25 years of QIP

As the major quantum computing conference celebrates its anniversary, we ask the conference chair and the head of Amazon’s quantum computing program to take stock.

In 1981, at a conference in Boston, the physicist Richard Feynman suggested that a computer that harnessed quantum-mechanical phenomena could easily perform computations that would be difficult — even prohibitively difficult — for a classical computer.

QIP 25.png
Thomas Vidick (left), a professor of computing and mathematical sciences at Caltech and chair of the 25th Annual Conference on Quantum Information Processing, and Simone Severini (right), director of quantum computing for Amazon Web Services.

In 1994, the Bell Labs mathematician Peter Shor showed that a quantum computer — still an entirely hypothetical device — could factor numbers exponentially faster than a classical computer can. “Shor’s algorithm constituted the killer app that got everybody interested,” the MIT quantum computing researcher Seth Lloyd once said.

Three years later, in 1998, the first Conference on Quantum Information Processing (QIP) was held in Aarhus, Denmark. Since then, quantum computing has become a major research initiative at leading tech companies, and QIP has become the premier conference in the field of quantum information processing.

Related content
Researchers affiliated with Amazon Web Services' Center for Quantum Computing are presenting their work this week at the Conference on Quantum Information Processing.

To mark QIP’s 25th anniversary, Amazon Science asked two prominent quantum information scientists — Thomas Vidick, a professor of computing and mathematical science at Caltech and chair of this year’s QIP, and Simone Severini, director of quantum computing at Amazon Web Services — a pair of questions about how far the field has come in the last 25 years and how far it still has to go.

What’s surprised you most about what we’ve learned about quantum information science in the past 25 years?

Thomas Vidick: Well, honestly, that we can run a 20-qubit quantum algorithm, and it actually looks like it is going as planned. While my whole research is premised on the assumption that quantum mechanics is a sufficiently accurate description of nature that it makes sense to study its consequences for computation, truly "seeing" such a computation take place was a revelation. (I need to use quotes because of course we can't see a quantum computation take place without affecting it. But for small computations we can plot outcome statistics in a very detailed way.) For me, the revelation came when I saw the results of an implementation of Simon's algorithm for a four-bit secret a few years ago, by the Monroe group working with ion traps. I couldn't believe it: it sampled exactly the right strings.

Related content
New method enables entanglement between vacancy centers tuned to different wavelengths of light.

Going back not even 25 years, but 15 years, which is when I first learned, while studying for a master’s, that quantum computation was a thing, the fact that it could become a reality was absolutely not on my radar, nor I believe on most theorists', let alone experimentalists'. I think that learning that quantum computing works, as opposed to believing that it does, is having a major impact on how we approach quantum information science.

Simone Severini: Quantum information science contributed to a rich interplay between physics, mathematics, and computation. That interplay gave rise to new techniques that cross the boundaries of these fields.

Severini@QIP01.jpg
Ernesto F. Galvão, leader of the Quantum and Linear-Optical Computation group at the International Iberian Nanotechnology Laboratory; Iordanis Kerenidis, head of quantum algorithms for QC Ware, a senior researcher at the French National Center for Scientific Research, and director of the Paris Center for Quantum Computing; and Severini at the fourth QIP, in Amsterdam, 2001.
Courtesy of Simone Severini

A beautiful example is the application of quantum complexity theory to solve in the negative the Connes embedding problem, by Ji, Natarajan, Vidick, Wright, and Yuen, in 2020. Connes’ embedding problem is a problem in abstract algebra, where an “algebra” is a combination of a set, a group of operators, and axioms that describe how the operators are applied. The real numbers are one example of a set, and the arithmetic operators are one example of a group of operators, but in abstract algebra, these could be anything.

Connes’ problem asks whether one class of algebras is contained in another class. Alain Connes formulated it in 1976 in a paper that led to his Fields Medal in 1982. Since then, the problem has been reformulated in several different branches of mathematics; multiple conferences have been dedicated to just this problem.

Related content
New approach reduces the number of ancillary qubits required to implement the crucial T gate by at least an order of magnitude.

The result of Ji et al. is a surprising case where notions and techniques that are part of the quantum information science toolbox turned out to be impactful in other areas of mathematics and the natural sciences. And it’s just one of many exciting examples.

What do you see as the biggest remaining challenge in the field?

Thomas Vidick: The obvious challenges faced by the field are, on the experimental front, realizing a quantum computer, and in particular reducing error rates while scaling up system sizes, and on the theoretical front, finding applications for such a computer. While as a theorist I tend to think of the first as a hard, but definitely solvable, engineering challenge, I am less confident in the eventual outcome of the second: beyond niche applications in quantum simulation and the widespread deployment of post-quantum cryptography, will quantum computers make their way into daily consumer life?

This is the billion-dollar question; but to be honest, it's not the one I'm most preoccupied about. Closer to my heart, and perhaps less obvious, is the challenge of maintaining the coherence, vitality, and impact that quantum information science has had over the past quarter-century, all the way through the next quarter-century (and more!). When I look back to the first QIP programs, there was little concern for near-term applicability of the theoretical results. In contrast, I am probably not overestimating much by asserting that nearly half the scientific program of QIP in the past couple years has had some "near-term" motivation.

In the complex and fast-paced world of today, we should not forget that fundamental science is still the root of future innovation.
Simone Severini

This evolution reflects a genuine and justified enthusiasm for the potential practical impact of our work as researchers, which 25 years ago was such a distant prospect that it wasn't even in the back of our minds. What consequences this evolution will have on the health and diversity of our field remains to be seen. Will QIP split into "applied" and "theoretical" QIPs, and if so, will this split be done in a manner that maintains strong interaction between the two components? Will theoretical work in quantum information retain its strength and stature within the computer science community, independently of the success or failure of experimental approaches?

Related content
The noted physicist answers 3 questions about the challenges of quantum computing and why he’s excited to be part of a technology development project.

Researchers in our field have always fought, with great success, for demonstrating the importance of the ideas of quantum information, much more so than its possible practical relevance. Now that the latter is becoming reality, we should not forget the former.

Simone Severini: It’s gripping to observe how quantum information science has overflowed from academia into industry. The broader interest that we are seeing today in this field is a great opportunity, but there are risks. I believe that the biggest nontechnical challenge for the field is to grow organically and steadily in an environment that tries to balance scientific research and engineering, while proposing commercial routes with future impact. In the complex and fast-paced world of today, we should not forget that fundamental science is still the root of future innovation. To realize the long-term promises of quantum technologies, like processors and communication devices that can outperform classical engineering, it’s important to set the right expectations today. In this context, it's essential to support education and scientific discovery and stress the need for long-term visions.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.