Several small blue Hercules robots are seen transporting tall yellow pods in a fulfillment center
When an order comes into certain fulfillment centers, Hercules robots — which can lift 1,250 pounds — fetch goods from inventory. If an order involves more than one item, the centralized planner schedules several drives, each carrying one or more products.

Amazon’s tiny robot drives do the heavy lifting

Autonomous robots called drives play a critical role in making billions of shipments every year. Here’s how they work.

Every day, Amazon ships millions of parcels. Single orders often include multiple products, and while Amazon employs hundreds of thousands of people at its fulfillment centers worldwide, those employees sometimes need an assist to handle the volume. They get it from a fleet of mobile robots.

A typical Amazon fulfillment center contains fleets of robotic drives, autonomous mobile robots that transport goods. While each has a heroic name — Hercules, Pegasus, and Xanthus — the fact is that these drives perform the mundane but necessary tasks required to efficiently deliver goods to customers’ doors.

Hercules is the embodiment of Amazon’s goods-to-employee approach to fulfillment.

Hercules, as its name attests, combines strength and speed. It brings goods from inventory to employees for packing. Pegasus, whose name evokes the winged horse of Greek mythology, sorts parcels by zip code or delivery route. Xanthus, named for the immortal horse that drew Achilles’ chariot, also sorts but can do other tasks as well.

Robotic drives complete their tasks while safely navigating a constantly changing world that includes employees, other mobile robots, obstructions, and even congestion. They must not only deliver the right product to the right place, but do it at the right time.

Air traffic control

That is why Amazon has embraced shared autonomy, which allows drives to make some decisions independently while still taking overall direction from centralized planning software.

Related content
Three of Amazon’s leading roboticists — Sidd Srinivasa, Tye Brady, and Philipp Michel — discuss the challenges of building robotic systems that interact with human beings in real-world settings.

Tye Brady, Amazon Robotics’ chief technologist, likens it to an air traffic control system: The flight controller provides the route and departure/arrival times, but the pilot takes off, flies, and lands the jet using their best judgment.

The process begins when an order arrives. Algorithms gauge both product availability and the ability to meet delivery windows. When the right match is found, that information is sent to a specific fulfillment center, where centralized planning software begins to orchestrate the safe, efficient movement of those robot drives to help meet the delivery date.

“Once the centralized planner creates this schedule, it assigns tasks and routes to the drives,” Brady explained. “The drives have enough smarts to move safely around humans, communicate with nearby robots so they do not collide, and report any problems like spills or obstructions back to the controller. If a drive sees that a path is blocked, for example, the planner says, ‘That’s OK. Let me see if I can find you a new route.’”

Fenway Park parking puzzle

After an order comes in, the first in motion is Hercules, which fetches goods from inventory so employees can pack and label them for shipping. If an order involves more than one item, the centralized planner schedules several drives, each carrying one or more products, to arrive one after the other, so the associate can more easily assemble the order.

Related content
Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

Hercules is the embodiment of Amazon’s goods-to-employee approach to fulfillment. Instead of asking employees to search for goods on the shelves, Amazon uses robots to bring products to employees at fixed packaging stations.

There are several reasons Amazon favors a goods-to-associate flow, Brady noted. First, asking employees to rummage through bins to find the right product is repetitive and inefficient. A robot can do this task, allowing employees to focus on more complex tasks.

The benefit of this approach is multiplied when a facility is optimized for robots. For example, Amazon stores goods on four-sided shelves called pods, which contain randomly sized bins of products. Hercules slides under the pod, which weighs up to 1,000 pounds, lifts it off the ground, and delivers the entire pod to the packing station.

Hercules robots can carry pods with several different items.

Because only robots access the pods, Amazon can cluster pods closer to one another, which increases the volume of goods it can store in its warehouses. If a pod’s product is popular, drives will shuttle it closer to the packing stations. If demand cools, they will shift them to the back.

Related content
The Boston region is an important research hub for Amazon, with offices in the city itself as well as in nearby Cambridge and North Reading. Scientists in the Boston area work on technology related to Amazon Web Services, Alexa, robotics, and quantum computing.

However, clustering sometimes creates what Brady, who works in Boston, calls a Fenway Park parking puzzle.

“That’s when your car is boxed in by 10 other cars and you want to get it out efficiently,” he said. “The same thing happens with clustered pods, and our algorithms solve it all the time using a team of robots. Better yet, they will not charge you $80 to park there as well!”

Hercules

Hercules itself is a fourth-generation drive designed to navigate structured fields, floors that contain a grid of encoded markers. By reading the markers with its downward facing camera, it can find its position and the location of any pod.

Hercules mounts a forward-facing 3D camera that identifies people, pods, other robots, and obstructions. The robot uses these images to make safe decisions quickly if an issue arises. The drive is also programmed to respond safely if the electricity goes out or the Wi-Fi crashes.

An Amazon employee is seen wearing a tech vest
Hercules communicates with other robots and with humans wearing Wi-Fi transmitters called Tech Vests, like the one seen here.

Hercules also communicates with other robots and humans with wearable Wi-Fi transmitters called Tech Vests. This enables it to identify the location of humans and robots beyond the range of its sensors, so it can plan a route that steers clear of them.

Hercules drives operate in parallel — even when some need to pause their operations. “If ten or even one hundred drives need to recharge their batteries or stop to run diagnostics, that’s OK,” Brady said. “There’s just so many of them that the rest of the swarm can replan and reroute. There’s no single point of failure.”

In 2018, Amazon unveiled Pegasus, a drive used to take finished parcels from employees and sort them by zip code or delivery route within the fulfillment center.

The robot is built on a Hercules drive and uses a structured field to navigate the sortation center. Like Hercules, the drive is fully sensored and operates safely around people, other robots, and obstructions. The big difference between the two robots is that Pegasus mounts a mini-conveyor belt on top of the puck-like drive.

Related content
Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

Sorting, however, is different than moving pods.

It starts when a truck delivers a load of packed and labelled parcels. These go onto a conveyor belt that goes upstairs to the facility’s mezzanine. There, employees (or robotic arms) scan each parcel’s address and then place it onto the Pegasus mini-conveyor. The planner assigns the robot a route based on the address. Pegasus then navigates around an array of holes in the floor. When it gets to the right one, the conveyor drops the package down a chute that takes it to the correct loading dock below.

X-bot

Physically, Xanthus, also called X-bot, looks like a lightweight version of Pegasus, which makes sense, as Amazon doesn’t need a drive designed to lift 1,000-pound pods for delivering twenty-pound parcels.

This makes the drive less expensive to build and deploy in large numbers. Xanthus also has upgraded sensors that enable it to detect people, robots, and obstructions from farther away than any of Amazon’s other mobile robots.

X-bot and Pegasus are designed to carry smaller packages.

What really sets the new drive apart, however, is its flexibility.

“It’s a clever robot, and its sensor package is well-suited to moving in busy environments,” Brady said. “We did that intentionally to make it more of a jack of all trades. We started it on sortation, but in the future, we see a lot more potential applications for it.”

Some of those uses and design features were crowd-sourced from Amazon employees.

“We issued a challenge to our employees about three years ago,” Brady said. “We asked them, ‘What would a very low-cost mobile robot look like?’ About a third of our employees responded, and we grouped some of them into teams to move those ideas forward. We used several of those ideas in the final design.”

It's a clever robot, and its sensor package is well-suited to moving in busy environments. We did that intentionally to make it more of a jack of all trades. We started it on sortation, but in the future, we see a lot more potential applications for it.
Tye Brady

Xanthus’ flexibility could make it a game changer in Amazon’s fulfillment centers. Yet Brady thinks of it as evolutionary, not revolutionary. Xanthus is the next step for Pegasus, just as Hercules is the fourth iteration of Amazon’s original pod drive. In both cases, the new drives are smaller, faster, smarter, and safer than the ones they replaced.

“The job of our engineers is to take these complicated tasks and ideas and simplify, simplify, and simplify until they become reality,” he said. “The best things that we do are really very simple. And because we have gained this world-class capability in autonomous mobility, we can unlock the lessons we’ve already learned inside our fulfillment centers and develop new robots that are extensions of what we already do.

“This work exemplifies one of the company’s newest leadership principles of striving to be the Earth’s best employer,” Brady adds. “That principle suggests that leaders work every day to create a safer, more productive, higher performing, more diverse, and more just work environment. That’s the role of our robots, to augment the work of our employees, making our fulfillment centers safer and more productive.”

At re:MARS, Amazon Robotics unveiled some new robots, including its first fully autonomous mobile robot, Proteus.

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, WA, Bellevue
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The Alexa Sensitive Content Intelligence (ASCI) team owns the Responsible AI and customer feedback charters in Alexa+ and Classic Alexa across all device endpoints, modalities and languages. The mission of our team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, (3) build customer trust through generating appropriate interactions on sensitive topics, and (4) analyze customer feedback to gain insight and drive continuous improvement loops. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
CA, ON, Toronto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities • Collaborate with business, engineering and science leaders to establish science optimization and monetization roadmap for Amazon Retail Ad Service • Drive alignment across organizations for science, engineering and product strategy to achieve business goals • Lead/guide scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon advertisers and third party retailers • Develop state of the art experimental approaches and ML models to keep up with our growing needs and diverse set of customers. • Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. About the team Amazon Retail Ad Service within Sponsored Products and Brands is an ad-tech solution that enables retailers to monetize their online web and app traffic by displaying contextually relevant sponsored products ads. Our mission is to provide retailers with ad-solution for every type of supply to meet their advertising goals. At the same time, enable advertisers to manage their demand across multiple supplies (Amazon, offsite, third-party retailers) leveraging tools they are already familiar with. Our problem space is challenging and exciting in terms of different traffic patterns, varying product catalogs based on retailer industry and their shopper behaviors.