Jesse Levinson, co-founder and CTO of Zoox
Jesse Levinson, co-founder and CTO of Zoox, completed his PhD and postdoc under Sebastian Thrun at Stanford. He developed algorithms for Stanford’s entry in the 2007 DARPA Urban Challenge and went on to lead the self-driving team’s research and development efforts.
Zoox

The future of mobility-as-a-service

Jesse Levinson, co-founder and CTO of Zoox, answers 3 questions about the challenges of developing autonomous vehicles and why he’s excited about Zoox’s robotaxi fleet.

In June 2020, Amazon acquired Zoox, a then six-year-old California-based startup focused on “creating autonomous mobility from the ground up.”

Six months later, Zoox, now an independent Amazon subsidiary, shared publicly for the first time a look at its electric, autonomous vehicle created for dense, urban environments. The vehicle reveal marked a key milestone toward the organization’s vision of creating an autonomous robotaxi fleet and ride-hailing service designed with passengers in mind.

At its unveiling in December 2020, Zoox CEO Aicha Evans said her team is transforming the rider experience to provide superior “mobility-as-a-service” for customers. Moreover, she added, given the current data related to carbon emissions and traffic accidents, “It’s more important than ever that we build a sustainable, safe solution that allows riders to get from point A to point B.”

See how a Zoox robotaxi traverses city streets.

Jesse Levinson, co-founder and chief technology officer of Zoox, guides the company’s technology roadmap and execution to turn its mobility-as-a-service vision into reality. After graduating summa cum laude from Princeton, he completed his PhD and postdoc under Sebastian Thrun at Stanford. There, he developed algorithms for Stanford’s successful entry in the 2007 DARPA Urban Challenge and went on to lead the self-driving team’s research and development efforts.

Amazon Science asked Levinson about the challenges of developing self-driving vehicles and why he’s excited about Zoox’s approach.

Q. You were one of the authors on the 2008 paper, Junior: The Stanford Entry in the Urban Challenge. That race was a closed-course competition, and not quite representative of real-world challenges. But what key observations did you take away from that experience?

Probably the most important realization after the race was the dichotomy of how much there was still left to solve and the fact that it was actually all going to be solvable. It’s quite easy to get enchanted with one or the other of those observations; either that the problem is practically impossible because of all the things that still aren’t perfect, or that it must be almost solved because of some super cool demo or milestone that seems incredibly impressive. The reality is in between, and for whatever reason, it’s surprisingly hard for people to maintain a nuanced appreciation of that balance.

Achieving a world with ubiquitous autonomous vehicles will be an incremental process that advances every year — and remember, the alternative is the bar of human performance that stays nearly stagnant.
Jesse Levinson

In 2004, DARPA held its first Grand Challenge:  a 125-mile race in the desert. Of the 20 teams that entered, none completed the race, and the best vehicle only completed about six miles. The industry (and the media) widely regarded the outcome as an abysmal failure of AI. Yet it was not a failure, but an incredible feat of engineering. If an autonomous vehicle can drive six miles in the desert all by itself, then it doesn’t take an incredible imagination to foresee it driving 125 miles.

Lo and behold, the very next year, six vehicles finished the full 125-mile course. It was a promising step towards the future, and a year later, in 2006, DARPA announced the Urban Challenge, which several teams completed successfully. Our entry at Stanford came in second place. Excited by the results, many people made overly optimistic predictions on the mass-adoption of self-driving cars, which were subsequently deflated by various challenges we’ve seen in the industry since that time.

It has been eye-opening to watch the public's reaction to self-driving cars over time. I have always tried my best to be upfront, honest, and realistic about where the technology is — and while I’ve certainly not nailed all of my predictions, I do think I’ve managed to be fairly balanced overall. As technologists, when we are overly optimistic or pessimistic, we do a disservice to ourselves, the industry, and our technology. Achieving a world with ubiquitous autonomous vehicles will be an incremental process that advances every year — and remember, the alternative is the bar of human performance that stays nearly stagnant. It’s the opportunity of a lifetime to participate in the journey of making autonomous driving technology relentlessly better. Soon, it will reach a crossover point where the public begins to adopt it at scale, which will be a transformative win for society at large.

Q. Following up on your answer, what did you learn from that experience that you apply to your current role at Zoox? Has your approach changed since that challenge or remained largely the same?

So much! I’m grateful for that experience because it was formative in the early approach of Zoox. Here’s some of the lessons I took away from it:

Zoox Autonomous Vehicle - Single Side - Coit Tower SF.png
Zoox notes is "the first in the industry to showcase a driving, purpose-built robotaxi capable of operating up to 75 miles per hour."
Zoox

First, teaching cars to drive will not take as long as we thought. In the early 2000s, we all thought it would be many, many decades before self-driving cars would be a reality. The DARPA challenge changed that. To build a vehicle that could navigate many realistic traffic scenarios only took about a year for a small team. Of course, there’s a huge difference between that and what’s required to operate an autonomous vehicle on public roads. But it was an important milestone that highlighted that autonomous driving technology could be a reality within a couple of decades.

Second, system integration and wide-scale testing is critical. No amount of knowledge about artificial intelligence, or anything else for that matter, will lead a mythical genius to intellectually divine a perfect solution. We need to combine and integrate many different complex systems and then see what works and fails through simulations, then closed courses, then public roads (with safety drivers). We have to test and experiment and iterate with massive data and scale, as opposed to trying to reason our way to a perfect solution.

On the other hand, blindly searching for progress without having any vision or architectural insights is also a bad idea; that’s one of the reasons why we identified the benefits of 270-degree sensing on all four corners of our ground-up vehicle at Zoox way back in 2014, a few years before we could drive autonomously in cities — because we knew from first principles that it was the right way to perceive the world.

Zoox Autonomous Vehicle - Reveal Sensor Detail.png
The Zoox vehicles utilize a unique sensor (some of which are seen here) architecture of cameras, radar, and LIDAR to obtain a 270-degree field of view on all four corners of the vehicle.
Zoox

Last, we have to test the various software and hardware components collectively to see how they respond to errors and uncertainty. By building a robust system that handles a cascading series of errors and ambiguities, you can explicitly track uncertainty and represent the state of the world more thoroughly. The proper representation of the world is not a singular, perfect model, but rather a distribution of probabilities and uncertainties. If you can design your system to be robust to imperfect sensor data, unpredictable agents, and unusual environments, you have a real shot at solving the problem in a world that’s not always the way you want it to be. It’s actually what humans do really well all the time, even though we’re rarely conscious that we’re doing it.

Q. You’ve said that safety is the foundation of everything Zoox does, and that the experience of building Zoox’s robotaxi has given you the opportunity to reimagine passenger safety. Can you give us insight into some of the systems you’ve developed for passenger safety, particularly the AI stack that underpins these efforts?

Yes, that’s right: safety is absolutely fundamental to the Zoox mission. With apologies for using an overused phrase, autonomous mobility allows for a paradigm shift (sorry!) in safety — from reactive to proactive. It’s an important point: automotive safety has always been reactive, focused on protecting vehicle occupants in crashes, which are seen to be inevitable. By building an autonomous vehicle from the ground-up, we can add a layer of proactive crash prevention that simply does not exist in today’s human-driven cars, and a focus on preventing crashes from occurring in the first place. We have more than a hundred safety innovations that do not exist in conventional cars today.

Zoox Autonomous Vehicle - Interior day.png
The vehicle features a four-seat, face-to-face symmetrical seating configuration that eliminates the steering wheel and bench seating seen in conventional car designs.
Zoox

We are also developing the AI, vehicle, and service all together. Integrating the software, sensor, and vehicle subsystems is a complex challenge that requires tight, cross-functional collaboration. It would be difficult to create this level of system integration across multiple companies with divergent commercial interests. Building a ground-up vehicle has allowed us to design and choose our own sensor suite to best solve self-driving. We’ve outfitted our Toyota Highlander fleet with this same sensor architecture as our ground-up vehicle so that we can gather large amounts of data and test in environments like San Francisco and Las Vegas while our in-house vehicle is still under development.

Our software stack includes mapping, localization, sensor calibration, perception, prediction, path planning, vehicle control, infrastructure, firmware, diagnostics/messaging/monitoring/logging, and simulation. All of this software is continuously improving, with additions of new features and iterative software updates that are put through rigorous offline validations and on-vehicle structured testing.

Our vehicles also use a variety of advanced sensors, including LIDAR, cameras, and radar, to see objects on all sides of the vehicle. And because of the geometrical configuration of these sensors, we can almost always see around and behind the objects nearest to us, which is particularly helpful in dense urban environments. Our software then uses a combination of machine learning and geometric reasoning to understand the sensor data, make sense of the scene unfolding around the vehicle, and effectively navigate the roads.

We’re excited to launch our first commercial driverless service, but we won’t do so until we’re ready to operate on public roads at safety levels that meaningfully surpass that of humans.
Jesse Levinson

For example, in a busy downtown intersection, our vehicle might be identifying a construction zone based on road cones and signs, while also detecting, tracking, and predicting the motion of hundreds of other agents (vehicles, pedestrians, bicyclists, etc.) around it. Once the perception system understands the environment and can predict how surrounding agents will move, the planner uses that information and context to adapt its driving behavior to the dynamic road conditions. The planner normally tries to maintain a certain lateral distance between itself and other vehicles, but it could decide to slightly reduce that distance in order to avoid a cone in the road ahead.

By combining both the hardware and software design, we are able to reimagine passenger safety. We are confident in our sensors’ abilities to detect activity in the environment around the vehicle, but that has to be validated in a wide range of scenarios. And our vehicle has performed extremely well in crash testing, which is still important, because no matter how sophisticated the AI is, we can’t guarantee that nothing will ever hit us. We’re excited to launch our first commercial driverless service, but we won’t do so until we’re ready to operate on public roads at safety levels that meaningfully surpass that of humans.

Research areas

Related content

US, VA, Arlington
Are you looking to work at the forefront of Machine Learning (ML) and Artificial Intelligence (AI)? Would you be excited to apply AI algorithms to solve real world problems with significant impact? The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Senior Data Scientist to help customers implement AI/ML solutions and realize transformational business opportunities. This is a team of scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine-tune the right models, define paths to navigate technical or business challenges, develop scalable solutions and applications, and launch them in production. The team provides guidance and implements best practices for applying AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using AI/ML and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an experienced Senior Data Scientist, you will be responsible for: 1. Lead end-to-end AI/ML and GenAI projects, from understanding business needs to data preparation, model development, solution deployment, and post-production monitoring 2. Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate AI algorithms and build ML systems and operations (MLOps) using AWS services to address real-world challenges 3. Interact with customers directly to understand the business challenges, deliver briefing and deep dive sessions to customers and guide them on adoption patterns and paths to production 4. Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations tailored to technical, business, and executive stakeholders 5. Provide customer and market feedback to product and engineering teams to help define product direction This is a customer-facing role with potential travel to customer sites as needed. About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next-level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Key job responsibilities * Partner with laboratory science teams on design and analysis of experiments * Originate and lead the development of new data collection workflows with cross-functional partners * Develop and deploy scalable bioinformatics analysis and QC workflows * Evaluate and incorporate novel bioinformatic approaches to solve critical business problems About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel sensing and actuation technologies for dexterous manipulation - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, MA, North Reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of systems that: • Enables unprecedented generalization across diverse tasks • Enables contact-rich manipulation in different environments • Seamlessly integrates mobility and manipulation • Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration!
US, WA, Seattle
We are a passionate team applying the latest advances in technology to solve real-world challenges. As a Data Scientist working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. At Amazon, we cultivate an inclusive culture through our Leadership Principles, which emphasize seeking diverse perspectives, continuous learning, and building trust. Our global community includes thirteen employee-led affinity groups with 40,000 members across 190 chapters, showcasing our commitment to embracing differences and fostering continuous learning through local, regional, and global programs. We prioritize work-life balance, recognizing it as fundamental to long-term happiness and fulfillment. Our team is committed to supporting your career development through challenging projects, mentorship opportunities, and targeted training programs that help you reach your full potential. Key job responsibilities Key job responsibilities * Deliver data analyses that optimize overall team process and guide decision-making * Deep dive to understand source of anomalies across a variety of datasets including low-level sequencing read data * Identify key metrics that are drivers to achieve team goals; work with senior stakeholders to refine your results * Use modern statistical methods to highlight insights for predictive & generative ML models and assay process * Perform correlation analysis, significance testing, and simulation on high- and low-fidelity datasets for various types of readouts * Generate reports with tables and visualization that support operational cycle analysis and one-off POC experiments * Collaborate with multi-disciplinary domain experts to support your findings and their experiments * Write well-tested scripts that can be promoted by our software teams to production pipelines * Learn about new statistical methods for our domain and adopt them in your work * Work fluently in SQL and Python. Be skilled in generating compelling visualizations. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
IN, KA, Bengaluru
Amazon is looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. As a Speech and Language Scientist, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in the area of speech and audio understanding technologies including ASR.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.