Margarita Chli, vice director at the Institute of Robotics and Intelligent Systems at ETH Zurich, is seen standing in front of a room giving a talk.
Margarita Chli, an Amazon Research Award recipient, is vice director at the Institute of Robotics and Intelligent Systems at ETH Zurich, where she heads up the Vision for Robotics Lab.
Lukas Bigler/wavelighthouse

How Margarita Chli is using drones to go where people can’t

When it comes to assisting search-and-rescue missions, dogs are second to none, but an Amazon Research Award recipient says they might have some competition from drones.

Today, using drones in responding to natural or man-made disasters is limited by the fact that they need to be both individually piloted and have their observations interpreted by a human. But what if drones could “see” on their own? What if they could not only make decisions about navigation, but also where to look more closely — or even collaborate with other drones and robots to observe a specific location?

That suite of skills is exactly what Margarita Chli, an Amazon Research Award recipient and vice director at the Institute of Robotics and Intelligent Systems at ETH Zurich (the Swiss Federal Institute of Technology), is exploring. Chli heads up the Vision for Robotics Lab there (V4RL), and she’s been using her 2019 Amazon Research Award (she was awarded one in 2020 as well) to advance robotic vision for small aircraft, including drones.

Chli grew up in Greece and Cyprus with math teachers as parents, so while she was “heavily trained” in the language of mathematics, she didn’t always know robotics would be her professional focus.

Chli says it was really a series of lucky events that led to her introduction to “influential and brilliant scientists who planted the seed of intellectual curiosity in this area.”

After studying computer science and engineering at the University of Cambridge, where she earned her bachelor’s and master’s degrees, she considered her options.

“The coolest thing at the time seemed to be this PhD position at Imperial College in London, where my advisor, Andrew Davison, brought me into the area of robotic vision. That’s how it all started,” says Chli.

Related content
Measuring the displacement between location estimates derived from different camera views can help enforce the local consistency vital to navigation.

Davison’s expertise was pioneering monocular SLAM (simultaneous localization and mapping), which is about “understanding how a camera moves in space,” says Chli. In pursuing her PhD, Chli did a lot of coding on her laptop, connecting that computer to a single camera and testing algorithms.

During her postdoc at ETH Zurich, which began in 2010, she applied her computer-vision algorithms to small drones. Chli says it was exciting to translate what she was doing on her laptop to a robot that was actually moving. That’s when she envisioned the potential impact for this technology.

“It's one thing to write some code and look at beautiful images, and another thing to get a robot moving – you get a feeling that you're creating something. And even going beyond that, to create something that can help people,” says Chli.

Drones in disaster zones

Her time at ETH Zurich also marked an era where drones, which had once been prohibitively expensive, were becoming more popular and accessible. “The technological hardware side of things was blooming, which meant we could run then-expensive image-processing algorithms onboard smaller and smaller platforms.” Those drones were more expensive, bulkier, less flexible, and lacked the processing power compared to today’s drones, “but nevertheless, the applications and imagination were there already,” she says.

As she wrote her research proposals, Chli expanded her thinking about the power of this technology. “What can we do with this? How we can use drones and robots and robotic vision to have robots in our everyday lives, that that can help us with tasks that we don't want to do?”

Those questions have propelled her research ever since.

Margarita Chli is seen speaking behind a lectern that says ETH Zürich on it, there are two large flower vases just behind her
One of the first projects for Margarita Chli at ETH Zurich: using drones for search-and-rescue missions.
Oliver Bartenschlager

One of the first projects Chli got to work on at ETH Zurich — where she was appointed as a deputy director of the lab she was working as a postdoc — was using drones for search-and-rescue missions. That work involved drones accessing areas that would be too dangerous or time-consuming for rescuers on foot, allowing rescuers to search for missing people with less risk.

Working backwards from the end-user, Chli spoke with rescuers at Club Alpino Italiano and learned that they didn’t want anything in the field that wasn’t directly useful — drones that worked independently made more sense than dedicating human resources to flying and monitoring drones.

These rescuers had lost colleagues to this very risky work, which takes place in harsh weather conditions, and so they were understandably demanding — and skeptical. “They had no time for delays or mistakes from fussy hardware or software,” she says.

The requirement for simplicity and a just-works solution has “been a great drive for my research ever since, to be honest: to develop plug-and-play, no-fuss systems, such that mission experts do not need to also be robotics experts or pilots.”

Related content
Radhika Nagpal has created robots that can build towers without anyone in charge. Now she’s turned her focus to fulfillment center robots.

While supporting the work of search-and-rescue teams is still an important component of her work, Chli and team have expanded the scope of their research.

Chli also envisions drones being used for inspecting hard-to-reach areas like wind-turbine blades, or power plants. “In 2012, there was a big explosion in the power plant on the island where I come from in Cyprus. We needed drones to be able to inspect the boilers for cracks to figure out how safe it was for humans to go closer,” she says.

Truly useful robots

This incident inspired Chli to focus on designing robots with real utility.

“I found it quite astonishing that we would see in the news robots that could do all sorts of gimmicky things, but we didn’t have reliable enough robots that could really help humans in a time of dire need.” She wanted to change that, and with her background in robotic vision and interest in drones, creating an unmanned aerial vehicle (UAV) that could “see” was the next challenge. In 2013, she was part of the team that ran the first vision-based autonomous flights of a small helicopter.

Margarita Chli is seen standing on a garden terrace, a drone is hovering over her shoulder in the background.
Margarita Chli is tackling drone challenges such as how a drone can maintain estimating its motion as accurately as possible.
Daniel Winkler

That same year, Chli took a post as a professor at the University of Edinburgh as a Chancellor's fellow. There, she started Vision for Robotics Lab (V4RL), which focuses on vision for robots, especially UAVs. In 2015, she returned to ETH Zurich, where she’s now professor and continues to lead V4RL.

Her research has been accelerated thanks to the resources made available to her as an Amazon Research Award recipient; resources that include access to AWS EC2 and S3.

“I think that what Amazon is doing is a great thing, because it's helping us actually see what researchers can do with its tools and it is democratizing where research is going,” she says.

She’s using those tools to tackle some of the most important problems in her work at ETH Zurich, like “how to figure out where a good spot to land is for our drones, and how we can keep a drone estimating its motion as accurately as possible, without being affected by water, trees, pedestrians, cars, and other dynamic, moving parts of the scene.” While flight-critical tasks must be processed on the drones themselves, transferring other processing tasks to the cloud, like semantic segmentation and high-level path planning, makes sense, says Chli.

Drones helping humanity

Chli thinks drones that can see and make decisions on their own will serve humanity outside search-and-rescue operations.

Researchers tracking wildlife migrations or large, dispersed herds could use drones to keep tabs on individual animals in ways humans on foot can’t, while at the same time understanding group movements.

Robots are going to help us in many ways that today we cannot really imagine, in ways we never thought possible.
Margarita Chli

“Archaeologists have come to us and said, ‘We have about 250 archaeological sites in Greece, we have a few tools around like a tripod, and I can put it in different places and take laser scans, but it's heavy, it's bulky. I don't want to find holes in my model, because I don't have time to go back to every one of these sites to capture new data.’ That’s where drones could be ideal, because they can map an area,” says Chli.

Chli says she’s become a bit of a drone evangelist because often when people hear her speak about autonomous drones, they think of military applications — whereas her focus is on what robots can do to improve the human condition.

Chli said she understands how that distrust emerged. “This technology has been growing very quickly, particularly comparing the progress today to a few years back,” she said. “And the less we know about how this technology works, the more scared we are of it.”

That’s why, she says, it’s important to raise questions and have open dialogues to address concerns because, as she sees it, robots are going to be part of our everyday lives.

“Robots are going to help us in many ways that today we cannot really imagine,” Chli says, “in ways we never thought possible.”

Research areas

Related content

US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Supply team (within Sponsored Products) is looking for an Applied Scientist to join a fast-growing team with the mandate of creating new ad experiences that elevate the shopping experience for hundreds of millions customers worldwide. The Applied Scientist will take end-to-end ownership of driving new product/feature innovation by applying advanced statistical and machine learning models. The role will handle petabytes of unstructured data (images, text, videos) to extract insights into what metadata can be useful for us to highlight to simplify purchase decisions, and propose new experiences that increase shopper engagement. Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Key job responsibilities As an Applied Scientist on this team you will: Build machine learning models and perform data analysis to deliver scalable solutions to business problems. Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. Research new predictive learning approaches for the sponsored products business. Write production code to bring models into production. A day in the life You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We are seeking a Principal Scientist with deep expertise in Search. Your responsibility will be to advance the state-of-the-art for search science that leads to world-class products that impact Amazon's customers. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team This is a position on Core Ranking and Experimentation team in Palo Alto, CA. The team works on a variety of topics in search ranking and relevance, such as multi-objective optimization, personalization, and fast online experimentation. We work closely with teams in various parts of the stack to ensure that our science is translated to customer facing products.
US, WA, Bellevue
Amazon is looking for a passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Automatic Speech Recognition (ASR), Machine Translation (MT), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use of speech and language technology. You will gain hands on experience with Amazon’s heterogeneous speech, text, and structured data sources, and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in all areas of human language technology: ASR, MT, NLU, text-to-speech (TTS), and Dialog Management, in addition to Computer Vision.
IN, KA, Bangalore
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. The ATT team, based in Bangalore, is responsible for ensuring that ads are compliant to world-wide advertising policies and are of high quality, leading to higher conversion for the advertisers and providing a great experience for the shoppers. Machine learning, particularly multi-modal data understanding, is fundamental to the way we drive our business, meet our goals and satisfy our customers. ATT team invests in researching and developing state of art models that analyze various type of ad assets – text, audio, images and videos - to ensure compliance to advertising policies. We also help advertisers create more successful ads by creating ML models to assist ad generation as well as to provide data-driven interpretable insights. Key job responsibilities Major responsibilities · Deliver key goals to enhance advertiser experience and protect shopper trust by innovative use of computer vision, NLP and statistical techniques · Drive core business analytics and data science explorations to inform key business decisions and algorithm roadmap · Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation · Hire and develop top talent in machine learning and data science and accelerate the pace of innovation in the group · Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production
US, WA, Seattle
We are seeking a talented applied researcher to join the Search team responsible for developing reinforcement learning systems for Amazon's shopping experience and delivering it to millions of customers. We believe that shopping on Amazon should be simple, delightful, and full of "wow" moments for everyone.
US, NY, New York
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team Amazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. Lead marketplace design and development based on economic theory and data analysis. Provide technical and scientific guidance to team members. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. Collaborate with business and software teams across Amazon Ads. Stay up to date with recent scientific publications relevant to the team. Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. Amazon’s large scale brings with it unique problems to solve in designing, testing, and deploying relevance models. We are seeking a strong applied Scientist to join the Experimentation Infrastructure and Methods team. This team’s charter is to innovate and evaluate ranking at Amazon Search. In practice, we aim to create infrastructure and metrics, enable new experimental methods, and do proof-of-concept experiments, that enable Search Relevance teams to introduce new features faster, reduce the cost of experimentation, and deliver faster against Search goals. Key job responsibilities You will build search ranking systems and evaluation framework that extend to Amazon scale -- thousands of product types, billions of queries, and hundreds of millions of customers spread around the world. As a Senior Applied Scientist you will find the next set of big improvements to ranking evaluation, get your hands dirty by building models to help understand complexities of customer behavior, and mentor junior engineers and scientists. In addition to typical topics in ranking, we are particularly interested in evaluation, feature selection, explainability. A day in the life Our primary focus is improving search ranking systems. On a day-to-day this means building ML models, analyzing data from your recent A/B tests, and guiding teams on best practices. You will also find yourself in meetings with business and tech leaders at Amazon communicating your next big initiative. About the team We are a team consisting of software engineers and applied scientists. Our interests and activities span machine learning for better ranking, experimentation, statistics for better decision making, and infrastructure to make it all happen efficiently at scale.