testing, writing code to train and verify models, reviewing flight test results, or writing documentation. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Santa Clara
AWS AI/ML is looking for world class scientists and engineers to work on foundation models, large-scale representation learning, and distributed learning methods and systems. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new representation learning solutions. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to synergistically combine them, and how to scale the modeling methods to learn with huge models and on large datasets. Join us to work as an integral part of a team that has diverse experiences in this space. We actively work on these areas: Hardware-informed efficient model architecture, training objective and curriculum design Distributed training, accelerated optimization methods Continual learning, multi-task/meta learning Reasoning, interactive learning, reinforcement learning Robustness, privacy, model watermarking Model compression, distillation, pruning, sparsification, quantization A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
US, WA, Seattle
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
US, NY, New York
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
US, WA, Seattle
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA