Zoox 3D map.gif
This visualization shows a Zoox vehicle aligning lidar data to Zoox's 3D map to localize itself in downtown San Francisco. Central to the Zoox navigation system is a cluster of capabilities: calibration, localization, and mapping.
Zoox

How Zoox vehicles “find themselves” in an ever-changing world

Advanced machine learning systems help autonomous vehicles react to unexpected changes.

For a human to drive successfully around an urban environment, they must be able to trust their eyes and other senses, know where they are, understand the permissible ways to move their vehicle safely, and of course know how to reach their destination.

Building these abilities, and so many more, into an autonomous electric vehicle designed to transport customers smoothly and safely around densely populated cities takes an astonishing amount of technological innovation. Since its founding in 2014, Zoox has been developing autonomous ride-hailing vehicles, and the systems that support them, from the ground up. The company, which is based in Foster City, California, became an independent subsidiary of Amazon in 2020.

Zoox Fully Autonomous Vehicle at Coit Tower San Francsico
The Zoox L5 fully autonomous, all-electric robotaxi has no forward or backward, can reach speeds of up to 75 miles per hour, and can move all four wheels independently.
Zoox

The Zoox purpose-built robot is an autonomous, pod-like electric vehicle that can carry four passengers in comfort. It has no forward or backward, being equally happy to drive in either direction, at up to 75 miles per hour, and can move all four wheels independently. There are no manual driving controls inside the vehicle.

Zoox has already done a great deal of testing of its autonomous driving systems using a fleet of retrofitted Toyota Highlander vehicles — with a human driver at the wheel, ready to take over if needed — in San Francisco, Las Vegas, Foster City, and Seattle.

Central to the Zoox navigation system is a cluster of capabilities called calibration, localization, and mapping. Only through this combination of abilities can Zoox vehicles understand their environment with exquisite precision, know where they are in relation to everything in their vicinity and beyond, and know exactly where they are going.

Zoox test vehicles, in this instance Toyota Highlanders, are retrofitted with an almost identical sensor configuration and compute system to their purpose-built vehicle.
Zoox has already done a great deal of testing of its autonomous driving systems using a fleet of Toyota Highlanders retrofitted with an almost identical sensor configuration and compute system to the purpose-built vehicle — with a human driver at the wheel, ready to take over if needed — in San Francisco, Las Vegas, Foster City, and Seattle.
Zoox

This is the domain of Zoox’s CLAMS (Calibration, Localization, and Mapping Simultaneously) and Zoox Road Network (ZRN) teams, which together enable the vehicle to meaningfully understand its location and process its surroundings. To get an idea of how these elements work in concert, Amazon Science spoke to several members of these teams.

In terms of awareness of its environment, the Zoox vehicle can fairly be likened to an all-seeing eye. Its state-of-the-art sensor architecture is made up of LiDARs (Light Detection and Ranging), radars, visual cameras, and longwave-infrared cameras. These are arrayed symmetrically around the outside of the vehicle, providing an overlapping, 360-degree field of view.

With this many sensors in play, it is critical that their input is stitched together accurately to create a true and self-consistent picture of everything happening all around the vehicle, moment to moment. To do that, the vehicle needs to know exactly where its sensors are in relation to each other, and with sensors of such high resolution, it’s not enough simply to know where the sensors were attached to the vehicle in the first place.

“To a very minor but still important degree, every vehicle is a special snowflake in some way,” says Taylor Arnicar, staff technical program manager, who oversees the CLAMS and ZRN teams. “And the other reality is we’re exposing these vehicles to rather harsh real-world conditions. There’s shock and vibe, thermal events, and all these things can cause very slight changes in sensor positioning.” Were such changes to be ignored, it could result in unacceptably “blurry” vision, Arnicar says.

In other autonomous-robotics applications, sensor calibration typically entails the robot looking at a specific calibration target, displayed on surrounding infrastructure, such as a wall. With the Zoox vehicle destined for the ever-changing urban environment, the Zoox team is pioneering infrastructure-free calibration.

This animation shows a Zoox system aligning color camera edges to lidar depth edges
This animation shows a Zoox system aligning color camera edges to lidar depth edges. With the Zoox vehicle destined for the ever-changing urban environment, the Zoox team is pioneering infrastructure-free calibration.
Zoox

“That means we rely on the natural environment — whatever objects, shapes, and colors are in the world around the vehicle as it drives,” says Arnicar. One way the team does this is by automatically identifying image gradients — such as the edges of buildings or the trunks of trees — from the vehicle’s color camera data and aligning those with depth edges in the LiDAR data.

It is worth emphasizing that a superpower of the Zoox vehicle is seeing its surroundings with superhuman perception. With so many sensors mounted externally, in pods on the corners of the vehicles, it can see what’s coming around every corner before a human driver would. Its LiDARs and visual cameras mean it knows what lies in every direction with high precision. It even boasts a kind of X-ray vision: “Certain materials don’t obstruct the radar,” says Elena Strumm, Zoox’s engineering manager for mapping algorithms. “When a bicyclist is cycling behind a bush, for example, we might get a really clear radar signature on them, even if that bush has occluded the LiDAR and visual cameras.”

Related content
Jesse Levinson, co-founder and CTO of Zoox, answers 3 questions about the challenges of developing autonomous vehicles and why he’s excited about Zoox’s robotaxi fleet.

Now that the vehicle can rely on what it senses, it needs a map. The Zoox team gathers its map data first-hand by driving around the cities in which it will operate in Toyota Highlanders retrofitted with the full Zoox sensor architecture. LiDAR data and visual images collected in this way can be made into high-definition maps by the CLAMS team. But first, all the people, cars, and other ephemeral aspects of the urban landscape must be removed from the LiDAR data. For this, machine learning is required.

When the Zoox vehicle is in normal urban operations, it is fundamental that its perception system recognizes the aspects of incoming LiDAR data that represent pedestrians, cyclists, cars or trucks — or indeed anything that may move in ways that need to be anticipated. LiDARs create enormous amounts of information about the dynamic 3D environment around the vehicle in the form of “point clouds” — sets of points that describe the objects and surfaces visible to the LiDAR. Using machine learning to instantly identify people in a fast-moving, dynamic environment is a challenge, particularly as people may be moving, static, partly occluded, in a wheelchair, only visible from the knees down, or any number of possibilities.

A raw lidar point cloud of Caesars Palace in Las Vegas, before it’s turned into an efficient mesh representation for the 3D map.
A raw lidar point cloud of Caesars Palace in Las Vegas, before it’s turned into an efficient mesh representation for the 3D map.
Zoox

“Machine-learned AI systems excel at this kind of pattern-matching problem. You feed millions of examples of something and then they can do a great good job of recognizing that thing in the abstract,” Arnicar explains.

In a beautiful piece of synergy, the Zoox mapping team benefits from this safety-critical application of machine learning because they require the reverse information — they want to take the people and cars out of the data so that they can create 3D maps of the road landscape and infrastructure alone.

“Once these elements are identified and removed from the mapping data, it becomes possible to combine LiDAR-based point clouds from overlapping locations to create high resolution 3D maps,” says Strumm.

But maps are not useful to the vehicle without meaning. To create a “semantic map,” the ZRN team adds layers of information to the 3D map that encode everything static that the vehicle needs to navigate the road safely, including speed limits, traffic light locations, one-way streets, keep-clear zones and more.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

The final core piece of the CLAMS team’s work is localization. Zoox’s localization technology allows each vehicle to know where it is in the world — and on its map — to within a few centimeters, and its direction to within a fraction of a degree. The vehicle does this not only by comparing its visual inputs with its map, but also by utilizing GPS, accelerometers, wheel speeds, gyroscopes, and more. It can therefore check its precise location and velocity hundreds of times per second. Armed with a combination of the physical and semantic maps, and always aware of its place in relation to every object or person in its vicinity, the vehicle can navigate safely to its destination.

Part of the localization challenge is that any map will become dated over time, Arnicar explains. “Once you build the map — from the moment the data is collected — you need to consider that it could be out of date.” This is because the world can change anytime, anywhere, without notice. “On one occasion one of our Toyota Highlanders was driving down the street collecting data, and right in front of us was a construction truck with a guy hanging off the back, repainting the lane line in a different place as they drove along. No amount of fast mapping can catch up with these sorts of scenarios.” In practice, this means the map needs to be treated as a guidebook for the vehicle, not as gospel.

“This changeability of the real world led us to create the ZRN Monitor, a system on the vehicle that determines whether the actual road environment has differed from our semantic map data,” says Chris Gibson, engineering manager for the Zoox Road Network team. “For example, if lane markings have changed and now the double yellow lines have moved, then if we don’t detect that dynamically, we could potentially end up driving into opposing traffic. From a safety perspective, we must make absolutely certain that the vehicle does not drive into such areas.” The ZRN Monitor’s role is to identify and, to an extent, evaluate the safety implications of such unanticipated environmental modifications. These notifications are also an indication that it may be time to update the map for that area with more recent sensor data.

In the uncommon situation in which the vehicle encounters a challenging driving situation and it isn’t highly confident of a safe way to proceed, it can request “TeleGuidance” — a human operator located in a dedicated service center is provided with the full 3D understanding of the vehicle’s environment, as well as live-streamed sensor data.

A Zoox TeleGuidance tactician providing remote guidance to a vehicle from the Zoox HQ
A Zoox TeleGuidance tactician provides remote guidance to a vehicle from Zoox HQ.
Zoox

“Imagine a construction zone. The Zoox vehicle might need to be directed to drive on the other side of the road, which would normally carry oncoming traffic. That’s a rule that under most circumstances you shouldn’t break, but in this instance, a TeleGuidance tactician might provide the robot with waypoints to ensure it knows where it needs to go in that moment,” says Gibson. The vehicle remains responsible for the safety of its passengers, however, and continues to drive autonomously at all times while acting on the TeleGuidance information.

Before paying customers will be able to use their smartphones to hail a Zoox vehicle, more on-road testing first needs to be done. Zoox has built dozens of its purpose-built vehicles and is testing them on “semi-private courses” in California, according to Zoox’s co-founder and chief technology officer, Jesse Levinson. Next on the agenda is full testing on public roads, says Levinson, who promises that is “really not that far away. We’re not talking about years.”

So, what does it feel like to be transported in a Zoox vehicle?

“I’ve ridden in a Zoox vehicle, with no safety driver, no steering wheel, no anything — just me in the vehicle,” says Arnicar. “And it is magical. It’s what I’ve been working at Zoox seven years to experience. I’ve seen Zoox go from sketches on a napkin to something I can ride in. That's pretty amazing.”

When an autonomous Zoox vehicle ultimately comes around a corner near you, know this for a fact: no matter how striking and novel it looks, it will see you before you see it.

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.
US, WA, Seattle
The Seller Fees organization drives the monetization infrastructure powering Amazon's global marketplace, processing billions of transactions for over two million active third-party sellers worldwide. Our team owns the complete technical stack and strategic vision for fee computation systems, leveraging advanced machine learning to optimize seller experiences and maintain fee integrity at unprecedented scale. We're seeking an exceptional Applied Scientist to push the boundaries of large-scale ML systems in a business-critical domain. This role presents unique opportunities to • Architect and deploy state-of-the-art transformer-based models for fee classification and anomaly detection across hundreds of millions of products • Pioneer novel applications of multimodal LLMs to analyze product attributes, images, and seller metadata for intelligent fee determination • Build production-scale generative AI systems for fee integrity and seller communications • Advance the field of ML through novel research in high-stakes, large-scale transaction processing • Develop SOTA causal inference frameworks integrated with deep learning to understand fee impacts and optimize seller outcomes • Collaborate with world-class scientists and engineers to solve complex problems at the intersection of deep learning, economics, and large business systems. If you're passionate about advancing the state-of-the-art in applied ML/AI while tackling challenging problems at global scale, we want you on our team! Key job responsibilities Responsibilities: . Design measurable and scalable science solutions that can be adopted across stores worldwide with different languages, policy and requirements. · Integrate AI (both generative and symbolic) into compound agentic workflows to transform complex business systems into intelligent ones for both internal and external customers. · Develop large scale classification and prediction models using the rich features of text, image and customer interactions and state-of-the-art techniques. · Research and implement novel machine learning, statistical and econometrics approaches. · Write high quality code and implement scalable models within the production systems. · Stay up to date with relevant scientific publications. · Collaborate with business and software teams both within and outside of the fees organization.
US, WA, Seattle
The Selling Partner Experience (SPX) organization strives to make Amazon the best place for Selling Partners to do business. The SPX Science team is building an AI-powered conversational assistant to transform the Selling Partner experience. The Selling Assistant is a trusted partner and a seasoned advisor that’s always available to enable our partners to thrive in Amazon’s stores. It takes away the cognitive load of selling on Amazon by providing a single interface to handle a diverse set of selling needs. The assistant always stays by the seller's side, talks to them in their language, enables them to capitalize on opportunities, and helps them accomplish their business goals with ease. It is powered by the state-of-the-art Generative AI, going beyond a typical chatbot to provide a personalized experience to sellers running real businesses, large and small. Do you want to join an innovative team of scientists, engineers, product and program managers who use the latest Generative AI and Machine Learning technologies to help Amazon create a delightful Selling Partner experience? Do you want to build solutions to real business problems by automatically understanding and addressing sellers’ challenges, needs and opportunities? Are you excited by the prospect of contributing to one of Amazon’s most strategic Generative AI initiatives? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use state-of-the-art Machine Learning and Generative AI techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model benchmarking, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. We are focused on building seller facing AI-powered tools using the latest science advancements to empower sellers to drive the growth of their business. We strive to radically simplify the seller experience, lowering the cognitive burden of selling on Amazon by making it easy to accomplish critical tasks such as launching new products, understanding and complying with Amazon’s policies and taking actions to grow their business.
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Selling Partner Growth organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential supported by Amazon tools and resources. We are looking for a Senior Applied Scientist to lead us to identify data-driven insight and opportunities to improve our SP growth strategy and drive new seller success. As a successful applied scientist on our talented team of scientists and engineers, you will solve complex problems to identify actionable opportunities, and collaborate with engineering, research, and business teams for future innovation. You need to have deep understanding on the business domain and have the ability to connect business with science. You are also strong in ML modeling and scientific foundation with the ability to collaborate with engineering to put models in production to answer specific business questions. You are an expert at synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication. You will continue to contribute to the research community, by working with scientists across Amazon, as well as collaborating with academic researchers and publishing papers (www.aboutamazon.com/research). Key job responsibilities As a Sr. Applied Scientist in the team, you will: - Identify opportunities to improve SP growth and translate those opportunities into science problems via principled statistical solutions (e.g. ML, causal, RL). - Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in MLOps. - Design and lead roadmaps for complex science projects to help SP have a delightful selling experience while creating long term value for our shoppers. - Work with our engineering partners and draw upon your experience to meet latency and other system constraints. - Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. - Be responsible for communicating our science innovations to the broader internal & external scientific community.
US, CA, Sunnyvale
Our team leads the development and optimization of on-device ML models for Amazon's hardware products, including audio, vision, and multi-modal AI features. We work at the critical intersection of ML innovation and silicon design, ensuring AI capabilities can run efficiently on resource-constrained devices. Currently, we enable production ML models across multiple device families, including Echo, Ring/Blink, and other consumer devices. Our work directly impacts Amazon's customer experiences in consumer AI device market. The solutions we develop determine which AI features can be offered on-device versus requiring cloud connectivity, ultimately shaping product capabilities and customer experience across Amazon's hardware portfolio. This is a unique opportunity to shape the future of AI in consumer devices at unprecedented scale. You'll be at the forefront of developing industry-first model architectures and compression techniques that will power AI features across millions of Amazon devices worldwide. Your innovations will directly enable new AI features that enhance how customers interact with Amazon products every day. Come join our team! Key job responsibilities As a Principal Applied Scientist, you will: • Own the technical architecture and optimization strategy for ML models deployed across Amazon's device ecosystem, from existing to yet-to-be-shipped products. • Develop novel model architectures optimized for our custom silicon, establishing new methodologies for model compression and quantization. • Create an evaluation framework for model efficiency and implement multimodal optimization techniques that work across vision, language, and audio tasks. • Define technical standards for model deployment and drive research initiatives in model efficiency to guide future silicon designs. • Spend the majority of your time doing deep technical work - developing novel ML architectures, writing critical optimization code, and creating proof-of-concept implementations that demonstrate breakthrough efficiency gains. • Influence architecture decisions impacting future silicon generations, establish standards for model optimization, and mentor others in advanced ML techniques.