Several small blue Hercules robots are seen transporting tall yellow pods in a fulfillment center
When an order comes into certain fulfillment centers, Hercules robots — which can lift 1,250 pounds — fetch goods from inventory. If an order involves more than one item, the centralized planner schedules several drives, each carrying one or more products.

Amazon’s tiny robot drives do the heavy lifting

Autonomous robots called drives play a critical role in making billions of shipments every year. Here’s how they work.

Every day, Amazon ships millions of parcels. Single orders often include multiple products, and while Amazon employs hundreds of thousands of people at its fulfillment centers worldwide, those employees sometimes need an assist to handle the volume. They get it from a fleet of mobile robots.

A typical Amazon fulfillment center contains fleets of robotic drives, autonomous mobile robots that transport goods. While each has a heroic name — Hercules, Pegasus, and Xanthus — the fact is that these drives perform the mundane but necessary tasks required to efficiently deliver goods to customers’ doors.

Hercules is the embodiment of Amazon’s goods-to-employee approach to fulfillment.

Hercules, as its name attests, combines strength and speed. It brings goods from inventory to employees for packing. Pegasus, whose name evokes the winged horse of Greek mythology, sorts parcels by zip code or delivery route. Xanthus, named for the immortal horse that drew Achilles’ chariot, also sorts but can do other tasks as well.

Robotic drives complete their tasks while safely navigating a constantly changing world that includes employees, other mobile robots, obstructions, and even congestion. They must not only deliver the right product to the right place, but do it at the right time.

Air traffic control

That is why Amazon has embraced shared autonomy, which allows drives to make some decisions independently while still taking overall direction from centralized planning software.

Related content
Three of Amazon’s leading roboticists — Sidd Srinivasa, Tye Brady, and Philipp Michel — discuss the challenges of building robotic systems that interact with human beings in real-world settings.

Tye Brady, Amazon Robotics’ chief technologist, likens it to an air traffic control system: The flight controller provides the route and departure/arrival times, but the pilot takes off, flies, and lands the jet using their best judgment.

The process begins when an order arrives. Algorithms gauge both product availability and the ability to meet delivery windows. When the right match is found, that information is sent to a specific fulfillment center, where centralized planning software begins to orchestrate the safe, efficient movement of those robot drives to help meet the delivery date.

“Once the centralized planner creates this schedule, it assigns tasks and routes to the drives,” Brady explained. “The drives have enough smarts to move safely around humans, communicate with nearby robots so they do not collide, and report any problems like spills or obstructions back to the controller. If a drive sees that a path is blocked, for example, the planner says, ‘That’s OK. Let me see if I can find you a new route.’”

Fenway Park parking puzzle

After an order comes in, the first in motion is Hercules, which fetches goods from inventory so employees can pack and label them for shipping. If an order involves more than one item, the centralized planner schedules several drives, each carrying one or more products, to arrive one after the other, so the associate can more easily assemble the order.

Related content
Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

Hercules is the embodiment of Amazon’s goods-to-employee approach to fulfillment. Instead of asking employees to search for goods on the shelves, Amazon uses robots to bring products to employees at fixed packaging stations.

There are several reasons Amazon favors a goods-to-associate flow, Brady noted. First, asking employees to rummage through bins to find the right product is repetitive and inefficient. A robot can do this task, allowing employees to focus on more complex tasks.

The benefit of this approach is multiplied when a facility is optimized for robots. For example, Amazon stores goods on four-sided shelves called pods, which contain randomly sized bins of products. Hercules slides under the pod, which weighs up to 1,000 pounds, lifts it off the ground, and delivers the entire pod to the packing station.

Hercules robots can carry pods with several different items.

Because only robots access the pods, Amazon can cluster pods closer to one another, which increases the volume of goods it can store in its warehouses. If a pod’s product is popular, drives will shuttle it closer to the packing stations. If demand cools, they will shift them to the back.

Related content
The Boston region is an important research hub for Amazon, with offices in the city itself as well as in nearby Cambridge and North Reading. Scientists in the Boston area work on technology related to Amazon Web Services, Alexa, robotics, and quantum computing.

However, clustering sometimes creates what Brady, who works in Boston, calls a Fenway Park parking puzzle.

“That’s when your car is boxed in by 10 other cars and you want to get it out efficiently,” he said. “The same thing happens with clustered pods, and our algorithms solve it all the time using a team of robots. Better yet, they will not charge you $80 to park there as well!”

Hercules

Hercules itself is a fourth-generation drive designed to navigate structured fields, floors that contain a grid of encoded markers. By reading the markers with its downward facing camera, it can find its position and the location of any pod.

Hercules mounts a forward-facing 3D camera that identifies people, pods, other robots, and obstructions. The robot uses these images to make safe decisions quickly if an issue arises. The drive is also programmed to respond safely if the electricity goes out or the Wi-Fi crashes.

An Amazon employee is seen wearing a tech vest
Hercules communicates with other robots and with humans wearing Wi-Fi transmitters called Tech Vests, like the one seen here.

Hercules also communicates with other robots and humans with wearable Wi-Fi transmitters called Tech Vests. This enables it to identify the location of humans and robots beyond the range of its sensors, so it can plan a route that steers clear of them.

Hercules drives operate in parallel — even when some need to pause their operations. “If ten or even one hundred drives need to recharge their batteries or stop to run diagnostics, that’s OK,” Brady said. “There’s just so many of them that the rest of the swarm can replan and reroute. There’s no single point of failure.”

In 2018, Amazon unveiled Pegasus, a drive used to take finished parcels from employees and sort them by zip code or delivery route within the fulfillment center.

The robot is built on a Hercules drive and uses a structured field to navigate the sortation center. Like Hercules, the drive is fully sensored and operates safely around people, other robots, and obstructions. The big difference between the two robots is that Pegasus mounts a mini-conveyor belt on top of the puck-like drive.

Related content
Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

Sorting, however, is different than moving pods.

It starts when a truck delivers a load of packed and labelled parcels. These go onto a conveyor belt that goes upstairs to the facility’s mezzanine. There, employees (or robotic arms) scan each parcel’s address and then place it onto the Pegasus mini-conveyor. The planner assigns the robot a route based on the address. Pegasus then navigates around an array of holes in the floor. When it gets to the right one, the conveyor drops the package down a chute that takes it to the correct loading dock below.

X-bot

Physically, Xanthus, also called X-bot, looks like a lightweight version of Pegasus, which makes sense, as Amazon doesn’t need a drive designed to lift 1,000-pound pods for delivering twenty-pound parcels.

This makes the drive less expensive to build and deploy in large numbers. Xanthus also has upgraded sensors that enable it to detect people, robots, and obstructions from farther away than any of Amazon’s other mobile robots.

X-bot and Pegasus are designed to carry smaller packages.

What really sets the new drive apart, however, is its flexibility.

“It’s a clever robot, and its sensor package is well-suited to moving in busy environments,” Brady said. “We did that intentionally to make it more of a jack of all trades. We started it on sortation, but in the future, we see a lot more potential applications for it.”

Some of those uses and design features were crowd-sourced from Amazon employees.

“We issued a challenge to our employees about three years ago,” Brady said. “We asked them, ‘What would a very low-cost mobile robot look like?’ About a third of our employees responded, and we grouped some of them into teams to move those ideas forward. We used several of those ideas in the final design.”

It's a clever robot, and its sensor package is well-suited to moving in busy environments. We did that intentionally to make it more of a jack of all trades. We started it on sortation, but in the future, we see a lot more potential applications for it.
Tye Brady

Xanthus’ flexibility could make it a game changer in Amazon’s fulfillment centers. Yet Brady thinks of it as evolutionary, not revolutionary. Xanthus is the next step for Pegasus, just as Hercules is the fourth iteration of Amazon’s original pod drive. In both cases, the new drives are smaller, faster, smarter, and safer than the ones they replaced.

“The job of our engineers is to take these complicated tasks and ideas and simplify, simplify, and simplify until they become reality,” he said. “The best things that we do are really very simple. And because we have gained this world-class capability in autonomous mobility, we can unlock the lessons we’ve already learned inside our fulfillment centers and develop new robots that are extensions of what we already do.

“This work exemplifies one of the company’s newest leadership principles of striving to be the Earth’s best employer,” Brady adds. “That principle suggests that leaders work every day to create a safer, more productive, higher performing, more diverse, and more just work environment. That’s the role of our robots, to augment the work of our employees, making our fulfillment centers safer and more productive.”

At re:MARS, Amazon Robotics unveiled some new robots, including its first fully autonomous mobile robot, Proteus.

Research areas

Related content

US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. The Research Science team at Amazon Robotics is seeking interns with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, planning/scheduling, and reinforcement learning. As an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000