Jesse Levinson, co-founder and CTO of Zoox
Jesse Levinson, co-founder and CTO of Zoox, completed his PhD and postdoc under Sebastian Thrun at Stanford. He developed algorithms for Stanford’s entry in the 2007 DARPA Urban Challenge and went on to lead the self-driving team’s research and development efforts.
Zoox

The future of mobility-as-a-service

Jesse Levinson, co-founder and CTO of Zoox, answers 3 questions about the challenges of developing autonomous vehicles and why he’s excited about Zoox’s robotaxi fleet.

In June 2020, Amazon acquired Zoox, a then six-year-old California-based startup focused on “creating autonomous mobility from the ground up.”

Six months later, Zoox, now an independent Amazon subsidiary, shared publicly for the first time a look at its electric, autonomous vehicle created for dense, urban environments. The vehicle reveal marked a key milestone toward the organization’s vision of creating an autonomous robotaxi fleet and ride-hailing service designed with passengers in mind.

At its unveiling in December 2020, Zoox CEO Aicha Evans said her team is transforming the rider experience to provide superior “mobility-as-a-service” for customers. Moreover, she added, given the current data related to carbon emissions and traffic accidents, “It’s more important than ever that we build a sustainable, safe solution that allows riders to get from point A to point B.”

See how a Zoox robotaxi traverses city streets.

Jesse Levinson, co-founder and chief technology officer of Zoox, guides the company’s technology roadmap and execution to turn its mobility-as-a-service vision into reality. After graduating summa cum laude from Princeton, he completed his PhD and postdoc under Sebastian Thrun at Stanford. There, he developed algorithms for Stanford’s successful entry in the 2007 DARPA Urban Challenge and went on to lead the self-driving team’s research and development efforts.

Amazon Science asked Levinson about the challenges of developing self-driving vehicles and why he’s excited about Zoox’s approach.

Q. You were one of the authors on the 2008 paper, Junior: The Stanford Entry in the Urban Challenge. That race was a closed-course competition, and not quite representative of real-world challenges. But what key observations did you take away from that experience?

Probably the most important realization after the race was the dichotomy of how much there was still left to solve and the fact that it was actually all going to be solvable. It’s quite easy to get enchanted with one or the other of those observations; either that the problem is practically impossible because of all the things that still aren’t perfect, or that it must be almost solved because of some super cool demo or milestone that seems incredibly impressive. The reality is in between, and for whatever reason, it’s surprisingly hard for people to maintain a nuanced appreciation of that balance.

Achieving a world with ubiquitous autonomous vehicles will be an incremental process that advances every year — and remember, the alternative is the bar of human performance that stays nearly stagnant.
Jesse Levinson

In 2004, DARPA held its first Grand Challenge:  a 125-mile race in the desert. Of the 20 teams that entered, none completed the race, and the best vehicle only completed about six miles. The industry (and the media) widely regarded the outcome as an abysmal failure of AI. Yet it was not a failure, but an incredible feat of engineering. If an autonomous vehicle can drive six miles in the desert all by itself, then it doesn’t take an incredible imagination to foresee it driving 125 miles.

Lo and behold, the very next year, six vehicles finished the full 125-mile course. It was a promising step towards the future, and a year later, in 2006, DARPA announced the Urban Challenge, which several teams completed successfully. Our entry at Stanford came in second place. Excited by the results, many people made overly optimistic predictions on the mass-adoption of self-driving cars, which were subsequently deflated by various challenges we’ve seen in the industry since that time.

It has been eye-opening to watch the public's reaction to self-driving cars over time. I have always tried my best to be upfront, honest, and realistic about where the technology is — and while I’ve certainly not nailed all of my predictions, I do think I’ve managed to be fairly balanced overall. As technologists, when we are overly optimistic or pessimistic, we do a disservice to ourselves, the industry, and our technology. Achieving a world with ubiquitous autonomous vehicles will be an incremental process that advances every year — and remember, the alternative is the bar of human performance that stays nearly stagnant. It’s the opportunity of a lifetime to participate in the journey of making autonomous driving technology relentlessly better. Soon, it will reach a crossover point where the public begins to adopt it at scale, which will be a transformative win for society at large.

Q. Following up on your answer, what did you learn from that experience that you apply to your current role at Zoox? Has your approach changed since that challenge or remained largely the same?

So much! I’m grateful for that experience because it was formative in the early approach of Zoox. Here’s some of the lessons I took away from it:

Zoox Autonomous Vehicle - Single Side - Coit Tower SF.png
Zoox notes is "the first in the industry to showcase a driving, purpose-built robotaxi capable of operating up to 75 miles per hour."
Zoox

First, teaching cars to drive will not take as long as we thought. In the early 2000s, we all thought it would be many, many decades before self-driving cars would be a reality. The DARPA challenge changed that. To build a vehicle that could navigate many realistic traffic scenarios only took about a year for a small team. Of course, there’s a huge difference between that and what’s required to operate an autonomous vehicle on public roads. But it was an important milestone that highlighted that autonomous driving technology could be a reality within a couple of decades.

Second, system integration and wide-scale testing is critical. No amount of knowledge about artificial intelligence, or anything else for that matter, will lead a mythical genius to intellectually divine a perfect solution. We need to combine and integrate many different complex systems and then see what works and fails through simulations, then closed courses, then public roads (with safety drivers). We have to test and experiment and iterate with massive data and scale, as opposed to trying to reason our way to a perfect solution.

On the other hand, blindly searching for progress without having any vision or architectural insights is also a bad idea; that’s one of the reasons why we identified the benefits of 270-degree sensing on all four corners of our ground-up vehicle at Zoox way back in 2014, a few years before we could drive autonomously in cities — because we knew from first principles that it was the right way to perceive the world.

Zoox Autonomous Vehicle - Reveal Sensor Detail.png
The Zoox vehicles utilize a unique sensor (some of which are seen here) architecture of cameras, radar, and LIDAR to obtain a 270-degree field of view on all four corners of the vehicle.
Zoox

Last, we have to test the various software and hardware components collectively to see how they respond to errors and uncertainty. By building a robust system that handles a cascading series of errors and ambiguities, you can explicitly track uncertainty and represent the state of the world more thoroughly. The proper representation of the world is not a singular, perfect model, but rather a distribution of probabilities and uncertainties. If you can design your system to be robust to imperfect sensor data, unpredictable agents, and unusual environments, you have a real shot at solving the problem in a world that’s not always the way you want it to be. It’s actually what humans do really well all the time, even though we’re rarely conscious that we’re doing it.

Q. You’ve said that safety is the foundation of everything Zoox does, and that the experience of building Zoox’s robotaxi has given you the opportunity to reimagine passenger safety. Can you give us insight into some of the systems you’ve developed for passenger safety, particularly the AI stack that underpins these efforts?

Yes, that’s right: safety is absolutely fundamental to the Zoox mission. With apologies for using an overused phrase, autonomous mobility allows for a paradigm shift (sorry!) in safety — from reactive to proactive. It’s an important point: automotive safety has always been reactive, focused on protecting vehicle occupants in crashes, which are seen to be inevitable. By building an autonomous vehicle from the ground-up, we can add a layer of proactive crash prevention that simply does not exist in today’s human-driven cars, and a focus on preventing crashes from occurring in the first place. We have more than a hundred safety innovations that do not exist in conventional cars today.

Zoox Autonomous Vehicle - Interior day.png
The vehicle features a four-seat, face-to-face symmetrical seating configuration that eliminates the steering wheel and bench seating seen in conventional car designs.
Zoox

We are also developing the AI, vehicle, and service all together. Integrating the software, sensor, and vehicle subsystems is a complex challenge that requires tight, cross-functional collaboration. It would be difficult to create this level of system integration across multiple companies with divergent commercial interests. Building a ground-up vehicle has allowed us to design and choose our own sensor suite to best solve self-driving. We’ve outfitted our Toyota Highlander fleet with this same sensor architecture as our ground-up vehicle so that we can gather large amounts of data and test in environments like San Francisco and Las Vegas while our in-house vehicle is still under development.

Our software stack includes mapping, localization, sensor calibration, perception, prediction, path planning, vehicle control, infrastructure, firmware, diagnostics/messaging/monitoring/logging, and simulation. All of this software is continuously improving, with additions of new features and iterative software updates that are put through rigorous offline validations and on-vehicle structured testing.

Our vehicles also use a variety of advanced sensors, including LIDAR, cameras, and radar, to see objects on all sides of the vehicle. And because of the geometrical configuration of these sensors, we can almost always see around and behind the objects nearest to us, which is particularly helpful in dense urban environments. Our software then uses a combination of machine learning and geometric reasoning to understand the sensor data, make sense of the scene unfolding around the vehicle, and effectively navigate the roads.

We’re excited to launch our first commercial driverless service, but we won’t do so until we’re ready to operate on public roads at safety levels that meaningfully surpass that of humans.
Jesse Levinson

For example, in a busy downtown intersection, our vehicle might be identifying a construction zone based on road cones and signs, while also detecting, tracking, and predicting the motion of hundreds of other agents (vehicles, pedestrians, bicyclists, etc.) around it. Once the perception system understands the environment and can predict how surrounding agents will move, the planner uses that information and context to adapt its driving behavior to the dynamic road conditions. The planner normally tries to maintain a certain lateral distance between itself and other vehicles, but it could decide to slightly reduce that distance in order to avoid a cone in the road ahead.

By combining both the hardware and software design, we are able to reimagine passenger safety. We are confident in our sensors’ abilities to detect activity in the environment around the vehicle, but that has to be validated in a wide range of scenarios. And our vehicle has performed extremely well in crash testing, which is still important, because no matter how sophisticated the AI is, we can’t guarantee that nothing will ever hit us. We’re excited to launch our first commercial driverless service, but we won’t do so until we’re ready to operate on public roads at safety levels that meaningfully surpass that of humans.

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
Do you want to create intelligent, adaptable robots with global impact? We are seeking an experienced Applied Science Manager to lead a team of talented applied scientists and software engineers developing and deploying advanced manipulation strategies and algorithms. You will drive innovation that enables manipulation in high-contact, high-density, and diverse conditions with the speed and reliability that will delight our customers. Collaborating with cross-functional teams across hardware, software, and science, you will deliver reliable and high-performing solutions that will scale across geographies, applications, and conditions. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a disruptor, prolific innovator, and a reputed problem solver—someone who truly enables robotics to significantly impact the lives of millions of consumers. A day in the life - Prioritize being a great people manager: motivating, rewarding, and coaching your diverse team is the most important part of this role. You will recruit and retain top talent and excel in people and performance management tasks. - Set a vision for the team and create the technical roadmap that deliver results for customers while thinking big for future applications. - Guide the research, design, deployment, and evaluation of complex motion planning and control algorithms for contact-rich, cluttered, real-world manipulation problems. - Work closely with perception, hardware, and software teams to create integrated robotic solutions that are better than the sum of their parts. - Implement best practices in applied research and software development, managing project timelines, resources, and deliverables effectively. Amazon offers a full range of benefits for you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
CA, BC, Vancouver
The Alexa Daily Essentials team delivers experiences critical to how customers interact with Alexa as part of daily life. Alexa users engage with our products across experiences connected to Timers, Alarms, Calendars, Food, and News. Our experiences include critical time saving techniques, ad-supported news audio and video, and in-depth kitchen guidance aimed at serving the needs of the family from sunset to sundown. As a Data Scientist on our team, you'll work with complex data, develop statistical methodologies, and provide critical product insights that shape how we build and optimize our solutions. You will work closely with your Analytics and Applied Science teammates. You will build frameworks and mechanisms to scale data solutions across our organization. If you are passionate about redefining how AI can improves everyone's daily life, we’d love to hear from you. Key job responsibilities Problem-Solving - Analyze complex data (including healthcare data, experimental data, and large-scale datasets) to identify patterns, inform product decisions, and understand root causes of anomalies. - Develop analysis and modeling approaches to drive product and engineering actions to identify patterns, insights, and understand root causes of anomalies. Your solutions directly improve the customer experience. - Independently work with product partners to identify problems and opportunities. Apply a range of data science techniques and tools to solve these problems. Use data driven insights to inform product development. Work with cross-disciplinary teams to mechanize your solution into scalable and automated frameworks. Data Infrastructure - Build data pipelines, and identify novel data sources to leverage in analytical work - both from within Alexa and from cross Amazon - Acquire data by building the necessary SQL / ETL queries Communication - Excel at communicating complex ideas to technical and non-technical audiences. - Build relationships with stakeholders and counterparts. Work with stakeholders to translate causal insights into actionable recommendations - Force multiply the work of the team with data visualizations, presentations, and/or dashboards to drive awareness and adoption of data assets and product insights - Collaborate with cross-functional teams. Mentor teammates to foster a culture of continuous learning and development
US, WA, Seattle
The Automated Reasoning Group in the AWS Neuron Compiler team is looking for an Applied Scientist to work on the intersection of Artificial Intelligence and program analysis to raise the code quality bar in our state-of-the-art deep learning compiler stack. This stack is designed to optimize application models across diverse domains, including Large Language and Vision, originating from leading frameworks such as PyTorch, TensorFlow, and JAX. Your role will involve working closely with our custom-built Machine Learning accelerators, Inferentia and Trainium, which represent the forefront of AWS innovation for advanced ML capabilities, and is the underpinning of Generative AI. In this role as an Applied Scientist, you'll be instrumental in designing, developing, and deploying analyzers for ML compiler stages and compiler IRs. You will architect and implement business-critical tooling, publish cutting-edge research, and mentor a brilliant team of experienced scientists and engineers. You will need to be technically capable, credible, and curious in your own right as a trusted AWS Neuron engineer, innovating on behalf of our customers. Your responsibilities will involve tackling crucial challenges alongside a talented engineering team, contributing to leading-edge design and research in compiler technology and deep-learning systems software. Strong experience in programming languages, compilers, program analyzers, and program synthesis engines will be a benefit in this role. A background in machine learning and AI accelerators is preferred but not required. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.