Jesse Levinson, co-founder and CTO of Zoox
Jesse Levinson, co-founder and CTO of Zoox, completed his PhD and postdoc under Sebastian Thrun at Stanford. He developed algorithms for Stanford’s entry in the 2007 DARPA Urban Challenge and went on to lead the self-driving team’s research and development efforts.
Zoox

The future of mobility-as-a-service

Jesse Levinson, co-founder and CTO of Zoox, answers 3 questions about the challenges of developing autonomous vehicles and why he’s excited about Zoox’s robotaxi fleet.

In June 2020, Amazon acquired Zoox, a then six-year-old California-based startup focused on “creating autonomous mobility from the ground up.”

Six months later, Zoox, now an independent Amazon subsidiary, shared publicly for the first time a look at its electric, autonomous vehicle created for dense, urban environments. The vehicle reveal marked a key milestone toward the organization’s vision of creating an autonomous robotaxi fleet and ride-hailing service designed with passengers in mind.

At its unveiling in December 2020, Zoox CEO Aicha Evans said her team is transforming the rider experience to provide superior “mobility-as-a-service” for customers. Moreover, she added, given the current data related to carbon emissions and traffic accidents, “It’s more important than ever that we build a sustainable, safe solution that allows riders to get from point A to point B.”

See how a Zoox robotaxi traverses city streets.

Jesse Levinson, co-founder and chief technology officer of Zoox, guides the company’s technology roadmap and execution to turn its mobility-as-a-service vision into reality. After graduating summa cum laude from Princeton, he completed his PhD and postdoc under Sebastian Thrun at Stanford. There, he developed algorithms for Stanford’s successful entry in the 2007 DARPA Urban Challenge and went on to lead the self-driving team’s research and development efforts.

Amazon Science asked Levinson about the challenges of developing self-driving vehicles and why he’s excited about Zoox’s approach.

Q. You were one of the authors on the 2008 paper, Junior: The Stanford Entry in the Urban Challenge. That race was a closed-course competition, and not quite representative of real-world challenges. But what key observations did you take away from that experience?

Probably the most important realization after the race was the dichotomy of how much there was still left to solve and the fact that it was actually all going to be solvable. It’s quite easy to get enchanted with one or the other of those observations; either that the problem is practically impossible because of all the things that still aren’t perfect, or that it must be almost solved because of some super cool demo or milestone that seems incredibly impressive. The reality is in between, and for whatever reason, it’s surprisingly hard for people to maintain a nuanced appreciation of that balance.

Achieving a world with ubiquitous autonomous vehicles will be an incremental process that advances every year — and remember, the alternative is the bar of human performance that stays nearly stagnant.
Jesse Levinson

In 2004, DARPA held its first Grand Challenge:  a 125-mile race in the desert. Of the 20 teams that entered, none completed the race, and the best vehicle only completed about six miles. The industry (and the media) widely regarded the outcome as an abysmal failure of AI. Yet it was not a failure, but an incredible feat of engineering. If an autonomous vehicle can drive six miles in the desert all by itself, then it doesn’t take an incredible imagination to foresee it driving 125 miles.

Lo and behold, the very next year, six vehicles finished the full 125-mile course. It was a promising step towards the future, and a year later, in 2006, DARPA announced the Urban Challenge, which several teams completed successfully. Our entry at Stanford came in second place. Excited by the results, many people made overly optimistic predictions on the mass-adoption of self-driving cars, which were subsequently deflated by various challenges we’ve seen in the industry since that time.

It has been eye-opening to watch the public's reaction to self-driving cars over time. I have always tried my best to be upfront, honest, and realistic about where the technology is — and while I’ve certainly not nailed all of my predictions, I do think I’ve managed to be fairly balanced overall. As technologists, when we are overly optimistic or pessimistic, we do a disservice to ourselves, the industry, and our technology. Achieving a world with ubiquitous autonomous vehicles will be an incremental process that advances every year — and remember, the alternative is the bar of human performance that stays nearly stagnant. It’s the opportunity of a lifetime to participate in the journey of making autonomous driving technology relentlessly better. Soon, it will reach a crossover point where the public begins to adopt it at scale, which will be a transformative win for society at large.

Q. Following up on your answer, what did you learn from that experience that you apply to your current role at Zoox? Has your approach changed since that challenge or remained largely the same?

So much! I’m grateful for that experience because it was formative in the early approach of Zoox. Here’s some of the lessons I took away from it:

Zoox Autonomous Vehicle - Single Side - Coit Tower SF.png
Zoox notes is "the first in the industry to showcase a driving, purpose-built robotaxi capable of operating up to 75 miles per hour."
Zoox

First, teaching cars to drive will not take as long as we thought. In the early 2000s, we all thought it would be many, many decades before self-driving cars would be a reality. The DARPA challenge changed that. To build a vehicle that could navigate many realistic traffic scenarios only took about a year for a small team. Of course, there’s a huge difference between that and what’s required to operate an autonomous vehicle on public roads. But it was an important milestone that highlighted that autonomous driving technology could be a reality within a couple of decades.

Second, system integration and wide-scale testing is critical. No amount of knowledge about artificial intelligence, or anything else for that matter, will lead a mythical genius to intellectually divine a perfect solution. We need to combine and integrate many different complex systems and then see what works and fails through simulations, then closed courses, then public roads (with safety drivers). We have to test and experiment and iterate with massive data and scale, as opposed to trying to reason our way to a perfect solution.

On the other hand, blindly searching for progress without having any vision or architectural insights is also a bad idea; that’s one of the reasons why we identified the benefits of 270-degree sensing on all four corners of our ground-up vehicle at Zoox way back in 2014, a few years before we could drive autonomously in cities — because we knew from first principles that it was the right way to perceive the world.

Zoox Autonomous Vehicle - Reveal Sensor Detail.png
The Zoox vehicles utilize a unique sensor (some of which are seen here) architecture of cameras, radar, and LIDAR to obtain a 270-degree field of view on all four corners of the vehicle.
Zoox

Last, we have to test the various software and hardware components collectively to see how they respond to errors and uncertainty. By building a robust system that handles a cascading series of errors and ambiguities, you can explicitly track uncertainty and represent the state of the world more thoroughly. The proper representation of the world is not a singular, perfect model, but rather a distribution of probabilities and uncertainties. If you can design your system to be robust to imperfect sensor data, unpredictable agents, and unusual environments, you have a real shot at solving the problem in a world that’s not always the way you want it to be. It’s actually what humans do really well all the time, even though we’re rarely conscious that we’re doing it.

Q. You’ve said that safety is the foundation of everything Zoox does, and that the experience of building Zoox’s robotaxi has given you the opportunity to reimagine passenger safety. Can you give us insight into some of the systems you’ve developed for passenger safety, particularly the AI stack that underpins these efforts?

Yes, that’s right: safety is absolutely fundamental to the Zoox mission. With apologies for using an overused phrase, autonomous mobility allows for a paradigm shift (sorry!) in safety — from reactive to proactive. It’s an important point: automotive safety has always been reactive, focused on protecting vehicle occupants in crashes, which are seen to be inevitable. By building an autonomous vehicle from the ground-up, we can add a layer of proactive crash prevention that simply does not exist in today’s human-driven cars, and a focus on preventing crashes from occurring in the first place. We have more than a hundred safety innovations that do not exist in conventional cars today.

Zoox Autonomous Vehicle - Interior day.png
The vehicle features a four-seat, face-to-face symmetrical seating configuration that eliminates the steering wheel and bench seating seen in conventional car designs.
Zoox

We are also developing the AI, vehicle, and service all together. Integrating the software, sensor, and vehicle subsystems is a complex challenge that requires tight, cross-functional collaboration. It would be difficult to create this level of system integration across multiple companies with divergent commercial interests. Building a ground-up vehicle has allowed us to design and choose our own sensor suite to best solve self-driving. We’ve outfitted our Toyota Highlander fleet with this same sensor architecture as our ground-up vehicle so that we can gather large amounts of data and test in environments like San Francisco and Las Vegas while our in-house vehicle is still under development.

Our software stack includes mapping, localization, sensor calibration, perception, prediction, path planning, vehicle control, infrastructure, firmware, diagnostics/messaging/monitoring/logging, and simulation. All of this software is continuously improving, with additions of new features and iterative software updates that are put through rigorous offline validations and on-vehicle structured testing.

Our vehicles also use a variety of advanced sensors, including LIDAR, cameras, and radar, to see objects on all sides of the vehicle. And because of the geometrical configuration of these sensors, we can almost always see around and behind the objects nearest to us, which is particularly helpful in dense urban environments. Our software then uses a combination of machine learning and geometric reasoning to understand the sensor data, make sense of the scene unfolding around the vehicle, and effectively navigate the roads.

We’re excited to launch our first commercial driverless service, but we won’t do so until we’re ready to operate on public roads at safety levels that meaningfully surpass that of humans.
Jesse Levinson

For example, in a busy downtown intersection, our vehicle might be identifying a construction zone based on road cones and signs, while also detecting, tracking, and predicting the motion of hundreds of other agents (vehicles, pedestrians, bicyclists, etc.) around it. Once the perception system understands the environment and can predict how surrounding agents will move, the planner uses that information and context to adapt its driving behavior to the dynamic road conditions. The planner normally tries to maintain a certain lateral distance between itself and other vehicles, but it could decide to slightly reduce that distance in order to avoid a cone in the road ahead.

By combining both the hardware and software design, we are able to reimagine passenger safety. We are confident in our sensors’ abilities to detect activity in the environment around the vehicle, but that has to be validated in a wide range of scenarios. And our vehicle has performed extremely well in crash testing, which is still important, because no matter how sophisticated the AI is, we can’t guarantee that nothing will ever hit us. We’re excited to launch our first commercial driverless service, but we won’t do so until we’re ready to operate on public roads at safety levels that meaningfully surpass that of humans.

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!