Robotics at Amazon

Three of Amazon’s leading roboticists — Sidd Srinivasa, Tye Brady, and Philipp Michel — discuss the challenges of building robotic systems that interact with human beings in real-world settings.

The International Conference on Robotics and Automation (ICRA), the major conference in the field of robotics, takes place this week, and Amazon is one of its silver sponsors. To mark the occasion, Amazon Science sat down with three of Amazon’s leading roboticists to discuss the challenges of building robotic systems that interact with human beings in real-world settings.

Roboticists.png
From left to right, Sidd Srinivasa, director of Amazon Robotics AI; Tye Brady, chief technologist for global Amazon Robotics; and Philipp Michel, senior manager of applied science for Amazon Scout.

As the director of Amazon Robotics AI, Siddhartha (Sidd) Srinivasa is responsible for the algorithms that govern the autonomous robots that assist employees in Amazon fulfillment centers, including robots that can pick up and package products and the autonomous carts that carry products from the shelves to the packaging stations.

More about robotics at Amazon

Learn more about robotics at Amazon — including job opportunities — and about Amazon's participation at ICRA.

Tye Brady, the chief technologist for global Amazon Robotics, helps shape Amazon’s robotics strategy and oversees university outreach for robotics.

Philipp Michel is the senior manager of applied science for Amazon Scout, an autonomous delivery robot that moves along public sidewalks at a walking pace and is currently being field-tested in four U.S. states.

Amazon Science: There are a lot of differences between the problems you’re addressing, but I wondered what the commonalities are.

Sidd Srinivasa: The thing that makes our problem incredibly hard is that we live in an open world. We don't even know what the inputs that we might face are. In our fulfillment centers, I need to manipulate over 20 million items, and that increases by several hundreds of thousands every day. Oftentimes, our robots have absolutely no idea what they're picking up, but they need to be able to pick it up carefully without damaging it and package it effortlessly.

Related content
Advanced machine learning systems help autonomous vehicles react to unexpected changes.

Philipp Michel: For Scout, it's the objects we encounter on the sidewalk, as well as the environment. We operate personal delivery devices in four different U.S. states. The weather conditions, lighting conditions — there’s a huge amount of variability that we explicitly wanted to tackle from the get-go to expose ourselves to all of those difficult, difficult problems.

Tye Brady: For the development of our fulfillment robotics, we have a significant advantage in that we operate in a semi-structured environment. We get to set the rules of the road. Knowing the environment really helps our scientists and engineers contextualize and understand the objects we have to move, manipulate, sort, and identify to fulfill any order. This is a significant advantage in that it gives us real-world project context to pursue our plans for technology development

Philipp Michel: Another commonality, if it isn't obvious, is that we rely very heavily on learning from data to solve our problems. For Scout, that is all of the real-world data that the robot receives on its missions, which we continuously try to iterate on to develop machine learning solutions for perception, for localization to a degree, and eventually for navigation as well.

Sidd Srinivasa: Yeah, I completely agree with that. I think that machine learning and adaptive control are critical for superlinear scaling. If we have tens, hundreds, thousands of robots deployed, we can't have tens, hundreds, thousands of scientists and engineers working on them. We need to scale superlinearly with respect to that.

And I think the open world compels us to think about continual learning. Our machine learning models are trained on some input data distribution. But because of an open world, we have what's called covariate shift, which is that the data that you see doesn't match the distribution, and that causes your machine learning model often to be unreasonably overconfident.

Amazon_Prime_Amazon Robotics_3s_600x338.gif
In the six months after the Robin robotic arm was deployed, continual learning halved the number of packages it couldn't pick up (which was low to begin with).

So a lot of work that we do is on creating watchdogs that can identify when the input data distribution has deviated from the distribution that it was trained on. Secondly, we do what we call importance sampling such that we can actually pick out the pieces that have changed and retrain our machine learning models.

Philipp Michel: This is again one of the reasons why we want to have this forcing function of being in a wide variety of different places, so we get exposed to those things as quickly as possible and so that it forces us to develop solutions that handle all of that novel data.

Sidd Srinivasa: That's a great point that I want to continue to highlight. One of the advantages of having multiple robots is the ability for one system to identify that something has changed, to retrain, and then to share that knowledge to the rest of the robots.

We have an anecdote of that in one of our picking robots. There was a robot in one part of the world that noticed a new package type that came by. It struggled mightily at the beginning because it had never seen that and identified that it was struggling. The solution was rectified, and then it was able to transmit the model to all the other robots in the world such that even before this new package type arrived in some of those locations, those robots were prepared to address it. So there was a blip, but that blip occurred only in one location, and all the other locations were prepared to address that because this system was able to retrain itself and share that information.

Related content
An advanced perception system, which detects and learns from its own mistakes, enables Robin robots to select individual objects from jumbled packages — at production scale.

Philipp Michel: Our bots do similar things. If there are new types of obstacles that we haven't encountered before, we try to adjust our models to recognize those and handle those, and then that gets deployed to all of the bots.

One of the things that keeps me up at night is that we encounter things on the sidewalk that we may not see again for three years. Specific kinds of stone gargoyles used as Halloween decorations on people’s lawns. Or somebody deconstructed a picnic table that had an umbrella, so it is not recognizable as a picnic table to any ML [machine learning] algorithm.

One of the advantages of having multiple robots is the ability to identify that something has changed, to retrain, and then to share that knowledge to the rest of the robots.
Sidd Srinivasa, director of Amazon Robotics AI

So some of our scientific work is on how we balance between generic things that detect that there is something you should not be driving over and things that are quite specific. If it's an open manhole cover, we need to get very good at recognizing that. Whereas if it's just some random box, we might not need a specific hierarchy of boxes — just that it is something that we should not be traversing.

Sidd Srinivasa: Another challenge is that when you do change your model, it can have unforeseen consequences. Your model might change in some way that perhaps doesn't affect your perception but maybe changes the way your robot brakes, and that leads to the wearing of your ball bearings two months from now. We work with these end-to-end systems, where a lot of interesting future research is in being able to understand the consequences of changing parts of the system on the entire system performance.

Philipp Michel: We spent a lot of time thinking about to what degree we should compartmentalize the different parts of the robot stack. There are lots of benefits to trying to be more integrative across them. But there's a limit to that. One extreme is the cameras-to-motor-torques kind of learning that is very challenging in any real-world robotics application. And then there is the traditional robotics stack, which is well separated into localization, perception, planning, and controls.

Related content
Amazon Research Award recipient Russ Tedrake is teaching robots to manipulate a wide variety of objects in unfamiliar and constantly changing contexts.

We also spend a lot of time thinking about how the stack should evolve over time. What performance gains can we get when we more tightly couple some of these parts? At the same time, we want to have a system that remains as explainable as possible. A lot of thought goes into how we can leverage more integration of the learned components across the stack while at the same time retaining the amounts of explainability and safety functionality that we need.

Sidd Srinivasa: That's a great point. I completely agree with Philipp that one model to rule them all may not necessarily be the right answer. But oftentimes we end up building machine learning models that share a common backbone but have multiple heads for multiple applications. What an object is, what it means to segment an object, might be similar for picking or stowing or for packaging, but then each of those might require specialized heads that sit on top of a backbone for those specialized tasks.

Philipp Michel: Some factors we consider are battery, range, temperature, space, and compute limitations. So we need to be very efficient in the models that we use and how we optimize them and how we try to leverage as much shared backbone across them as possible with, as Sidd mentioned, different heads for different tasks.

Amazon_Prime_Amazon Scouts_3s_600x338.gif
Amazon Scout is an autonomous delivery robot that moves along public sidewalks at a walking pace and is currently being field-tested in four U.S. states.

Tye Brady: The nice thing about what Sidd and Philipp describe is that there is always a person to help. The robot can ask another robot through AWS for a different sample or perspective, but the true power comes from asking one of our employees for help in how to perceive or problem-solve. This is super important because the robot can learn from this interaction, allowing our employees to focus on higher-level tasks, things you and I would call common sense. That is not so easy in the robotics world, but we are working to design our machines to understand intent and redirection to reinforce systemic models our robots have of the world. All three of us have that in common.

Related content
When it comes to search-and-rescue missions, dogs are second to none, but an Amazon Research Award recipient says they might have competition from drones.

Amazon Science: When I asked about the commonalities between your projects, one of the things I was thinking about is that you all have robots that are operating in the same environments as humans. How does that complicate the problem?

Tye Brady: When we design our machines right, humans never complicate the problem; they only make it easier. It is up to us to make machines that enhance our human environment by providing a safety benefit and a convenience to our employees. A well-designed machine may fill a deficit for employees that’s not possible without a machine. Either way, our robotics should make us more intelligent, more capable, and freer to do the things that matter most to us.

Philipp Michel: Our direct interactions with our customers and the community are of utmost importance for us. So there's a lot of work that we do on the CX [customer experience] side in trying to make that as delightful as possible.

Another thing that's important for us is that the robot has delightful and safe and understandable interactions with people who might not be customers but whom the robot encounters on its way. People haven't really been exposed to autonomous delivery devices before. So we think a lot about what those interactions should look like on the sidewalk.

A big part of our identity is not just the appearance but how it manifests it through its motion and its yielding behaviors
Philipp Michel, senior manager of applied science for Amazon Scout

On the one hand, you should try to act as much as a normal traffic participant would as possible, because that's what people are used to. But on the other hand, people are not used to this new device, so they don't necessarily assume it's going to act like a pedestrian. It's something that we constantly think about. And that's not just at the product level; it really flows down to the bot behavior, which ultimately is controlled by the entire stack. A big part of our identity is not just the appearance but how it manifests it through its motion and its yielding behaviors and all of those kinds of things.

Sidd Srinivasa: Our robots are entering people's worlds. And so we have to be respectful of all the complicated interactions that happen inside our human worlds. When we walk, when we drive, there is this complex social dance that we do in addition to the tasks that we are performing. And it's important for our robots, first of all, to have awareness of it and, secondly, to participate in it.

And it's really hard, I must say. When you're driving, it's sometimes hard to tell what other people are thinking about. And then it's hard to decide how you want to act based on what they're thinking about. So just the inference problem is hard, and then closing the loop is even harder.

Related content
Publicly released TEACh dataset contains more than 3,000 dialogues and associated visual data from a simulated environment.

If you're playing chess or go against a human, then it's easier to predict what they're going to do, because the rules are well laid out. If you play assuming that your opponent is optimal, then you're going to do well, even if they are suboptimal. That's a guarantee in certain two-player games.

But that's not the case here. We're playing this sort of cooperative game of making sure everybody wins. And when you're playing these sorts of cooperative games, then it's actually very, very hard to predict even the good intentions of the other agents that you're working with.

Philipp Michel: And behavior varies widely. We have times when pets completely ignore the robot, could not care at all, and we have times when the dog goes straight towards the bot. And it's similar with pedestrians. Some just ignore the bot, while others come right up to it. Particularly kids: they’re super curious and interact very closely. We need to be able to handle all of those types of scenarios safely. All of that variability makes the problem super exciting.

Tye Brady: It is an exciting time to be in robotics at Amazon! If any roboticists are out there listening, come join us. It's wicked awesome.

robin arm with gripper.jpg
Credit: F4D Studio
Amazon Robotics is hiring! Advancements are underway in autonomous movement and mobility, artificial intelligence and machine learning, manipulation, simulation, robotic-management software, predictive analytics, and much more.

Research areas

Related content

IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.