“Robin deals with a world where things are changing all around it”

An advanced perception system, which detects and learns from its own mistakes, enables Robin robots to select individual objects from jumbled packages — at production scale.

Inside an Amazon fulfillment center, as packages roll down a conveyor, the Robin robotic arm goes to work. It dips, picks up a package, scans its, and places it on a small drive robot that routes it to the correct loading dock. By the time the drive has dropped off its package, Robin has loaded several more delivery robots.

While Robin looks a lot like other robotic arms used in industry, its vision system enables it to see and react to the world in an entirely different way.

“Most robotic arms work in a controlled environment,” explained Charles Swan, a senior manager of software development at Amazon Robotics & AI. “If they weld vehicle frames, for example, they expect the parts to be in a fixed location and follow a pre-scripted set of motions. They do not really perceive their environment.

Related content
While these systems look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

“Robin deals with a world where things are changing all around it. It understands what objects are there — different sized boxes, soft packages, envelopes on top of other envelopes — and decides which one it wants and grabs it. It does all these things without a human scripting each move that it makes. What Robin does is not unusual in research. But it is unusual in production.”

Yet, thanks to machine learning, Robin and its advanced perception system are moving rapidly into production. When Swan began working with the robot in 2021, Amazon was operating only a couple dozen units at its fulfillment centers. Today, Swan’s team is significantly scaling that perception system.

To reach that goal, Amazon Robotics researchers are exploring ways for Robin to achieve unparalleled levels of production accuracy. Because Amazon is so focused on improving the customer experience through timely deliveries, even 99.9% accuracy doesn’t meet the mark for robotics researchers.

Training day

Over the past five years, machine learning has significantly advanced the ability of robots to see, understand, and reason about their environment.

Robin perception testing
Model 1 from October 2021 — The model misses two black packages and one occluded package.

In the past, classical computer vision algorithms systematically segmented scenes into individual elements, a slow and computationally intensive approach. Supervised machine learning has made that process more efficient.

robinperceptiontest2.png
Model 2 from November 2021 — The black packages are detected, but a heavily occluded one is still missed.

“We don’t explicitly say how the model should learn,” said Bhavana Chandrashekhar, a software development manager at Amazon Robotics & AI. “Instead, we give it an input image and say, ‘This is an object.’ Then it tries to identify the object in the image, and we grade how well it does that. Using only that supervised feedback, the model learns how to extract features from the images so it can classify the objects in them.”

robinperceptiontest3.png
Model 3 from February 2022 — All packages are correctly detected.

Robin’s perception system started with pre-trained models that could already identify object elements like edges and planes.

Next, it was taught to identify the type of packages found within the fulfillment center’s sortation area.

Machine learning models learn best when provided with an abundance of sample images. Yet, despite shipping millions of packages daily, Chandrashekhar’s team initially found it hard to find enough training data to capture the enormous variation of the boxes and packages continuously rolling down a conveyor.

“Everything comes in a jumble of sizes and shapes, some on top of the other, some in the shadows,” Chandrashekhar said. “During the holidays, you might see pictures of Minions or Billy Eilish mixed in with our usual brown and white packages. The taping might change.

“Sometimes, the differences between one package and another are hard to see, even for humans. You might have a white envelope on another white envelope, and both are crinkled so you can’t tell where one begins and the other ends,” she explained.

To teach Robin’s model to make sense of what it sees, researchers gathered thousands of images, drew lines around features like boxes, yellow, brown and white mailers, and labels, and added descriptions. The team then used these annotated images to continually retrain the robot.

The training continued in a simulated production environment, with the robot working on a live conveyor with test packages.

Whenever Robin failed to identify an object or make a pick, the researchers would annotate the errors and add them to the training deck. This on-going training regimen significantly improved the robot’s efficiency.

Continual learning

Robin’s success rate during these tests improved markedly, but the researchers pushed for near perfection. “We want to be really good at these random edge problems, which happen only a few times during testing, but occur more often in field when we’re running at larger scale,” Chandrashekhar said.

Because of Robin’s high accuracy rate in testing, researchers found it difficult to find enough of those mistakes to create a dataset for further training. “In the beginning, we had to imagine how the robot would make a mistake in order to create the type of data we could use to improve the model,” Chandrashekhar explained.

The Amazon team also monitored Robin’s confidence in its decisions. The perception model might, for example, indicate it was confident about spotting a package, but less confident about assigning it to a specific type of package. Chandrashekhar’s team developed a framework to ensure those low-confidence images were automatically sent for annotation by a human and then added back to the training deck.

Amazon's Robin robotic arm is seen inside a facility gripping a package
While Robin looks a lot like other robotic arms used in industry, its vision system enables it to see and react to the world in an entirely different way.

“This is part of continual learning,” says Jeremy Wyatt, senior manager of applied science. “It’s incredibly powerful because every package becomes a learning opportunity. Every robot contributes experiences that helps the entire fleet get better.”

That continual learning led to big improvements. “In just six months, we halved the number of packages Robin’s perception system can’t pick and we reduced the errors the perception system makes by a factor of 10,” Wyatt notes.

Still, robots will make mistakes in production that have to be corrected. What happens in the moment if Robin drops a package or puts two mailers on one sortation robot? While most production robots are oblivious to mistakes, Robin is an exception. It monitors its performance for missteps.

Robin’s quality assurance system oversees how it handles packages. If it identifies a problem, it will try to fix it on its own, or call for human intervention if it cannot. “If Robin finds and corrects a mistake, it might lose some time,” Swan explained. “However, if that error wasn’t addressed at all, we might lose a day or two getting that product to the customer.”

Scaling Robin perception

Swan joined the Robin perception team when there were only a few dozen units in production. His goal: scale the perception system to thousands of robotic arms. To accomplish this, Swan’s team doesn’t just focus on catching and annotating errors for continual learning, it seeks the root cause of those errors.

They rely on Robin perception’s user interface, which lets engineers look through the robot’s eyes and trace how its vision system made the decision. They might, for example, find a Robin that picked up two packages because it could not distinguish one from the other, or another that failed to grab any package owing to a noisy depth signal. Auditing Robin’s decisions lets Amazon Robotics engineers fine-tune the robot’s behaviors.

This is complemented by the metrics derived from a fleet of machines sorting well over 1 million items every day. “Once you have that kind of data, then you can start to look for correlations,” Swan said. “Then you can say the latency in making a decision is related to this property of the machine or this property of the scene and that’s something we can focus on.”

Fleet metrics provide data about a greater range of scenes and problems than any one machine would ever see, from a broken light to an address label stuck on the conveyor belt. That data, used to retrain Robin every few days, gives it a much broader understanding of the world in which it works.

The Robin robotic arm sorts packages

It also helps Amazon improve efficiency. Before Robin picks up a package, it must first segment a cluttered scene, decide which package it will grab, calculate how it will approach the package, and choose how many of its eight suction cups to use to pick it up. Choose too many and it might lift more than one package; too few, and it could drop its cargo.

That decision requires much more than computer vision. “Making decisions on what and where to grasp is accomplished with a combination of learning systems, optimization, geometric reasoning, and 3D understanding,” explained Nick Hudson, principal applied scientist with Amazon Robotics AI. “There are a lot of components which interact, and they all need to accommodate the variations seen across different sites and regions.”

“There is always a tradeoff between efficiency and good decisions,” Swan continued. “That was a major scaling challenge. We did a lot of experimentation offline with very cluttered scenes and other situations that slowed the robots down to improve our algorithms. When we liked them, we would run them on a small portion of the fleet. If they did well, we would roll them out to all the robots.”

Related content
The collaboration will support research, education, and outreach efforts in areas of mutual interest, beginning with artificial intelligence and robotics.

Those rollouts were also made possible because the software was rewritten to support regular updates, said Sicong Zhao, a software development manager. “The software is modular. That way, we can upgrade one component without affecting the others. It also enables multiple groups to work on different improvements at the same time.” That modularity has enabled key parts of the perception system to be automatically retrained twice a week.

Nor was that a simple task. Robin had many tens of thousands of lines of code, so it took Zhao’s team months to understand how those lines interacted with one another well enough to modularize their components. The effort was worth it. It made Robin easier to upgrade and will ultimately enable automatic fleet updates as frequently as needed while mitigating operational disruptions.

Next-generation robot perception

Those continuous improvements are essential to deploy Robin at Amazon’s scale, Swan explained. The team’s goal is to update the fleet of Robin robots automatically several times weekly.

“We are increasing our usage of Robin,” Swan said. “To do that, we must continue to improve Robin’s ability to handle those random edge cases, so it never mis-sorts, has great motion planning, and moves at the fastest safe speed its arm can handle — all with time to spare.”

That means even more innovation. Take, for example, package recognition. Robin’s perception system needs to be able to spot a pile of packages and know to start with the top one to avoid upending the pile. “Robin has a sense of how to do that as well, but we need machine learning to accelerate the way Robin decides which one it is most likely to pick up successfully as we keep adding new types of packaging,” Zhao explained.

Related content
Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

Chandrashekhar believes more powerful digital simulations, based on the physics of robot and package movement, will enable faster innovation. “This is very difficult when we’re talking about deformable packages, like a water bottle in a soft mailer,” she said. “But we’re getting a lot closer.”

Longer-term, she wants to see self-learning robots that teach themselves to make fewer mistakes and to recover from them faster. Self-learning will also make the robots easier to use. “Deploying a robot shouldn’t require a PhD,” Swan said.

We’ve only scratched the surface of what’s possible with robots.
Charles Swan

“There is a unique opportunity to have this fleet adapt automatically,” agreed Hudson. “There are open questions on how to accomplish this, including whether individual robots should adapt on their own. The fleet already updates its object understanding using data collected worldwide. How can we also have the individual robots adapt to issues they are seeing locally – for instance if one of the suction cups is blocked or torn?”

Ultimately, though, Swan would like to use what Amazon Robotics researchers have learned to create new types of robots. “We’ve only scratched the surface of what’s possible with robots,” he said.

Research areas

Related content

US, WA, Seattle
The Global Media Entertainment Science team uses state of the art economics and machine learning models to provide Amazon’s entertainment businesses guidance on strategically important questions. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Product Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. The Search Relevance team focuses on several technical areas for improving search quality. In this role, you will invent universally applicable signals and algorithms for training machine-learned ranking models. The relevance improvements you make will help millions of customers discover the products they want from a catalog containing millions of products. You will work on problems such as predicting the popularity of new products, developing new ranking features and algorithms that capture unique characteristics, and analyzing the differences in behavior of different categories of customers. The work will span the whole development pipeline, including data analysis, prototyping, A/B testing, and creating production-level components. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world’s leading Internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Please visit https://www.amazon.science for more information
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Do you have a strong machine learning background and want to help build new speech and language technology? Amazon is looking for PhD students who are ready to tackle some of the most interesting research problems on the leading edge of natural language processing. We are hiring in all areas of spoken language understanding: NLP, NLU, ASR, text-to-speech (TTS), and more! A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will develop and implement novel scalable algorithms and modeling techniques to advance the state-of-the-art in technology areas at the intersection of ML, NLP, search, and deep learning. You will work side-by-side with global experts in speech and language to solve challenging groundbreaking research problems on production scale data. The ideal candidate must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon has positions available for Natural Language Processing & Speech Intern positions in multiple locations across the United States. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. Please visit our website to stay updated with the research our teams are working on: https://www.amazon.science/research-areas/conversational-ai-natural-language-processing
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a Masters student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a PhD student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for Masters or PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, and more! We are combining computer vision, mobile robots, advanced end-of-arm tooling and high-degree of freedom movement to solve real-world problems at huge scale. As an intern, you will help build solutions where visual input helps the customers shop, anticipate technological advances, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. You will own the design and development of end-to-end systems and have the opportunity to write technical white papers, create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science