robin arm with gripper.jpg
Robin, one of the most complex stationary robot arm systems Amazon has ever built, brings many core technologies to new levels and acts as a glimpse into the possibilities of combining vision, manipulation and machine learning.
Credit: F4D Studio

Amazon’s robot arms break ground in safety and technology

While these systems look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

Inside an Amazon facility, employees and robots work together to ready products for customers. On one side of the building, yellow tote bins bearing partially completed orders ride down a conveyor. At the end of the conveyor, a robot arm called a palletizer/depalletizer stacks them on a pallet as if playing a three-dimensional game of Tetris.

Related content
Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

When an employee sees a pallet is complete, they approach the immobilized robot, slip a motorized hand truck under the pallet, and route it to shipping. From there, a truck takes it to another facility. There, a different palletizer/depalletizer places the totes on conveyors that guide them to employees who complete the order. On another side of the facility, a jumbled pile of soft mailers and boxes roll down a conveyor belt. Robin, a smaller robot arm, grabs one and rotates the parcel to scan the label. Once it knows the ZIP code, it sorts the package onto a robotic carrier for processing. If it sees any rips, tears, or illegible addresses, Robin transfers the package, via either conveyor or mobile robot, for employees to handle.

Robots are common in Amazon facilities, where more than 200,000 mobile units aid the flow of goods from inventory to shipping. Stationary robotic arms, however, are relatively new. Yet they play an important role in the company's drive to safely deliver the right goods to the right customers at the right time.

“A real gain for the overall system”

Although Robin and the palletizer/depalletizer look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

Conventional robots often do a single job — welding a section of a vehicle frame or screwing a part into place — whereas for robotic arms like Robin, few tasks are ever precisely the same.

Robin, for example, must calculate how to identify, move, and sort parcels that may rest atop one another as they are presented via a conveyor. The palletizer/depalletizer must calculate how to stack a stable pallet on the fly. To do it, they use both cutting-edge AI algorithms that make decisions in fractions of a second and high-tech cameras, sensors, and grippers.

Watch Robin deftly handle packages

While the robotic arms aid in the operation of Amazon facilities, they also improve the employee experience by eliminating repetitive lifting, stacking, and turning. In turn, this allows employees to focus on the kinds of assignments that leave robots struggling.

"Eliminating tasks that are repetitious and dull lets employees focus on things that are really important," Tye Brady, chief technologist for Amazon Robotics, observed. "If we can elevate our employees to do higher-level tasks that require common sense — something computers are not good at — that's a real gain for the overall system."

Related content
Autonomous robots called drives play a critical role in making billions of shipments every year. Here’s how they work.

This intricate collaboration of people and machines has helped Amazon to deliver goods with fewer mistakes, Brady said. It has also fueled growth and jobs. Since 2012, when Amazon first began deploying robots within its fulfillment centers, the company’s facility workforce added hundreds of thousands of new employees, even before its massive COVID-19 hiring efforts in 2020.

"Amazon could not have achieved what it has done without robotics, nor could we have done it without the amazing skills of our employees," Brady said. "They go hand in hand. If you try to separate one from another, you are going down a failed path."

@F4DStudio_AmazonScience_RoboticArm-00947 (1).jpg
Robin must calculate how to identify, move, and sort parcels that may rest atop one another as they are presented via a conveyor.
Credit: F4D Studio

But before Amazon could blaze that path, it first had to make sure its new robots were safe.

Safety first (and always)

"We don't just build a robot and then say, 'Hey, safety people, I want you to get involved now,'" Brady said. "Instead, safety engineers are there every step of the way, from design and deployment to maintenance and operation. They're at the table talking with us about how we can make it a better experience for our employees."

Clay Flannigan, senior manager, advanced robotics, and the technical lead in the Robin program noted that when robot and safety team members assess the flow of work in Amazon facilities, they insist on solutions that will not compromise safety.

"We work hard to identify any potential hazards," Flannigan said. "That could be anything from limiting any risk for contact between people and the robot, tripping on a floor cable, or a sharp edge on a barrier. Ideally, we can eliminate them with multiple engineering mitigations.”

This is especially important when working with large industrial robots: the best approach is to ensure appropriate access controls are implemented. This starts with fences. To enter the robot area, employees gain access through a secured gate, which positively disables the robot. There is only one gate, which provides strict control over who can access the robot.

Watch a hardware engineer operate Robin

In addition to the gate, a light curtain protects the opposite side of the robot. If an employee breaks the plane of the curtain, the robot automatically stops. These safety features ensure that the robot can do its job while permitting safe access to the area for employees to perform maintenance.

Amazon also brings in independent experts to assess the industrial designs. "They ask a lot of good questions,” Brady said. "'Can I approach the station from a weird angle? Could I open the door without the sensors tripping? Can I break the light curtain somehow without the system noticing?'"

Engineers then build and test physical prototypes, monitoring them to see if workers could potentially interact with them in ways that might cause usability issues. They also track metrics about how the machines behave within facilities, which permits continued improvement of their performance.

Robin as an evolutionary step

Robin, one of the most complex stationary robot arm systems Amazon has ever built, brings many core technologies to new levels and acts as a glimpse into the possibilities of combining vision, package manipulation and machine learning, said Will Harris, principal product manager of the Robin program.

Those technologies can be seen when Robin goes to work. As soft mailers and boxes move down the conveyor line, Robin must break the jumble down into individual items. This is called image segmentation. People do it automatically, but for a long time, robots only saw a solid blob of pixels.

Robin robotic arms sort and move packages
Robots are common in Amazon facilities, where more than 200,000 mobile units aid the flow of goods from inventory to shipping. Stationary robotic arms, however, are relatively new. Yet they play an important role in company's drive to safely deliver the right goods to the right customers at the right time.
Credit: F4D Studio

Over many years, AI algorithms have learned to break up that blob into individual objects by recognizing things like color or significant features, such as the edge of a mailer. More recently, neural networks have improved enough to do this well. The neural networks are aided in this task by training to segment mailers in a virtual world.

Engineers start by creating a virtual model of the arm and an ever-changing jumble of packages moving down a virtual conveyor belt. In the model, the robot’s AI attempts to segment and grab the items, iterating on each success and failure, and slowly learning to recognize mailers, even when they are obscured or in odd positions. After each session, the model reshuffles the packages randomly and the training begins again.  

After thousands of virtual model-training iterations, Amazon tests a prototype at its facilities. "We put together a 1,000-package test set that mirrors the profile of mail we expect to see in the building and run it through multiple times," Harris said. "This gives us good predictive data about how it will perform in the field. Then we test it operationally at select sites, before rolling it out to the entire installed base."

Pallet Tetris

The palletizer/depalletizer is a larger and more powerful machine than Robin, and a marvel of technology in its own right. It also plays a critical role in Amazon’s fulfillment operations.

See a palletizer/de-palletizer in action — skip ahead to the 24 second mark

At Amazon, Brady explains, product always flows toward employees. When someone places an order, a mobile robot brings the goods to an employee. If the order is complete, it is sent to the conveyer to be packed out and shipped to customers’ doors. If not — because no single facility contains the millions of products Amazon sells — the order goes to another facility to be completed.

The best way to ship totes is to put them on a pallet. The palletizer/depalletizer’s job is to stack totes on the pallet when they leave the facility and take them off the pallet and place them on conveyors when they come in. Brady likens the process to playing Tetris.

The palletizing starts with yellow totes parked at the end of a conveyor. All are the same size and oriented in the same direction, and they have been scanned to make sure the correct products are in the tote and the tote itself is in good shape.

New Amazon program offers free career training in robotics

The Mechatronics and Robotics Apprenticeship program gives employees the opportunity to apply for an apprenticeship that will train them on the skills and technical knowledge needed to fulfill technical maintenance roles. Find out more.

The palletizer/depalletizer has a two-dimensional camera at its tip, which it uses to rapidly position its arm over the tote. At the end is a custom gripper with four moveable L-shaped elements on each side that slip under the tote's raised upper perimeter. Once it has secured the tote, the robot lifts, pivots, and places the tote on a pallet, using a three-dimensional camera. As it does this, the AI system calculates where to place the tote so that the pallet is evenly balanced and stable. The robot builds six pallets at a time, three on each side, and it moves quickly.

"As the robot builds the pallets, people monitor several robots to make sure everything is going well," Brady said. "When the pallets are complete, they move them out of the cage with a motorized hand truck. You have this rhythm, this dynamic, between our employees and the palletizer/depalletizer, and this keeps all our operations running smoothly."

A dynamic partnership

The increasing reliance on systems like Robin and the palletizer/depalletizer also serves to highlight the symbiotic nature of the partnership between people and robots.

"There's a misconception about the sort of things we can achieve with robotic systems of this type," Flannigan answered. "There's a whole lot of tasks that we just can't solve today with robots alone and they tend to be ones that require higher levels of cognition or dexterity."

In fact, Brady noted, Amazon's facilities work best when people and machines work together: “There's a lot of productivity that involves people and machines working together, and I'm not just talking about one machine. I'm talking about an array of machines in our facilities and how we design those machines to interface with people. We use those machines to help people identify inventory, move inventory, store inventory, and source inventory. That's crucial to our job. Our employees are the backbone of our fulfillment process and we want to empower them with better machines.”

The result, says Brady, is an intricate dance, with people and machines each doing what they do best. It is one of the key reasons why Amazon continues to operate so smoothly and add tens of thousands of new jobs every year. And it’s why Amazon can deliver the right goods to the right customers at the right time.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
Amazon is seeking an experienced, self-directed data scientist to support the research and analytical needs of Amazon Web Services' Sales teams. This is a unique opportunity to invent new ways of leveraging our large, complex data streams to automate sales efforts and to accelerate our customers' journey to the cloud. This is a high-visibility role with significant impact potential. You, as the right candidate, are adept at executing every stage of the machine learning development life cycle in a business setting; from initial requirements gathering to through final model deployment, including adoption measurement and improvement. You will be working with large volumes of structured and unstructured data spread across multiple databases and can design and implement data pipelines to clean and merge these data for research and modeling. Beyond mathematical understanding, you have a deep intuition for machine learning algorithms that allows you to translate business problems into the right machine learning, data science, and/or statistical solutions. You’re able to pick up and grasp new research and identify applications or extensions within the team. You’re talented at communicating your results clearly to business owners in concise, non-technical language. Key job responsibilities • Work with a team of analytics & insights leads, data scientists and engineers to define business problems. • Research, develop, and deliver machine learning & statistical solutions in close partnership with end users, other science and engineering teams, and business stakeholders. • Use AWS services like SageMaker to deploy scalable ML models in the cloud. • Examples of projects include modeling usage of AWS services to optimize sales planning, recommending sales plays based on historical patterns, and building a sales-facing alert system using anomaly detection.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.