robin arm with gripper.jpg
Robin, one of the most complex stationary robot arm systems Amazon has ever built, brings many core technologies to new levels and acts as a glimpse into the possibilities of combining vision, manipulation and machine learning.
Credit: F4D Studio

Amazon’s robot arms break ground in safety and technology

While these systems look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

Inside an Amazon facility, employees and robots work together to ready products for customers. On one side of the building, yellow tote bins bearing partially completed orders ride down a conveyor. At the end of the conveyor, a robot arm called a palletizer/depalletizer stacks them on a pallet as if playing a three-dimensional game of Tetris.

Related content
Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

When an employee sees a pallet is complete, they approach the immobilized robot, slip a motorized hand truck under the pallet, and route it to shipping. From there, a truck takes it to another facility. There, a different palletizer/depalletizer places the totes on conveyors that guide them to employees who complete the order. On another side of the facility, a jumbled pile of soft mailers and boxes roll down a conveyor belt. Robin, a smaller robot arm, grabs one and rotates the parcel to scan the label. Once it knows the ZIP code, it sorts the package onto a robotic carrier for processing. If it sees any rips, tears, or illegible addresses, Robin transfers the package, via either conveyor or mobile robot, for employees to handle.

Robots are common in Amazon facilities, where more than 200,000 mobile units aid the flow of goods from inventory to shipping. Stationary robotic arms, however, are relatively new. Yet they play an important role in the company's drive to safely deliver the right goods to the right customers at the right time.

“A real gain for the overall system”

Although Robin and the palletizer/depalletizer look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

Conventional robots often do a single job — welding a section of a vehicle frame or screwing a part into place — whereas for robotic arms like Robin, few tasks are ever precisely the same.

Robin, for example, must calculate how to identify, move, and sort parcels that may rest atop one another as they are presented via a conveyor. The palletizer/depalletizer must calculate how to stack a stable pallet on the fly. To do it, they use both cutting-edge AI algorithms that make decisions in fractions of a second and high-tech cameras, sensors, and grippers.

Watch Robin deftly handle packages

While the robotic arms aid in the operation of Amazon facilities, they also improve the employee experience by eliminating repetitive lifting, stacking, and turning. In turn, this allows employees to focus on the kinds of assignments that leave robots struggling.

"Eliminating tasks that are repetitious and dull lets employees focus on things that are really important," Tye Brady, chief technologist for Amazon Robotics, observed. "If we can elevate our employees to do higher-level tasks that require common sense — something computers are not good at — that's a real gain for the overall system."

Related content
Autonomous robots called drives play a critical role in making billions of shipments every year. Here’s how they work.

This intricate collaboration of people and machines has helped Amazon to deliver goods with fewer mistakes, Brady said. It has also fueled growth and jobs. Since 2012, when Amazon first began deploying robots within its fulfillment centers, the company’s facility workforce added hundreds of thousands of new employees, even before its massive COVID-19 hiring efforts in 2020.

"Amazon could not have achieved what it has done without robotics, nor could we have done it without the amazing skills of our employees," Brady said. "They go hand in hand. If you try to separate one from another, you are going down a failed path."

@F4DStudio_AmazonScience_RoboticArm-00947 (1).jpg
Robin must calculate how to identify, move, and sort parcels that may rest atop one another as they are presented via a conveyor.
Credit: F4D Studio

But before Amazon could blaze that path, it first had to make sure its new robots were safe.

Safety first (and always)

"We don't just build a robot and then say, 'Hey, safety people, I want you to get involved now,'" Brady said. "Instead, safety engineers are there every step of the way, from design and deployment to maintenance and operation. They're at the table talking with us about how we can make it a better experience for our employees."

Clay Flannigan, senior manager, advanced robotics, and the technical lead in the Robin program noted that when robot and safety team members assess the flow of work in Amazon facilities, they insist on solutions that will not compromise safety.

"We work hard to identify any potential hazards," Flannigan said. "That could be anything from limiting any risk for contact between people and the robot, tripping on a floor cable, or a sharp edge on a barrier. Ideally, we can eliminate them with multiple engineering mitigations.”

This is especially important when working with large industrial robots: the best approach is to ensure appropriate access controls are implemented. This starts with fences. To enter the robot area, employees gain access through a secured gate, which positively disables the robot. There is only one gate, which provides strict control over who can access the robot.

Watch a hardware engineer operate Robin

In addition to the gate, a light curtain protects the opposite side of the robot. If an employee breaks the plane of the curtain, the robot automatically stops. These safety features ensure that the robot can do its job while permitting safe access to the area for employees to perform maintenance.

Amazon also brings in independent experts to assess the industrial designs. "They ask a lot of good questions,” Brady said. "'Can I approach the station from a weird angle? Could I open the door without the sensors tripping? Can I break the light curtain somehow without the system noticing?'"

Engineers then build and test physical prototypes, monitoring them to see if workers could potentially interact with them in ways that might cause usability issues. They also track metrics about how the machines behave within facilities, which permits continued improvement of their performance.

Robin as an evolutionary step

Robin, one of the most complex stationary robot arm systems Amazon has ever built, brings many core technologies to new levels and acts as a glimpse into the possibilities of combining vision, package manipulation and machine learning, said Will Harris, principal product manager of the Robin program.

Those technologies can be seen when Robin goes to work. As soft mailers and boxes move down the conveyor line, Robin must break the jumble down into individual items. This is called image segmentation. People do it automatically, but for a long time, robots only saw a solid blob of pixels.

Robin robotic arms sort and move packages
Robots are common in Amazon facilities, where more than 200,000 mobile units aid the flow of goods from inventory to shipping. Stationary robotic arms, however, are relatively new. Yet they play an important role in company's drive to safely deliver the right goods to the right customers at the right time.
Credit: F4D Studio

Over many years, AI algorithms have learned to break up that blob into individual objects by recognizing things like color or significant features, such as the edge of a mailer. More recently, neural networks have improved enough to do this well. The neural networks are aided in this task by training to segment mailers in a virtual world.

Engineers start by creating a virtual model of the arm and an ever-changing jumble of packages moving down a virtual conveyor belt. In the model, the robot’s AI attempts to segment and grab the items, iterating on each success and failure, and slowly learning to recognize mailers, even when they are obscured or in odd positions. After each session, the model reshuffles the packages randomly and the training begins again.  

After thousands of virtual model-training iterations, Amazon tests a prototype at its facilities. "We put together a 1,000-package test set that mirrors the profile of mail we expect to see in the building and run it through multiple times," Harris said. "This gives us good predictive data about how it will perform in the field. Then we test it operationally at select sites, before rolling it out to the entire installed base."

Pallet Tetris

The palletizer/depalletizer is a larger and more powerful machine than Robin, and a marvel of technology in its own right. It also plays a critical role in Amazon’s fulfillment operations.

See a palletizer/de-palletizer in action — skip ahead to the 24 second mark

At Amazon, Brady explains, product always flows toward employees. When someone places an order, a mobile robot brings the goods to an employee. If the order is complete, it is sent to the conveyer to be packed out and shipped to customers’ doors. If not — because no single facility contains the millions of products Amazon sells — the order goes to another facility to be completed.

The best way to ship totes is to put them on a pallet. The palletizer/depalletizer’s job is to stack totes on the pallet when they leave the facility and take them off the pallet and place them on conveyors when they come in. Brady likens the process to playing Tetris.

The palletizing starts with yellow totes parked at the end of a conveyor. All are the same size and oriented in the same direction, and they have been scanned to make sure the correct products are in the tote and the tote itself is in good shape.

New Amazon program offers free career training in robotics

The Mechatronics and Robotics Apprenticeship program gives employees the opportunity to apply for an apprenticeship that will train them on the skills and technical knowledge needed to fulfill technical maintenance roles. Find out more.

The palletizer/depalletizer has a two-dimensional camera at its tip, which it uses to rapidly position its arm over the tote. At the end is a custom gripper with four moveable L-shaped elements on each side that slip under the tote's raised upper perimeter. Once it has secured the tote, the robot lifts, pivots, and places the tote on a pallet, using a three-dimensional camera. As it does this, the AI system calculates where to place the tote so that the pallet is evenly balanced and stable. The robot builds six pallets at a time, three on each side, and it moves quickly.

"As the robot builds the pallets, people monitor several robots to make sure everything is going well," Brady said. "When the pallets are complete, they move them out of the cage with a motorized hand truck. You have this rhythm, this dynamic, between our employees and the palletizer/depalletizer, and this keeps all our operations running smoothly."

A dynamic partnership

The increasing reliance on systems like Robin and the palletizer/depalletizer also serves to highlight the symbiotic nature of the partnership between people and robots.

"There's a misconception about the sort of things we can achieve with robotic systems of this type," Flannigan answered. "There's a whole lot of tasks that we just can't solve today with robots alone and they tend to be ones that require higher levels of cognition or dexterity."

In fact, Brady noted, Amazon's facilities work best when people and machines work together: “There's a lot of productivity that involves people and machines working together, and I'm not just talking about one machine. I'm talking about an array of machines in our facilities and how we design those machines to interface with people. We use those machines to help people identify inventory, move inventory, store inventory, and source inventory. That's crucial to our job. Our employees are the backbone of our fulfillment process and we want to empower them with better machines.”

The result, says Brady, is an intricate dance, with people and machines each doing what they do best. It is one of the key reasons why Amazon continues to operate so smoothly and add tens of thousands of new jobs every year. And it’s why Amazon can deliver the right goods to the right customers at the right time.

Research areas

Related content

US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Senior Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As a Senior Applied Scientist, you will leverage your technical expertise and experience to demonstrate leadership in tackling large complex problems, setting the direction and collaborating with other talented applied scientists and engineers to research and develop LLM modeling and engineering techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering, Model Fine-Tuning, Reinforcement Learning from Human Feedback (RLHF), Evaluation, etc. Your work will directly impact our customers in the form of novel products and services .
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Research Scientist with fabrication and data analysis experience working on all elements of a superconducting circuit. The position is on-site at our lab, located on the in Pasadena, CA. The ideal candidate will have had prior experience building software tools for data analysis and visualization to enable deep diving into fabrication details, electrical test data. We are looking for candidates with strong engineering principles, resourcefulness and data science experience. Organization and communication skills are essential. Key job responsibilities * Develop and automate data pipeline pertinent to superconducting device fabrication. * Develop analytical tools to uncover new information about established and new processes. * Develop new or contribute to modifying existing data visualization tools. * Utilize machine learning to enable better deeper dives into fabrication and related data. * Interface with various software, design, fabrication and electrical test teams to enable new functionalities. A day in the life The role will be vital to the fabrication team and quantum computing device integration mechanism. The candidate will develop software based analytical tools to enable data driven decisions across projects related to fabrication and supporting infrastructure. Each fabrication run delivers additional data. The candidate will stay close to the details of fabrication providing data analysis and quick feedback to key stakeholders. At the end of fabrication runs custom and standardized reports will be generated by the candidate to provide insights into data generated from the run. This position may require occasional weekend work. About the team AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
CA, ON, Toronto
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As the Data Science Manager on this team, you will: - Lead of team of scientists, business intelligence engineers, etc., on solving science problems with a high degree of complexity and ambiguity. - Develop science roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers in the organization. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: - Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. - Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. - Lead marketplace design and development based on economic theory and data analysis. - Provide technical and scientific guidance to team members. - Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment - Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. - Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Collaborate with business and software teams across Amazon Ads. - Stay up to date with recent scientific publications relevant to the team. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, WA, Bellevue
Amazon Devices Sales and Customer Experience is looking for a talented Applied Scientist to help invent, design, and deliver cutting-edge science solutions to make it easier for millions of customers to find their next Amazon Device they will love. In this role you will: - Be a part of a growing and vibrant team of scientists, economists, engineers, analysts, and business partners. - Use Amazon's large-scale computing and data resources to generate deep understandings of our customers, and products. - Build models to generate content and recommendations to customers; run them as large scale A/B tests directly on the retail website. - Design, implement, and deliver novel solutions to hard to solve problems. Key Performance Areas - Implement statistical or machine learning methods to solve specific business problems. - Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. - Directly contribute to development of modern automated recommendation systems - Build customer-facing reporting tools to provide insights and metrics to track model performance and explain variance - Collaborate with researchers, software developers, and business leaders to define product requirements, provide analytical support, and communicate feedback Key job responsibilities We are looking for an innovative, hands-on and customer-obsessed Scientist who can be a strategic partner to the product managers and engineers on the team. Our projects span multiple organizations and require coordination of experimentation, economic and causal analysis, and building predictive machine learning models. A successful candidate will be a problem solver who enjoys diving into data, is excited by difficult modeling challenges, is motivated to build something that will eventually become a production software system and possesses strong communication skills to effectively interface between technical and business teams. In this role, you will be a technical expert with massive impact. You will take the lead on developing advanced solutions that are key to reaching our customers with the right recommendations at the right time. Your work will directly impact the success of Amazon's growing Devices business. You will work across diverse science/engineering/business teams. You will work on critical science problems, building high quality, reliable, accurate, and consistent code sets that are aligned with our business needs. A day in the life You will work with other scientists, engineers, product managers, and marketers to develop new products that benefit our customers and help us reach our business goals. You will own solutions from end to end: conceptualization, prioritization, development and delivery. About the team We are a full stack science team that empowers product, marketing, and other business leaders to better understand customers who use Amazon devices, make decisions on product development or optimization, and measure the effectiveness of their efforts against our customer’s expectation. Our focus area is to build analytical frameworks that help the organization either access data, better understand the decisions customers are making and why, or assess customer satisfaction.
US, CA, San Francisco
The AWS Center for Quantum Computing is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in quantum computing for the benefit of our customers. We are looking to hire a Research Scientist to design and model novel superconducting quantum devices, including qubits, readout and control schemes, and advanced quantum processors. Candidates with a track record of original scientific contributions and/or software development experience will be preferred. We are looking for candidates with strong engineering principles and resourcefulness. Organization and communication skills are essential. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches