Zoox 3D map.gif
This visualization shows a Zoox vehicle aligning lidar data to Zoox's 3D map to localize itself in downtown San Francisco. Central to the Zoox navigation system is a cluster of capabilities: calibration, localization, and mapping.
Zoox

How Zoox vehicles “find themselves” in an ever-changing world

Advanced machine learning systems help autonomous vehicles react to unexpected changes.

For a human to drive successfully around an urban environment, they must be able to trust their eyes and other senses, know where they are, understand the permissible ways to move their vehicle safely, and of course know how to reach their destination.

Building these abilities, and so many more, into an autonomous electric vehicle designed to transport customers smoothly and safely around densely populated cities takes an astonishing amount of technological innovation. Since its founding in 2014, Zoox has been developing autonomous ride-hailing vehicles, and the systems that support them, from the ground up. The company, which is based in Foster City, California, became an independent subsidiary of Amazon in 2020.

Zoox Fully Autonomous Vehicle at Coit Tower San Francsico
The Zoox L5 fully autonomous, all-electric robotaxi has no forward or backward, can reach speeds of up to 75 miles per hour, and can move all four wheels independently.
Zoox

The Zoox purpose-built robot is an autonomous, pod-like electric vehicle that can carry four passengers in comfort. It has no forward or backward, being equally happy to drive in either direction, at up to 75 miles per hour, and can move all four wheels independently. There are no manual driving controls inside the vehicle.

Zoox has already done a great deal of testing of its autonomous driving systems using a fleet of retrofitted Toyota Highlander vehicles — with a human driver at the wheel, ready to take over if needed — in San Francisco, Las Vegas, Foster City, and Seattle.

Central to the Zoox navigation system is a cluster of capabilities called calibration, localization, and mapping. Only through this combination of abilities can Zoox vehicles understand their environment with exquisite precision, know where they are in relation to everything in their vicinity and beyond, and know exactly where they are going.

Zoox test vehicles, in this instance Toyota Highlanders, are retrofitted with an almost identical sensor configuration and compute system to their purpose-built vehicle.
Zoox has already done a great deal of testing of its autonomous driving systems using a fleet of Toyota Highlanders retrofitted with an almost identical sensor configuration and compute system to the purpose-built vehicle — with a human driver at the wheel, ready to take over if needed — in San Francisco, Las Vegas, Foster City, and Seattle.
Zoox

This is the domain of Zoox’s CLAMS (Calibration, Localization, and Mapping Simultaneously) and Zoox Road Network (ZRN) teams, which together enable the vehicle to meaningfully understand its location and process its surroundings. To get an idea of how these elements work in concert, Amazon Science spoke to several members of these teams.

In terms of awareness of its environment, the Zoox vehicle can fairly be likened to an all-seeing eye. Its state-of-the-art sensor architecture is made up of LiDARs (Light Detection and Ranging), radars, visual cameras, and longwave-infrared cameras. These are arrayed symmetrically around the outside of the vehicle, providing an overlapping, 360-degree field of view.

With this many sensors in play, it is critical that their input is stitched together accurately to create a true and self-consistent picture of everything happening all around the vehicle, moment to moment. To do that, the vehicle needs to know exactly where its sensors are in relation to each other, and with sensors of such high resolution, it’s not enough simply to know where the sensors were attached to the vehicle in the first place.

“To a very minor but still important degree, every vehicle is a special snowflake in some way,” says Taylor Arnicar, staff technical program manager, who oversees the CLAMS and ZRN teams. “And the other reality is we’re exposing these vehicles to rather harsh real-world conditions. There’s shock and vibe, thermal events, and all these things can cause very slight changes in sensor positioning.” Were such changes to be ignored, it could result in unacceptably “blurry” vision, Arnicar says.

In other autonomous-robotics applications, sensor calibration typically entails the robot looking at a specific calibration target, displayed on surrounding infrastructure, such as a wall. With the Zoox vehicle destined for the ever-changing urban environment, the Zoox team is pioneering infrastructure-free calibration.

This animation shows a Zoox system aligning color camera edges to lidar depth edges
This animation shows a Zoox system aligning color camera edges to lidar depth edges. With the Zoox vehicle destined for the ever-changing urban environment, the Zoox team is pioneering infrastructure-free calibration.
Zoox

“That means we rely on the natural environment — whatever objects, shapes, and colors are in the world around the vehicle as it drives,” says Arnicar. One way the team does this is by automatically identifying image gradients — such as the edges of buildings or the trunks of trees — from the vehicle’s color camera data and aligning those with depth edges in the LiDAR data.

It is worth emphasizing that a superpower of the Zoox vehicle is seeing its surroundings with superhuman perception. With so many sensors mounted externally, in pods on the corners of the vehicles, it can see what’s coming around every corner before a human driver would. Its LiDARs and visual cameras mean it knows what lies in every direction with high precision. It even boasts a kind of X-ray vision: “Certain materials don’t obstruct the radar,” says Elena Strumm, Zoox’s engineering manager for mapping algorithms. “When a bicyclist is cycling behind a bush, for example, we might get a really clear radar signature on them, even if that bush has occluded the LiDAR and visual cameras.”

Related content
Jesse Levinson, co-founder and CTO of Zoox, answers 3 questions about the challenges of developing autonomous vehicles and why he’s excited about Zoox’s robotaxi fleet.

Now that the vehicle can rely on what it senses, it needs a map. The Zoox team gathers its map data first-hand by driving around the cities in which it will operate in Toyota Highlanders retrofitted with the full Zoox sensor architecture. LiDAR data and visual images collected in this way can be made into high-definition maps by the CLAMS team. But first, all the people, cars, and other ephemeral aspects of the urban landscape must be removed from the LiDAR data. For this, machine learning is required.

When the Zoox vehicle is in normal urban operations, it is fundamental that its perception system recognizes the aspects of incoming LiDAR data that represent pedestrians, cyclists, cars or trucks — or indeed anything that may move in ways that need to be anticipated. LiDARs create enormous amounts of information about the dynamic 3D environment around the vehicle in the form of “point clouds” — sets of points that describe the objects and surfaces visible to the LiDAR. Using machine learning to instantly identify people in a fast-moving, dynamic environment is a challenge, particularly as people may be moving, static, partly occluded, in a wheelchair, only visible from the knees down, or any number of possibilities.

A raw lidar point cloud of Caesars Palace in Las Vegas, before it’s turned into an efficient mesh representation for the 3D map.
A raw lidar point cloud of Caesars Palace in Las Vegas, before it’s turned into an efficient mesh representation for the 3D map.
Zoox

“Machine-learned AI systems excel at this kind of pattern-matching problem. You feed millions of examples of something and then they can do a great good job of recognizing that thing in the abstract,” Arnicar explains.

In a beautiful piece of synergy, the Zoox mapping team benefits from this safety-critical application of machine learning because they require the reverse information — they want to take the people and cars out of the data so that they can create 3D maps of the road landscape and infrastructure alone.

“Once these elements are identified and removed from the mapping data, it becomes possible to combine LiDAR-based point clouds from overlapping locations to create high resolution 3D maps,” says Strumm.

But maps are not useful to the vehicle without meaning. To create a “semantic map,” the ZRN team adds layers of information to the 3D map that encode everything static that the vehicle needs to navigate the road safely, including speed limits, traffic light locations, one-way streets, keep-clear zones and more.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

The final core piece of the CLAMS team’s work is localization. Zoox’s localization technology allows each vehicle to know where it is in the world — and on its map — to within a few centimeters, and its direction to within a fraction of a degree. The vehicle does this not only by comparing its visual inputs with its map, but also by utilizing GPS, accelerometers, wheel speeds, gyroscopes, and more. It can therefore check its precise location and velocity hundreds of times per second. Armed with a combination of the physical and semantic maps, and always aware of its place in relation to every object or person in its vicinity, the vehicle can navigate safely to its destination.

Part of the localization challenge is that any map will become dated over time, Arnicar explains. “Once you build the map — from the moment the data is collected — you need to consider that it could be out of date.” This is because the world can change anytime, anywhere, without notice. “On one occasion one of our Toyota Highlanders was driving down the street collecting data, and right in front of us was a construction truck with a guy hanging off the back, repainting the lane line in a different place as they drove along. No amount of fast mapping can catch up with these sorts of scenarios.” In practice, this means the map needs to be treated as a guidebook for the vehicle, not as gospel.

“This changeability of the real world led us to create the ZRN Monitor, a system on the vehicle that determines whether the actual road environment has differed from our semantic map data,” says Chris Gibson, engineering manager for the Zoox Road Network team. “For example, if lane markings have changed and now the double yellow lines have moved, then if we don’t detect that dynamically, we could potentially end up driving into opposing traffic. From a safety perspective, we must make absolutely certain that the vehicle does not drive into such areas.” The ZRN Monitor’s role is to identify and, to an extent, evaluate the safety implications of such unanticipated environmental modifications. These notifications are also an indication that it may be time to update the map for that area with more recent sensor data.

In the uncommon situation in which the vehicle encounters a challenging driving situation and it isn’t highly confident of a safe way to proceed, it can request “TeleGuidance” — a human operator located in a dedicated service center is provided with the full 3D understanding of the vehicle’s environment, as well as live-streamed sensor data.

A Zoox TeleGuidance tactician providing remote guidance to a vehicle from the Zoox HQ
A Zoox TeleGuidance tactician provides remote guidance to a vehicle from Zoox HQ.
Zoox

“Imagine a construction zone. The Zoox vehicle might need to be directed to drive on the other side of the road, which would normally carry oncoming traffic. That’s a rule that under most circumstances you shouldn’t break, but in this instance, a TeleGuidance tactician might provide the robot with waypoints to ensure it knows where it needs to go in that moment,” says Gibson. The vehicle remains responsible for the safety of its passengers, however, and continues to drive autonomously at all times while acting on the TeleGuidance information.

Before paying customers will be able to use their smartphones to hail a Zoox vehicle, more on-road testing first needs to be done. Zoox has built dozens of its purpose-built vehicles and is testing them on “semi-private courses” in California, according to Zoox’s co-founder and chief technology officer, Jesse Levinson. Next on the agenda is full testing on public roads, says Levinson, who promises that is “really not that far away. We’re not talking about years.”

So, what does it feel like to be transported in a Zoox vehicle?

“I’ve ridden in a Zoox vehicle, with no safety driver, no steering wheel, no anything — just me in the vehicle,” says Arnicar. “And it is magical. It’s what I’ve been working at Zoox seven years to experience. I’ve seen Zoox go from sketches on a napkin to something I can ride in. That's pretty amazing.”

When an autonomous Zoox vehicle ultimately comes around a corner near you, know this for a fact: no matter how striking and novel it looks, it will see you before you see it.

Research areas

Related content

US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience. We are open to hiring candidates to work out of one of the following locations: Denver, CO, USA | Seattle, WA, USA
US, WA, Seattle
Amazon is investing heavily in building a world class advertising business and developing a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses for driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Key job responsibilities Search Supply and Experiences, within Sponsored Products, is seeking a Senior Data Scientist to join a fast growing team with the mandate of creating new ads experience that elevates the shopping experience for our hundreds of millions customers worldwide. We are looking for a top analytical mind capable of understanding our complex ecosystem of advertisers participating in a pay-per-click model– and leveraging this knowledge to help turn the flywheel of the business. As a Senior Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with ambiguity. - Manage and drive the technical and analytical aspects of Advertiser segmentation; continually advance approach and methods. - Write code (Python, R, Scala, etc.) to analyze data and build statistical models to solve specific business problems - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support decision making. - Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. - Provide requirements to develop analytic capabilities, platforms, and pipelines. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose solution for the business problem you defined - Conduct written and verbal presentation to share insights and recommendations to audiences of varying levels of technical sophistication. - Write code (python or another object-oriented language) for data analyzing and modeling algorithms. A day in the life The Senior Data Scientist will have the opportunity to use one of the world's largest eCommerce and advertising data sets to influence the evolution of our products. This role requires an individual with excellent business, communication, and technical skills, enabling collaboration with various functions, including product managers, software engineers, economists and data scientists, as well as senior leadership. This role will create and enhance performance monitoring reports to find insights that product and business team should focus on. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail, and with an ability to work in a fast-paced, high-energy and ever-changing environment. The drive and capability to shape the direction is a must. This role will influence the direction of the business by leveraging our data to deliver insights that drive decisions and actions. The role will involve translating broad business problems into specific analytics projects, conducting deep quantitative analyses, and communicating results effectively. The role will help the organization identify, evaluate, and evangelize new techniques and tools to continue to improve our ability to deliver value to Amazon’s customers. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to customers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire an Applied Scientist to work on the embedded software for our control system. The position is on-site at our lab, located on the Caltech campus in Pasadena, CA. The ideal candidate will be able to translate high-level requirements (e.g. latency, bandwidth, architecture) into software/firmware implementations (e.g. low-level device drivers, kernel modules, Python APIs) compatible with our FPGA-based control systems. This requires someone who (1) has a strong desire to work within a team of scientists and engineers, and (2) demonstrates ownership in initiating and driving projects to completion. Key job responsibilities - Develop embedded software in C, C++ or Rust for high-performance real-time tasks. - Develop Linux and/or real-time operating system (RTOS) features required to operate control system. - Develop FPGA gateware that drives domain-specific functions of our control hardware. - Develop user-space API that exposes low-level features, preferably in Python. - Develop, test, and optimize control system features on bench-top and in real-world conditions. - Own the stability of control system software and firmware. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem-solving and excellent communication skills. Working effectively within a team environment is essential. You will have the opportunity to work on new ideas and stay abreast of the field of experimental quantum computation. A day in the life The lifetime of your projects will likely begin with a lot of discussion and negotiation with our scientists and engineers to translate their software and hardware feature requests into design proposals that demonstrate sensible trade-offs between complexity and delivery. Once a design proposal has been accepted, you will implement it in a logical and maintainable manner. You will also be encouraged to take ownership over the stability and quality of the software and hardware stack by identifying, proposing, and implementing features that will accelerate our realization of quantum computing technologies. You will be joining the Control & Calibration Software team within the AWS Center of Quantum Computing. Our team is comprised of scientists and engineers who are building scalable software that enables quantum computing technologies. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Pasadena, CA, USA
ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Seattle
Alexa is the Amazon cloud service that powers Echo, the groundbreaking Amazon device designed around your voice. We believe voice is the most natural user interface for interacting with technology across many domains; we are inventing the future. Alexa Audio is responsible for fulfilling customers requests for all types of audio content (Music, Radio, Podcasts, Books, custom sounds) across all Alexa enabled devices. This covers a broad set of experiences including search, browse, recommendations, playback, and devices grouping and controls. We are seeking a talented, self-directed Applied Scientists who would come up with state of the art semantic search and recommendation techniques that work with both voice and visual interfaces. This is a unique opportunity where you will be working on latest technologies including LLMs, and also see it impact customer's lives in meaningful ways. Responsibilities - Apply advance state-of-the-art artificial intelligence techniques and develop algorithms in areas of personalization, voice based dialogue systems and natural language information retrieval. - Design scientifically sound online experiments and offline simulations to study and improve products. - Work closely with talented engineers to create scalable models and put them to production. - Perform statistical analyses on large data sets, identify problems, and propose solutions. - Work with partner science teams to identify collaboration opportunities. Work hard. Have fun. Make history. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
GB, London
Amazon Advertising is looking for an Applied Scientist to join its initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies.The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like Contextual data processing and classification, traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety and experimentation. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Applied Scientist to work on machine learning and data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you excited by the prospect of analyzing terabytes of data and leveraging state-of-the-art data science and machine learning techniques to solve real world problems? Do you like to own business problems/metrics of high ambiguity where yo get to define the path forward for success of a new initiative? As an applied scientist, you will invent ML based solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment. * Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
US, WA, Bellevue
The Planning and Execution team (PLEX) is seeking a Research Scientist to build & improve mathematical optimization techniques and algorithms to support planning and execution activities throughout North America. PLEX is comprised of high-powered dynamic teams, which are shaping network execution through the development and application of innovative labor & flow planning mechanisms. Our goal is to improve and enhance the Amazon Fulfillment network to ultimately drive the best customer experience in a reliable and cost-efficient manner that is truly world-class. As part of the PLEX organization, you’ll partner closely with other scientists, engineers, and product teams in a collegial environment to build optimization strategies that will influence the performance of all North America Amazon Fulfillment networks. You will develop scientific models and perform complex mathematical research to accurately solve labor and flow planning problems, enhance automation, and provide value-added research to the business. You will continually iterate and identify new modeling and research opportunities to implement science into customer fulfillment planning processes. We are looking for a passionate scientist with a commitment to innovation & teamwork. Successful candidates will have a deep knowledge of optimization techniques and ML methods to tackle complex science problems. You will have the communication skills necessary to impact and influence leadership & partner teams through technical writings, presentations and discussions. You will learn a lot, grow, and have fun in the process! Innovation Opportunities & Career Growth Our business grows fast and we want our employees growing with it too. We provide constant opportunities for growth in our team through regular training, talent development, mentoring, and mechanisms conducive to incubating ideas from the bottom up to showcase your innovations. Inclusive Team Culture Here at Amazon, we promote an inclusive and engaging environment. We understand the strength that unique experiences bring to the team and value it. In our team, we uphold that all individuals should feel included, respected, and developed. Flexibility It's not the hours that you put into work matters, rather it's the quality of work that you put in. We provide flexibility and support to help you find a balance between your work and personal lives. This position will be based in Austin, TX We are open to hiring candidates to work out of one of the following locations: - Austin, TX - Bellevue, WA - Nashville, TN Key job responsibilities - Create & improve mathematical optimization techniques & ML models for labor & flow planning - Lead & partner with research, applied, and data science teams to improve accuracy of existing technology solutions and provide data driven recommendations for strategic model implementations - Identify and thoroughly research external and previously non-considered factors to implement with advanced mathematics - Simplify the scientific decisions by navigating through the technology complexities, explaining them in plain customer and business context to our partners & customers. We are open to hiring candidates to work out of one of the following locations: Austin, TX, USA | Bellevue, WA, USA | Nashville, TN, USA
US, WA, Seattle
We are building GenAI based shopping assistant for Amazon. We reimage Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs to develop groundbreaking generative AI technologies in Amazon Q. Q is an interactive, AI-powered assistant that touches all aspects of builder and developer experience. You will be part of the Q Code Analysis team that works at the intersection of code analysis, logical reasoning and machine learning to build and enhance capabilities, safety and security of AI-powered developer tools in Amazon Q. You will invent, implement, and deploy state-of-the-art algorithms and systems, and be at the heart of a growing and exciting focus area for AWS. Your work will directly impact millions of our customers in the form of products and services that are based on large language models, retrieval-augmented generation, code analysis, responsible AI, and a lot more. You will make breakthroughs that challenge the limits of code analysis, machine learning and AI while collaborating with academics and interacting directly with customers to bring new research rapidly to production. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. EEO/Accommodations AWS is committed to a diverse and inclusive workplace to deliver the best results for our customers. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status; we celebrate the diverse ways we work. For individuals with disabilities who would like to request an accommodation, please let us know and we will connect you to our accommodation team. You may also reach them directly by visiting please https://www.amazon.jobs/en/disability/us. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our [insert req country location here] Amazon offices. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
DE, Berlin
The Amazon Artificial General Intelligence (AGI) team is looking for a passionate, highly skilled and inventive Senior Applied Scientist with strong machine learning background to lead the development and implementation of state-of-the-art ML systems for building large-scale, high-quality conversational assistant systems. Key job responsibilities - Use deep learning, ML and NLP techniques to create scalable solutions for creation and development of language model centric solutions for building personalized assistant systems based on a rich set of structured and unstructured contextual signals - Innovate new methods for contextual knowledge extraction and information representation, using language models in combination with other learning techniques, that allows effective grounding in context providers when considering memory, cpu, latency and quality - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in personal knowledge aggregation, processing and verification - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think Big about the arc of development of conversational assistant system personalization over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team A day in the life As a Senior Applied Scientist, you will play a critical role in driving the development of personalization techniques enabling conversational systems, in particular those based on large language models, to be tailored to customer needs. You will handle Amazon-scale use cases with significant impact on our customers' experiences. We are open to hiring candidates to work out of one of the following locations: Berlin, DEU