robin arm with gripper.jpg
Robin, one of the most complex stationary robot arm systems Amazon has ever built, brings many core technologies to new levels and acts as a glimpse into the possibilities of combining vision, manipulation and machine learning.
Credit: F4D Studio

Amazon’s robot arms break ground in safety and technology

While these systems look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

Inside an Amazon facility, employees and robots work together to ready products for customers. On one side of the building, yellow tote bins bearing partially completed orders ride down a conveyor. At the end of the conveyor, a robot arm called a palletizer/depalletizer stacks them on a pallet as if playing a three-dimensional game of Tetris.

Related content
Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

When an employee sees a pallet is complete, they approach the immobilized robot, slip a motorized hand truck under the pallet, and route it to shipping. From there, a truck takes it to another facility. There, a different palletizer/depalletizer places the totes on conveyors that guide them to employees who complete the order. On another side of the facility, a jumbled pile of soft mailers and boxes roll down a conveyor belt. Robin, a smaller robot arm, grabs one and rotates the parcel to scan the label. Once it knows the ZIP code, it sorts the package onto a robotic carrier for processing. If it sees any rips, tears, or illegible addresses, Robin transfers the package, via either conveyor or mobile robot, for employees to handle.

Robots are common in Amazon facilities, where more than 200,000 mobile units aid the flow of goods from inventory to shipping. Stationary robotic arms, however, are relatively new. Yet they play an important role in the company's drive to safely deliver the right goods to the right customers at the right time.

“A real gain for the overall system”

Although Robin and the palletizer/depalletizer look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

Conventional robots often do a single job — welding a section of a vehicle frame or screwing a part into place — whereas for robotic arms like Robin, few tasks are ever precisely the same.

Robin, for example, must calculate how to identify, move, and sort parcels that may rest atop one another as they are presented via a conveyor. The palletizer/depalletizer must calculate how to stack a stable pallet on the fly. To do it, they use both cutting-edge AI algorithms that make decisions in fractions of a second and high-tech cameras, sensors, and grippers.

Watch Robin deftly handle packages

While the robotic arms aid in the operation of Amazon facilities, they also improve the employee experience by eliminating repetitive lifting, stacking, and turning. In turn, this allows employees to focus on the kinds of assignments that leave robots struggling.

"Eliminating tasks that are repetitious and dull lets employees focus on things that are really important," Tye Brady, chief technologist for Amazon Robotics, observed. "If we can elevate our employees to do higher-level tasks that require common sense — something computers are not good at — that's a real gain for the overall system."

Related content
Autonomous robots called drives play a critical role in making billions of shipments every year. Here’s how they work.

This intricate collaboration of people and machines has helped Amazon to deliver goods with fewer mistakes, Brady said. It has also fueled growth and jobs. Since 2012, when Amazon first began deploying robots within its fulfillment centers, the company’s facility workforce added hundreds of thousands of new employees, even before its massive COVID-19 hiring efforts in 2020.

"Amazon could not have achieved what it has done without robotics, nor could we have done it without the amazing skills of our employees," Brady said. "They go hand in hand. If you try to separate one from another, you are going down a failed path."

@F4DStudio_AmazonScience_RoboticArm-00947 (1).jpg
Robin must calculate how to identify, move, and sort parcels that may rest atop one another as they are presented via a conveyor.
Credit: F4D Studio

But before Amazon could blaze that path, it first had to make sure its new robots were safe.

Safety first (and always)

"We don't just build a robot and then say, 'Hey, safety people, I want you to get involved now,'" Brady said. "Instead, safety engineers are there every step of the way, from design and deployment to maintenance and operation. They're at the table talking with us about how we can make it a better experience for our employees."

Clay Flannigan, senior manager, advanced robotics, and the technical lead in the Robin program noted that when robot and safety team members assess the flow of work in Amazon facilities, they insist on solutions that will not compromise safety.

"We work hard to identify any potential hazards," Flannigan said. "That could be anything from limiting any risk for contact between people and the robot, tripping on a floor cable, or a sharp edge on a barrier. Ideally, we can eliminate them with multiple engineering mitigations.”

This is especially important when working with large industrial robots: the best approach is to ensure appropriate access controls are implemented. This starts with fences. To enter the robot area, employees gain access through a secured gate, which positively disables the robot. There is only one gate, which provides strict control over who can access the robot.

Watch a hardware engineer operate Robin

In addition to the gate, a light curtain protects the opposite side of the robot. If an employee breaks the plane of the curtain, the robot automatically stops. These safety features ensure that the robot can do its job while permitting safe access to the area for employees to perform maintenance.

Amazon also brings in independent experts to assess the industrial designs. "They ask a lot of good questions,” Brady said. "'Can I approach the station from a weird angle? Could I open the door without the sensors tripping? Can I break the light curtain somehow without the system noticing?'"

Engineers then build and test physical prototypes, monitoring them to see if workers could potentially interact with them in ways that might cause usability issues. They also track metrics about how the machines behave within facilities, which permits continued improvement of their performance.

Robin as an evolutionary step

Robin, one of the most complex stationary robot arm systems Amazon has ever built, brings many core technologies to new levels and acts as a glimpse into the possibilities of combining vision, package manipulation and machine learning, said Will Harris, principal product manager of the Robin program.

Those technologies can be seen when Robin goes to work. As soft mailers and boxes move down the conveyor line, Robin must break the jumble down into individual items. This is called image segmentation. People do it automatically, but for a long time, robots only saw a solid blob of pixels.

Robin robotic arms sort and move packages
Robots are common in Amazon facilities, where more than 200,000 mobile units aid the flow of goods from inventory to shipping. Stationary robotic arms, however, are relatively new. Yet they play an important role in company's drive to safely deliver the right goods to the right customers at the right time.
Credit: F4D Studio

Over many years, AI algorithms have learned to break up that blob into individual objects by recognizing things like color or significant features, such as the edge of a mailer. More recently, neural networks have improved enough to do this well. The neural networks are aided in this task by training to segment mailers in a virtual world.

Engineers start by creating a virtual model of the arm and an ever-changing jumble of packages moving down a virtual conveyor belt. In the model, the robot’s AI attempts to segment and grab the items, iterating on each success and failure, and slowly learning to recognize mailers, even when they are obscured or in odd positions. After each session, the model reshuffles the packages randomly and the training begins again.  

After thousands of virtual model-training iterations, Amazon tests a prototype at its facilities. "We put together a 1,000-package test set that mirrors the profile of mail we expect to see in the building and run it through multiple times," Harris said. "This gives us good predictive data about how it will perform in the field. Then we test it operationally at select sites, before rolling it out to the entire installed base."

Pallet Tetris

The palletizer/depalletizer is a larger and more powerful machine than Robin, and a marvel of technology in its own right. It also plays a critical role in Amazon’s fulfillment operations.

See a palletizer/de-palletizer in action — skip ahead to the 24 second mark

At Amazon, Brady explains, product always flows toward employees. When someone places an order, a mobile robot brings the goods to an employee. If the order is complete, it is sent to the conveyer to be packed out and shipped to customers’ doors. If not — because no single facility contains the millions of products Amazon sells — the order goes to another facility to be completed.

The best way to ship totes is to put them on a pallet. The palletizer/depalletizer’s job is to stack totes on the pallet when they leave the facility and take them off the pallet and place them on conveyors when they come in. Brady likens the process to playing Tetris.

The palletizing starts with yellow totes parked at the end of a conveyor. All are the same size and oriented in the same direction, and they have been scanned to make sure the correct products are in the tote and the tote itself is in good shape.

New Amazon program offers free career training in robotics

The Mechatronics and Robotics Apprenticeship program gives employees the opportunity to apply for an apprenticeship that will train them on the skills and technical knowledge needed to fulfill technical maintenance roles. Find out more.

The palletizer/depalletizer has a two-dimensional camera at its tip, which it uses to rapidly position its arm over the tote. At the end is a custom gripper with four moveable L-shaped elements on each side that slip under the tote's raised upper perimeter. Once it has secured the tote, the robot lifts, pivots, and places the tote on a pallet, using a three-dimensional camera. As it does this, the AI system calculates where to place the tote so that the pallet is evenly balanced and stable. The robot builds six pallets at a time, three on each side, and it moves quickly.

"As the robot builds the pallets, people monitor several robots to make sure everything is going well," Brady said. "When the pallets are complete, they move them out of the cage with a motorized hand truck. You have this rhythm, this dynamic, between our employees and the palletizer/depalletizer, and this keeps all our operations running smoothly."

A dynamic partnership

The increasing reliance on systems like Robin and the palletizer/depalletizer also serves to highlight the symbiotic nature of the partnership between people and robots.

"There's a misconception about the sort of things we can achieve with robotic systems of this type," Flannigan answered. "There's a whole lot of tasks that we just can't solve today with robots alone and they tend to be ones that require higher levels of cognition or dexterity."

In fact, Brady noted, Amazon's facilities work best when people and machines work together: “There's a lot of productivity that involves people and machines working together, and I'm not just talking about one machine. I'm talking about an array of machines in our facilities and how we design those machines to interface with people. We use those machines to help people identify inventory, move inventory, store inventory, and source inventory. That's crucial to our job. Our employees are the backbone of our fulfillment process and we want to empower them with better machines.”

The result, says Brady, is an intricate dance, with people and machines each doing what they do best. It is one of the key reasons why Amazon continues to operate so smoothly and add tens of thousands of new jobs every year. And it’s why Amazon can deliver the right goods to the right customers at the right time.

Research areas

Related content

US, MA, North Reading
We are looking for experienced scientists and engineers to explore new ideas, invent new approaches, and develop new solutions in the areas of Controls, Dynamic modeling and System identification. Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Key job responsibilities Applied Scientists take on big unanswered questions and guide development team to state-of-the-art solutions. We want to hear from you if you have deep industry experience in the Mechatronics domain and : * the ability to think big and conceive of new ideas and novel solutions; * the insight to correctly identify those worth exploring; * the hands-on skills to quickly develop proofs-of-concept; * the rigor to conduct careful experimental evaluations; * the discipline to fast-fail when data refutes theory; * and the fortitude to continue exploring until your solution is found We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Westborough, MA, USA
GB, London
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python or R is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at We are open to hiring candidates to work out of one of the following locations: London, GBR
DE, BE, Berlin
Are you excited about developing state-of-the-art computer vision models that revolutionize Amazon’s Fulfillment network? Are you looking for opportunities to apply AI on real-world problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics, we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience — at Amazon scale. To this end, we are looking for an Applied Scientist who will build and deploy models that make smarter decisions on a wide array of multi-modal signals. Together, we will be pushing beyond the state of the art in optimizing one of the most complex systems in the world: Amazon's Fulfillment Network. Key job responsibilities In this role, you will build computer vision and multi-modal deep learning models that understand the state of products and packages flowing through Amazon’s fulfillment network. You will build models that solve challenging problems like product identification and damage detection on Amazon's entire retail catalog (billions of different items, thousands of new items every day). You will primarily work with very large real-world vision datasets, as well as a diverse set of multi-modal datasets, including natural language and structured data. You will face a high level of research ambiguity and problems that require creative, ambitious, and inventive solutions. A day in the life AFT AI delivers the AI solutions that empower Amazon’s fulfillment network to make smarter decisions. You will work on an interdisciplinary team of scientists and engineers with deep expertise in developing cutting-edge AI solutions at scale. You will work with images, videos, natural language, and sequences of events from existing or new hardware. You will adapt state-of-the-art machine learning and computer vision techniques to develop solutions for business problems in the Amazon Fulfillment Network. About the team Amazon Fulfillment Technologies (AFT) powers Amazon’s global fulfillment network. We invent and deliver software, hardware, and science solutions that orchestrate processes, robots, machines, and people. We harmonize the physical and virtual world so Amazon customers can get what they want, when they want it. AFT AI is spread across multiple locations in NA (Bellevue WA and Nashville, TN) and Europe (Berlin, Germany). We are hiring candidates to work out of the Berlin location. Publicly available articles showcasing some of our work: - Damage Detection: - Product ID: We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU
LU, Luxembourg
Have you ever wished to build high standard Operations Research and Machine Learning algorithms to optimize one of the most complex logistics network? Have you ever ordered a product on Amazon websites and wondered how it got delivered to you so fast, and what kinds of algorithms & processes are running behind the scenes to power the whole operation? If so, this role is for you. The team: Global transportation services, Research and applied science - Operations is at the heart of the Amazon customer experience. Each action we undertake is on behalf of our customers, as surpassing their expectations is our passion. We improve customer experience through continuously optimizing the complex movements of goods from vendors to customers throughout Europe. - Global transportation analytical teams are transversal centers of expertise, composed of engineers, analysts, scientists, technical program managers and developers. We are focused on Amazon most complex problems, processes and decisions. We work with fulfillment centers, transportation, software developers, finance and retail teams across the world, to improve our logistic infrastructure and algorithms. - GTS RAS is one of those Global transportation scientific team. We are obsessed by delivering state of the art OR and ML tools to support the rethinking of our advanced end-to-end supply chain. Our overall mission is simple: we want to implement the best logistics network, so Amazon can be the place where our customers can be delivered the next-day. The role: Applied scientist, speed and long term network design The person in this role will have end-to-end ownership on augmenting RAS Operation Research and Machine Learning modeling tools. They will help understand where are the constraints in our transportation network, and how we can remove them to make faster deliveries at a lower cost. You will be responsible for designing and implementing state-of-the-art algorithmic in transportation planning and network design, to expand the scope of our Operations Research and Machine Learning tools, to reflect the constantly evolving constraints in our network. You will enable the creation of a product that drives ever-greater automation, scalability and optimization of every aspect of transportation, planning the best network and modeling the constraints that prevent us from offering more speed to our customer, to maximize the utilization of the associated resources. The impact of your work will be in the Amazon EU global network. The product you will build will span across multiple organizations that play a role in Amazon’s operations and transportation and the shopping experience we deliver to customer. Those stakeholders include fulfilment operations and transportation teams; scientists and developers, and product managers. You will understand those teams constraints, to include them in your product; you will discuss with technical teams across the organization to understand the existing tools and assess the opportunity to integrate them in your product.You will engage with fellow scientists across the globe, to discuss the solutions they have implemented and share your peculiar expertise with them. This is a critical role and will require an aptitude for independent initiative and the ability to drive innovation in transportation planning and network design. Successful candidates should be able to design and implement high quality algorithm solutions, using state-of-the art Operations Research and Machine Learning techniques. Key job responsibilities - Engage with stakeholders to understand what prevents them to build a better transportation network for Amazon - Review literature to identify similar problems, or new solving techniques - Build the mathematical model representing your problem - Implement light version of the model, to gather early feed-back from your stakeholders and fellow scientists - Implement the final product, leveraging the highest development standards - Share your work in internal and external conferences - Train on the newest techniques available in your field, to ensure the team stays at the highest bar About the team GTS Research and Applied Science is a team of scientists and engineers whom mission is to build the best decision support tools for strategic decisions. We model and optimize Amazon end-to-end operations. The team is composed of enthusiastic members, that love to discuss any scientific problem, foster new ideas and think out of the box. We are eager to support each others and share our unique knowledge to our colleagues. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
IN, KA, Bengaluru
Job Description ATE (Analytics, Technology and Engineering) is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in operations for the benefit of our customers. Our team is responsible for creating core analytics, science capabilities, platforms development and data engineering. We develop scalable analytics applications and research modeling to optimize operation processes.. You will work with professional software development managers, data engineers, data scientists, applied scientists, business intelligence engineers and product managers using rigorous quantitative approaches to ensure high quality data tech products for our customers around the world, including India, Australia, Brazil, Mexico, Singapore and Middle East. We are on the lookout for an enthusiastic and highly analytical individual to be a part of our journey. Amazon is growing rapidly and because we are driven by faster delivery to customers, a more efficient supply chain network, and lower cost of operations, our main focus is in the development of strategic models and automation tools fed by our massive amounts of available data. You will be responsible for building these models/tools that improve the economics of Amazon’s worldwide fulfillment networks in emerging countries as Amazon increases the speed and decreases the cost to deliver products to customers. You will identify and evaluate opportunities to reduce variable costs by improving fulfillment center processes, transportation operations and scheduling, and the execution to operational plans. You will also improve the efficiency of capital investment by helping the fulfillment centers to improve storage utilization and the effective use of automation. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools. Major responsibilities include: · In this role, you will be responsible for developing and implementing innovative, scalable models and tools aimed at tackling novel challenges within Amazon’s global fulfillment network. Collaborating with fellow scientists from various teams, you will work on integrated solutions to enhance fulfillment speed, reduce costs. Your in-depth comprehension of business challenges will enable you to provide scientific analyses that underpin critical business decisions, utilizing a diverse range of methodologies. You’ll have the opportunity to design scientific tool platforms, deploy models, create efficient data pipelines, and streamline existing processes. Join us in shaping the future of Amazon’s global retail business by optimizing delivery speed at scale and making a lasting impact on the world of e-commerce. If you’re passionate about solving complex problems and driving innovation, we encourage you to apply. About the team This team is responsible for applying science based algo and techniques to solve the problems in operation and supply chain. Some of these problems include, volume forecasting, capacity planning, fraud detection, scenario simulation and using LLM/GenAI for process efficiency We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND
IL, Tel Aviv
Are you passionate about pushing the boundaries of computer vision, generative AI, deep learning, and machine learning? Ready to tackle challenges in document understanding at scale? We’re looking for innovative minds to join our world-class team at AWS, where you’ll collaborate with leading researchers, academics, and engineers on Amazon Textract. Why AWS? Be part of the leading cloud service provider powering innovation and positive impact. Work on real-world problems alongside tech and business giants. Access to unlimited data and computational resources. Collaborate with world-class researchers and developers. Deploy solutions at AWS scale and publish your work at top conferences. Focus Areas: - LLMs, document understanding, scene text recognition. - Visual question answering, NLP+vision, layout understanding. Locations: Tel Aviv and Haifa Think you’re a fit? Dive into the world of AWS Computer Vision and help us innovate at the forefront of technology. Key job responsibilities - Design cutting-edge neural network architectures. - Create document understanding solutions for complex scenarios and large visual datasets. - Set benchmarks and success criteria for model performance. - Collaborate across AWS and Amazon to bring scientific breakthroughs to our customers. - Add your unique creativity to our multidisciplinary team. - Mentor junior scientists and interns/PhD students. We are open to hiring candidates to work out of one of the following locations: Haifa, ISR | Tel Aviv, ISR
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. As a Applied Scientist at the intersection of machine learning and the life sciences, you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the cutting edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Bellevue
As a Principal Research Scientist in the Amazon Artificial General Intelligence (AGI) Data Services organization, you will be responsible for sourcing and quality of massive datasets powering Amazon's AI. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will be responsible for developing and implementing cutting-edge algorithms and techniques to extract valuable insights from large-scale data sources. You will work closely with cross-functional teams, including product managers, engineers, and data scientists to ensure that our AI systems are aligned with human policies and preferences. Key job responsibilities - Responsible for sourcing and quality of massive datasets powering Amazon's AI. - Collaborate with cross-functional teams to ensure that Amazon’s AI models are aligned with human preferences. - Develop and implement strategies to improve the efficiency and effectiveness of programs delivering massive datasets. - Identify and prioritize research opportunities that have the potential to significantly impact our AI systems. - Communicate research findings and progress to senior leadership and stakeholders. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and underserved communities around the world. We are searching for talented candidates with experience in spaceflight trajectory modeling and simulation, orbit mechanics, and launch vehicle mission planning. Key job responsibilities This position requires experience in simulation and analysis of astrodynamics models and spaceflight trajectories. Strong analysis skills are required to develop engineering studies of complex large-scale dynamical systems. This position requires demonstrated expertise in computational analysis automation and tool development. Working with the Kuiper engineering team, you will: - Develop modeling techniques for analysis and simulation of deployment dynamics of multiple satellites - Support Project Kuiper’s Launch Vehicle Mission Management team with technical expertise in Launch Vehicle trajectory requirements specification - Develop tools to support Mission Management planning for over 80 launches! - Work collaboratively with launch vehicle system technical teams Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are open to hiring candidates to work out of one of the following locations: Redmond, WA, USA