How Amazon’s Vulcan robots use touch to plan and execute motions

Unique end-of-arm tools with three-dimensional force sensors and innovative control algorithms enable robotic arms to “pick” items from and “stow” items in fabric storage pods.

This week, at Amazon’s Delivering the Future symposium in Dortmund, Germany, Amazon announced that its Vulcan robots, which stow items into and pick items from fabric storage pods in Amazon fulfillment centers (FCs), have completed a pilot trial and are ready to move into beta testing.

Storage bin.png
A robot-mounted fabric storage pod in an Amazon fulfillment center. Products in the pod bins are held in place by semi-transparent elastic bands.

Amazon FCs already use robotic arms to retrieve packages and products from conveyor belts and open-topped bins. But a fabric pod is more like a set of cubbyholes, accessible only from the front, and the items in the individual cubbies are randomly assorted and stacked and held in place by elastic bands. It’s nearly impossible to retrieve an item from a cubby or insert one into it without coming into physical contact with other items and the pod walls.

The Vulcan robots thus have end-of-arm tools — grippers or suction tools — equipped with sensors that measure force and torque along all six axes. Unlike the robot arms currently used in Amazon FCs, the Vulcan robots are designed to make contact with random objects in their work environments; the tool sensors enable them to gauge how much force they are exerting on those objects — and to back off before the force becomes excessive.

“A lot of traditional industrial automation — think of welding robots or even the other Amazon manipulation projects — are moving through free space, so the robot arms are either touching the top of a pile, or they're not touching anything at all,” says Aaron Parness, a director of applied science with Amazon Robotics, who leads the Vulcan project. “Traditional industrial automation, going back to the ’90s, is built around preventing contact, and the robots operate using only vision and knowledge of where their joints are in space.

“What's really new and unique and exciting is we are using a sense of touch in addition to vision. One of the examples I give is when you as a person pick up a coin off a table, you don't command your fingers to go exactly to the specific point where you grab the coin. You actually touch the table first, and then you slide your fingers along the table until you contact the coin, and when you feel the coin, that's your trigger to rotate the coin up into your grasp. You're using contact both in the way you plan the motion and in the way you control the motion, and our robots are doing the same thing.”

The Vulcan pilot involved six Vulcan Stow robots in an FC in Spokane, Washington; the beta trial will involve another 30 robots in the same facility, to be followed by an even larger deployment at a facility in Germany, with Vulcan Stow and Vulcan Pick working together.

Vulcan Stow
The Vulcan Stow robot visualizes the volume of space necessary to stow a new item in a fabric pod, and to create that space, it uses its extensible blade to move other items to the side.

Inside the fulfillment center

When new items arrive at an FC, they are stowed in fabric pods at a stowing station; when a customer places an order, the corresponding items are picked from pods at a picking station. Autonomous robots carry the pods between the FC’s storage area and the stations. Picked items are sorted into totes and sent downstream for packaging.

Aaron Parness.jpeg
Amazon Robotics director of applied science Aaron Parness with two Vulcan Pick robots.

The allocation of items to pods and pod shelves is fairly random. This may seem counterintuitive, but in fact it maximizes the efficiency of the picking and stowing operations. An FC might have 250 stowing stations and 100 picking stations. Random assortment minimizes the likelihood that any two picking or stowing stations will require the same pod at the same time.

To reach the top shelves of a pod, a human worker needs to climb a stepladder. The plan is for the Vulcan robots to handle the majority of stow and pick operations on the highest and lowest shelves, while humans will focus on the middle shelves and on more challenging operations involving densely packed bins or items, such as fluid containers, that require careful handling.

End-of-arm tools

The Vulcan robots' main hardware innovation is the end-of-arm tools (EOATs) they use to perform their specialized tasks.

The pick robot’s EOAT is a suction device. It also has a depth camera to provide real-time feedback on the way in which the contents of the bin have shifted in response to the pick operation.

Pick EOAT.png
The pick end-of-arm tool.

The stow EOAT is a gripper with two parallel plates that sandwich the item to be stowed. Each plate has a conveyer belt built in, and after the gripper moves into position, it remains stationary as the conveyer belts slide the item into position. The stow EOAT also has an extensible aluminum attachment that’s rather like a kitchen spatula, which it uses to move items in the bin aside to make space for the item being stowed.

Stow EAOT.png
The stow end-of-arm tool. The extensible aluminum plank, in its retracted position, extends slightly beyond the lower gripper.

Both the pick and stow robots have a second arm whose EOAT is a hook, which is used to pull down or push up the elastic bands covering the front of the storage bin.

Band arm.png
The band arm in action.

The stow algorithm

As a prelude to the stow operation, the stow robot’s EOAT receives an item from a conveyor belt. The width of the gripper opening is based on a computer vision system's inference of the item's dimensions.

Stow item grasping.png
The stow end-of-arm tool receiving an item from a conveyor belt.

The stow system has three pairs of stereo cameras mounted on a tower, and their redundant stereo imaging allows it to build up a precise 3-D model of the pod and its contents.

At the beginning of a stow operation, the robot must identify a pod bin with enough space for the item to be stowed. A pod’s elastic bands can make imaging the items in each bin difficult, so the stow robot’s imaging algorithm was trained on synthetic bin images in which elastic bands were added by a generative-AI model.

The imaging algorithm uses three different deep-learning models to segment the bin image in three different ways: one model segments the elastic bands; one model segments the bins; and the third segments the objects inside the bands. These segments are then projected onto a three-dimensional point cloud captured by the stereo cameras to produce a composite 3-D segmentation of the bin.

Stow vision algorithm.png
From right: a synthetic pod image, with elastic bands added by generative AI; the bin segmentation; the band segmentation; the item segmentation; the 3-D composite.

The stow algorithm then computes bounding boxes indicating the free space in each bin. If the sum of the free-space measurements for a particular bin is adequate for the item to be stowed, the algorithm selects the bin for insertion. If the bounding boxes are non-contiguous, the stow robot will push items to the side to free up space.

The algorithm uses convolution to identify space in a 2-D image in which an item can be inserted: that is, it steps through the image applying the same kernel — which represents the space necessary for an insertion — to successive blocks of pixels until it finds a match. It then projects the convolved 2-D image onto the 3-D model, and a machine learning model generates a set of affordances indicating where the item can be inserted and, if necessary, where the EOAT’s extensible blade can be inserted to move objects in the bin to the side.

Stow convolution.png
A kernel representing the space necessary to perform a task (left) is convolved with a 2-D image to identify a location where the task can be performed. A machine learning model then projects the 2-D model onto a 3-D representation and generates affordances (blue lines, right) that indicate where end-of-arm tools should be inserted.
Sweep affordance.png
If stowing an item requires sweeping objects in the bin to the side to create space, the stow affordance (yellow box) may overlap with objects depicted in the 3-D model. The blue line indicates where the extensible blade should be inserted to move objects to the side.

Based on the affordances, the stow algorithm then strings together a set of control primitives — such as approach, extend blade, sweep, and eject_item — to execute the stow. If necessary, the robot can insert the blade horizontally and rotate an object 90 degrees to clear space for an insertion.

“It's not just about creating a world model,” Parness explains. “It's not just about doing 3-D perception and saying, ‘Here's where everything is.’ Because we're interacting with the scene, we have to predict how that pile of objects will shift if we sweep them over to the side. And we have to think about like the physics of ‘If I collide with this T-shirt, is it going to be squishy, or is it going to be rigid?’ Or if I try and push on this bowling ball, am I going to have to use a lot of force? Versus a set of ping pong balls, where I'm not going to have to use a lot of force. That reasoning layer is also kind of unique.”

The pick algorithm

The first step in executing a pick operation is determining bin contents’ eligibility for robotic extraction: if a target object is obstructed by too many other objects in the bin, it’s passed to human pickers. The eligibility check is based on images captured by the FC’s existing imaging systems and augmented with metadata about the bins’ contents, which helps the imaging algorithm segment the bin contents.

Eligibility check.png
Sample results of the pick algorithm’s eligibility check. Eligible items are outlined in green, ineligible items in red.

The pick operation itself uses the EOAT’s built-in camera, which uses structured light — an infrared pattern projected across the objects in the camera’s field of view — to gauge depth. Like the stow operation, the pick operation begins by segmenting the image, but the segmentation is performed by a single MaskDINO neural model. Parness’s team, however, added an extra layer to the MaskDINO model, which classifies the segmented objects into four categories: (1) not an item (e.g., elastic bands or metal bars), (2) an item in good status (not obstructed), (3) an item below others, or (4) an item blocked by others.

Segment classification.png
An example of a segmented and classified bin image.

Like the stow algorithm, the pick algorithm projects the segmented image onto a point cloud indicating the depths of objects in the scene. The algorithm also uses a signed distance function to characterize the three-dimensional scene: free space at the front of a bin is represented with positive distance values, and occupied space behind a segmented surface is represented with negative distance values.

Next — without scanning barcodes — the algorithm must identify the object to be picked. Since the products in Amazon’s catalogue are constantly changing, and the lighting conditions under which objects are imaged can vary widely, the object identification compares target images on the fly to sample product images captured during other FC operations.

The product-matching model is trained through contrastive learning: it’s fed pairs of images, either same product photographed from different angles and under different lighting conditions, or two different products; it learns to minimize the distance between representations of the same object in the representational space and to maximize the distance between representations of different objects. It thus becomes a general-purpose product matcher.

Pick pose representation.png
A pick pose representation of a target object in a storage pod bin. Colored squares represent approximately flat regions of the object. Olive green rays indicate candidate adhesion points.

Using the 3-D composite, the algorithm identifies relatively flat surfaces of the target item that promise good adhesion points for the suction tool. Candidate surfaces are then ranked according to the signed distances of the regions around them, which indicate the likelihood of collisions during extraction.

Finally, the suction tool is deployed to affix itself to the highest-ranked candidate surface. During the extraction procedure, the suction pressure is monitored to ensure a secure hold, and the camera captures 10 low-res images per second to ensure that the extraction procedure hasn’t changed the geometry of the bin. If the initial pick point fails, the robot tries one of the other highly ranked candidates. In the event of too many failures, it passes the object on for human extraction.

“I really think of this as a new paradigm for robotic manipulation,” Parness says. “Getting out of the ‘I can only move through free space’ or ‘Touch the thing that's on the top of the pile’ to the new paradigm where I can handle all different kinds of items, and I can dig around and find the toy that's at the bottom of the toy chest, or I can handle groceries and pack groceries that are fragile in a bag. I think there's maybe 20 years of applications for this force-in-the-loop, high-contact style of manipulation.”

For more information about the Vulcan Pick and Stow robots, see the associated research papers: Pick | Stow.

Research areas

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
US, NY, New York
We are seeking a motivated and talented Applied Scientist to join our team at Amazon Advertising, where we are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping beautiful, delightful, and personal. Our team builds the central Brand Understanding foundation for Amazon ads and beyond. We focus on enabling the Amazon brand ads businesses to align the customer's brand shopping intent with the brand's unique value (e.g., intelligent query/shopper-to-brand understanding, brand value/differentiator attribute extraction, and brand profile building). We provide large-scale offline and online Brand Understanding data services, powered by the latest Machine Learning technologies (e.g., Large Language Models, Multi-Modal Deep Neural Networks, Statistical Modeling). We also enable customer-brand engagement enhancement through intelligent UX and efficient ads serving. About Amazon Advertising: Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital display advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers of all types to reach Amazon customers on Amazon.com, across our other owned and operated sites, on other high quality sites across the web, and on millions of mobile devices. We start with the customer and work backwards in everything we do, including advertising. If you’re interested in joining a rapidly growing team working to build a unique, world-class advertising group with a relentless focus on the customer, you’ve come to the right place. Key job responsibilities - Leverage Large Language Models (LLMs) and transformer-based models, and apply machine learning and natural language understanding techniques to improve the shopper and advertiser experience at Amazon. - Perform hands-on data analysis and modeling with large data sets to develop insights. - Run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Be a member of the Amazon-wide machine learning community, participating in internal and external hackathons and conferences - Help attract and recruit technical talent
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).