Amazon Scholar John Preskill on the AWS quantum computing effort

The noted physicist answers 3 questions about the challenges of quantum computing and why he’s excited to be part of a technology development project.

In June, Amazon Web Services (AWS) announced that John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology, an advisor to the National Quantum Initiative, and one of the most respected researchers in the field of quantum information science, would be joining Amazon’s quantum computing research effort as an Amazon Scholar.

Quantum computing is an emerging technology with the potential to deliver large speedups — even exponential speedups — over classical computing on some computational problems.

John Preskill
John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar
Credit: Caltech / Lance Hayashida

Where a bit in an ordinary computer can take on the values 0 or 1, a quantum bit, or qubit, can take on the values 0, 1, or, in a state known as superposition, a combination of the two. Quantum computing depends on preserving both superposition and entanglement, a fragile condition in which the qubits’ quantum states are dependent on each other.

The goal of the AWS Center for Quantum Computing, on the Caltech campus, is to develop and build quantum computing technologies and deliver them onto the AWS cloud. At the center, Preskill will be joining his Caltech colleagues Oskar Painter and Fernando Brandao, the heads of AWS’s Quantum Hardware and Quantum Algorithms programs, respectively, and Gil Refael, the Taylor W. Lawrence Professor of Theoretical Physics at Caltech and, like Preskill, an Amazon Scholar.

Other Amazon Scholars contributing to the AWS quantum computing effort are Amir Safavi-Naeini, an assistant professor of applied physics at Stanford University, and Liang Jiang, a professor of molecular engineering at the University of Chicago.

Amazon Science asked Preskill three questions about the challenges of quantum computing and why he’s excited about AWS’s approach to meeting them.

Q: Why is quantum computing so hard?

What makes it so hard is we want our hardware to simultaneously satisfy a set of criteria that are nearly incompatible.

On the one hand, we need to keep the qubits almost perfectly isolated from the outside world. But not really, because we want to control the computation. Eventually, we’ve got to measure the qubits, and we've got to be able to tell them what to do. We're going have to have some control circuitry that determines what actual algorithm we’re running.

So why is it so important to keep them isolated from the outside world? It's because a very fundamental difference between quantum information and ordinary information expressed in bits is that you can't observe a quantum state without disturbing it. This is a manifestation of the uncertainty principle of quantum mechanics. Whenever you acquire information about a quantum state, there's some unavoidable, uncontrollable disturbance of the state.

So in the computation, we don't want to look at the state until the very end, when we're going to read it out. But even if we're not looking at it ourselves, the environment is looking at it. If the environment is interacting with the quantum system that encodes the information that we're processing, then there's some leakage of information to the outside, and that means some disturbance of the quantum state that we're trying to process.

Explore our new quantum technologies research section

Quantum computing has the potential to solve computational problems that are beyond the reach of today's classical computers. Find the latest quantum news, research papers, and more.

So really, we need to keep the quantum computer almost perfectly isolated from the outside world, or else it's going to fail. It's going to have errors. And that sounds ridiculously hard, because hardware is never going to be perfect. And that's where the idea of quantum error correction comes to the rescue.

The essence of the idea is that if you want to protect the quantum information, you have to store it in a very nonlocal way by means of what we call entanglement. Which is, of course, the origin of the quantum computer’s magic to begin with. A highly entangled state has the property that when you have the state shared among many parts of a system, you can look at the parts one at a time, and that doesn't reveal any of the information that is carried by the system, because it's really stored in these unusual nonlocal quantum correlations among the parts. And the environment interacts with the parts kind of locally, one at a time.

If we store the information in the form of this highly entangled state, the environment doesn't find out what the state is. And that's why we're able to protect it. And we've also figured out how to process information that's encoded in this very entangled, nonlocal way. That's how the idea of quantum error correction works. What makes it expensive is in order to get very good protection, we have to have the information shared among many qubits.

Q: Today’s error correction schemes can call for sharing the information of just one logical qubit — the one qubit actually involved in the quantum computation — across thousands of additional qubits. That sounds incredibly daunting, if your goal is to perform computations that involve dozens of logical qubits.

Well, that's why, as much as we can, we would like to incorporate the error resistance into the hardware itself rather than the software. The way we usually think about quantum error correction is we’ve got these noisy qubits — it's not to disparage them or anything: they're the best qubits we've got in a particular platform. But they're not really good enough for scaling up to solving really hard problems. So the solution which at least theoretically we know should work is that we use a code. That is, the information that we want to protect is encoded in the collective state of many qubits instead of just the individual qubits.

We're interested in what is fundamentally different between classical systems and quantum systems. And I don't know a statement that more dramatically expresses the difference than saying that there are problems that are easy quantumly and hard classically.

But the alternative approach is to try to use error correction ideas in the design of the hardware itself. Can we use an encoding that has some kind of intrinsic noise resistance at the physical level?

The original idea for doing this came from one of my Caltech colleagues, Alexei Kitaev, and his idea was that you could just design a material that sort of has its own strong quantum entanglement. Now people call these topological materials; what's important about them is they're highly entangled. And so the information is spread out in this very nonlocal way, which makes it hard to read the information locally.

Making a topological material is something people are trying to do. I think the idea is still brilliant, and maybe in the end it will be a game-changing idea. But so far it's just been too hard to make the materials that have the right properties.

A better bet for now might be to do something in-between. We want to have some protection at the hardware level, but not go as far as these topological materials. But if we can just make the error rate of the physical qubits lower, then we won't need so much overhead from the software protection on top.

Q: For a theorist like you, what’s the appeal of working on a project whose goal is to develop new technologies?

My training was in particle physics and cosmology, but in the mid-nineties, I got really excited because I heard about the possibility that if you could build a quantum computer, you could factor large numbers. As physicists, of course, we're interested in what is fundamentally different between classical systems and quantum systems. And I don't know a statement that more dramatically expresses the difference than saying that there are problems that are easy quantumly and hard classically.

The situation is we don't know much about what happens when a quantum system is very profoundly entangled, and the reason we don't know is because we can't simulate it on our computers. Our classical computers just can't do it. And that means that as theorists, we don't really have the tools to explain how those systems behave.

I have done a lot of work on these quantum error correcting codes. It was one of my main focuses for almost 15 years. There were a lot of issues of principle that I thought were important to address. Things like, What do you really need to know about noise for these things to work? This is still an important question, because we had to make some assumptions about the noise and the hardware to make progress.

I said the environment looks at the system locally, sort of one part at a time. That's actually an assumption. It's up to the environment to figure out how it wants to look at it. As physicists, we tend to think physics is kind of local, and things interact with other nearby things. But until we’re actually doing it in the lab, we won't really be sure how good that assumption is.

So this is the new frontier of the physical sciences, exploring these more and more complex systems of many particles interacting quantum mechanically, becoming highly entangled. Sometimes I call it the entanglement frontier. And I'm excited about what we can learn about physics by exploring that. I really think in AWS we are looking ahead to the big challenges. I'm pretty jazzed about this.

#403: Amazon Scholars

On November 2, 2020, John Preskill joined Simone Severini, the director of AWS Quantum Computing, for an interview with Simon Elisha, host of the Official AWS Podcast.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.