Margarita Chli, vice director at the Institute of Robotics and Intelligent Systems at ETH Zurich, is seen standing in front of a room giving a talk.
Margarita Chli, an Amazon Research Award recipient, is vice director at the Institute of Robotics and Intelligent Systems at ETH Zurich, where she heads up the Vision for Robotics Lab.
Lukas Bigler/wavelighthouse

How Margarita Chli is using drones to go where people can’t

When it comes to assisting search-and-rescue missions, dogs are second to none, but an Amazon Research Award recipient says they might have some competition from drones.

Today, using drones in responding to natural or man-made disasters is limited by the fact that they need to be both individually piloted and have their observations interpreted by a human. But what if drones could “see” on their own? What if they could not only make decisions about navigation, but also where to look more closely — or even collaborate with other drones and robots to observe a specific location?

That suite of skills is exactly what Margarita Chli, an Amazon Research Award recipient and vice director at the Institute of Robotics and Intelligent Systems at ETH Zurich (the Swiss Federal Institute of Technology), is exploring. Chli heads up the Vision for Robotics Lab there (V4RL), and she’s been using her 2019 Amazon Research Award (she was awarded one in 2020 as well) to advance robotic vision for small aircraft, including drones.

Chli grew up in Greece and Cyprus with math teachers as parents, so while she was “heavily trained” in the language of mathematics, she didn’t always know robotics would be her professional focus.

Chli says it was really a series of lucky events that led to her introduction to “influential and brilliant scientists who planted the seed of intellectual curiosity in this area.”

After studying computer science and engineering at the University of Cambridge, where she earned her bachelor’s and master’s degrees, she considered her options.

“The coolest thing at the time seemed to be this PhD position at Imperial College in London, where my advisor, Andrew Davison, brought me into the area of robotic vision. That’s how it all started,” says Chli.

Related content
Measuring the displacement between location estimates derived from different camera views can help enforce the local consistency vital to navigation.

Davison’s expertise was pioneering monocular SLAM (simultaneous localization and mapping), which is about “understanding how a camera moves in space,” says Chli. In pursuing her PhD, Chli did a lot of coding on her laptop, connecting that computer to a single camera and testing algorithms.

During her postdoc at ETH Zurich, which began in 2010, she applied her computer-vision algorithms to small drones. Chli says it was exciting to translate what she was doing on her laptop to a robot that was actually moving. That’s when she envisioned the potential impact for this technology.

“It's one thing to write some code and look at beautiful images, and another thing to get a robot moving – you get a feeling that you're creating something. And even going beyond that, to create something that can help people,” says Chli.

Drones in disaster zones

Her time at ETH Zurich also marked an era where drones, which had once been prohibitively expensive, were becoming more popular and accessible. “The technological hardware side of things was blooming, which meant we could run then-expensive image-processing algorithms onboard smaller and smaller platforms.” Those drones were more expensive, bulkier, less flexible, and lacked the processing power compared to today’s drones, “but nevertheless, the applications and imagination were there already,” she says.

As she wrote her research proposals, Chli expanded her thinking about the power of this technology. “What can we do with this? How we can use drones and robots and robotic vision to have robots in our everyday lives, that that can help us with tasks that we don't want to do?”

Those questions have propelled her research ever since.

Margarita Chli is seen speaking behind a lectern that says ETH Zürich on it, there are two large flower vases just behind her
One of the first projects for Margarita Chli at ETH Zurich: using drones for search-and-rescue missions.
Oliver Bartenschlager

One of the first projects Chli got to work on at ETH Zurich — where she was appointed as a deputy director of the lab she was working as a postdoc — was using drones for search-and-rescue missions. That work involved drones accessing areas that would be too dangerous or time-consuming for rescuers on foot, allowing rescuers to search for missing people with less risk.

Working backwards from the end-user, Chli spoke with rescuers at Club Alpino Italiano and learned that they didn’t want anything in the field that wasn’t directly useful — drones that worked independently made more sense than dedicating human resources to flying and monitoring drones.

These rescuers had lost colleagues to this very risky work, which takes place in harsh weather conditions, and so they were understandably demanding — and skeptical. “They had no time for delays or mistakes from fussy hardware or software,” she says.

The requirement for simplicity and a just-works solution has “been a great drive for my research ever since, to be honest: to develop plug-and-play, no-fuss systems, such that mission experts do not need to also be robotics experts or pilots.”

Related content
Radhika Nagpal has created robots that can build towers without anyone in charge. Now she’s turned her focus to fulfillment center robots.

While supporting the work of search-and-rescue teams is still an important component of her work, Chli and team have expanded the scope of their research.

Chli also envisions drones being used for inspecting hard-to-reach areas like wind-turbine blades, or power plants. “In 2012, there was a big explosion in the power plant on the island where I come from in Cyprus. We needed drones to be able to inspect the boilers for cracks to figure out how safe it was for humans to go closer,” she says.

Truly useful robots

This incident inspired Chli to focus on designing robots with real utility.

“I found it quite astonishing that we would see in the news robots that could do all sorts of gimmicky things, but we didn’t have reliable enough robots that could really help humans in a time of dire need.” She wanted to change that, and with her background in robotic vision and interest in drones, creating an unmanned aerial vehicle (UAV) that could “see” was the next challenge. In 2013, she was part of the team that ran the first vision-based autonomous flights of a small helicopter.

Margarita Chli is seen standing on a garden terrace, a drone is hovering over her shoulder in the background.
Margarita Chli is tackling drone challenges such as how a drone can maintain estimating its motion as accurately as possible.
Daniel Winkler

That same year, Chli took a post as a professor at the University of Edinburgh as a Chancellor's fellow. There, she started Vision for Robotics Lab (V4RL), which focuses on vision for robots, especially UAVs. In 2015, she returned to ETH Zurich, where she’s now professor and continues to lead V4RL.

Her research has been accelerated thanks to the resources made available to her as an Amazon Research Award recipient; resources that include access to AWS EC2 and S3.

“I think that what Amazon is doing is a great thing, because it's helping us actually see what researchers can do with its tools and it is democratizing where research is going,” she says.

She’s using those tools to tackle some of the most important problems in her work at ETH Zurich, like “how to figure out where a good spot to land is for our drones, and how we can keep a drone estimating its motion as accurately as possible, without being affected by water, trees, pedestrians, cars, and other dynamic, moving parts of the scene.” While flight-critical tasks must be processed on the drones themselves, transferring other processing tasks to the cloud, like semantic segmentation and high-level path planning, makes sense, says Chli.

Drones helping humanity

Chli thinks drones that can see and make decisions on their own will serve humanity outside search-and-rescue operations.

Researchers tracking wildlife migrations or large, dispersed herds could use drones to keep tabs on individual animals in ways humans on foot can’t, while at the same time understanding group movements.

Robots are going to help us in many ways that today we cannot really imagine, in ways we never thought possible.
Margarita Chli

“Archaeologists have come to us and said, ‘We have about 250 archaeological sites in Greece, we have a few tools around like a tripod, and I can put it in different places and take laser scans, but it's heavy, it's bulky. I don't want to find holes in my model, because I don't have time to go back to every one of these sites to capture new data.’ That’s where drones could be ideal, because they can map an area,” says Chli.

Chli says she’s become a bit of a drone evangelist because often when people hear her speak about autonomous drones, they think of military applications — whereas her focus is on what robots can do to improve the human condition.

Chli said she understands how that distrust emerged. “This technology has been growing very quickly, particularly comparing the progress today to a few years back,” she said. “And the less we know about how this technology works, the more scared we are of it.”

That’s why, she says, it’s important to raise questions and have open dialogues to address concerns because, as she sees it, robots are going to be part of our everyday lives.

“Robots are going to help us in many ways that today we cannot really imagine,” Chli says, “in ways we never thought possible.”

Research areas

Related content

US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (GenAI) in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
NL, Amsterdam
Ring is on a mission to keep people close to what's important. From the video doorbell to the DIY Ring Alarm system, Ring’s smart home security product line offers users affordable whole-home and neighborhood security. At Ring, we are committed to making home and neighborhood security accessible and effective for everyone – while working hard to bring communities together. Ring is an Amazon company. For more information, visit (https://ring.com/about). Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique possibility to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. You will be part of a team committed to pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work on scale. This position requires experience with developing efficient computer vision algorithms on resource-constrained computing platforms on edge. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. The role is open for multiple locations across Europe.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities As a Data Scientist, you will- - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, San Diego
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities As a Senior Data Scientist, you will- - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MA, Boston
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an Applied Scientist, you will- - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder. Publish novel developments in internal and external papers, forums, and conferences - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Bellevue
Amazon Last Mile builds global solutions that enable Amazon to attract an elastic supply of drivers, companies, and assets needed to deliver Amazon's and other shippers' volumes at the lowest cost and with the best customer delivery experience. Last Mile Science team owns the core decision models in the space of jurisdiction planning, delivery channel and modes network design, capacity planning for on the road and at delivery stations, routing inputs estimation and optimization. We also own scalable solutions to reduce risks, improve safety, enhance personalized experiences of our delivery associates and partners. Our research has direct impact on customer experience, driver and station associate experience, Delivery Service Partner (DSP)’s success and the sustainable growth of Amazon. We are looking for a passionate individual with strong machine learning and analytical skills to join its Last Mile Science team in the endeavor of designing and improving the most complex planning of delivery network in the world. As a Senior Data Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including supervised and unsupervised machine learning, non-convex optimization, causal inference, natural language processing, linear programming, reinforcement learning, and other forecast algorithms. Key job responsibilities Key job responsibilities * Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale and complexity. * Build Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. * Run A/B experiments, gather data, and perform statistical analysis. * Measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. * Research new and innovative machine learning approaches. Help coach/mentor junior scientists in the team. * Willingness to publish research at internal and external top scientific venues. Write and pursue IP submissions.
US, PA, Pittsburgh
Our mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs like speech, images, and video, enabling natural, empathetic, and adaptive interactions. We develop cutting-edge Large Language Models (LLMs) that leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. We seek a talented Applied Scientist with expertise in LLMs, speech, audio, NLP, or multimodal learning to pioneer innovations in data simulation, representation, model pre-training/fine-tuning, generation, reasoning, retrieval, and evaluation. The ideal candidate will build scalable solutions for a variety of applications, such as streaming real-time conversational experiences, talking avatar interactions, customizable personalities, and conversational turn-taking. With a passion for pushing boundaries and rapid experimentation, you'll deliver high-impact solutions from research to customer-facing products and services. Key job responsibilities As an Applied Scientist, you'll leverage your expertise to research novel algorithms and modeling techniques to develop systems for real-world interactions with a focus on the speech modality. You'll develop neural efficiency algorithms, acquire and curate large, diverse datasets while ensuring privacy, creating robust evaluation metrics and test sets to comprehensively assess LLM performance. Integrating human-in-the-loop feedback, you'll iterate on data selection, sampling, and enhancement techniques to improve the core model performance. Your innovations will directly impact customers through new AI products and services.
US, CA, Pasadena
The AWS Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in Mixed-Signal Design. Working alongside other scientists and engineers, you will design and validate hardware performing the control and readout functions for AWS quantum processors. Candidates must have a strong background in mixed-signal design at the printed circuit board (PCB) level. Working effectively within a cross-functional team environment is critical. The ideal candidate will have a proven track record of hardware development through multiple product life-cycles, from requirements generation to design validation. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for the control of AWS quantum processor systems. You’ll bring a passion for innovation, collaboration, and mentoring to: Solve layered technical problems, often ones not encountered before, across our hardware and software stacks. Develop requirements with key system stakeholders, including quantum device, test and measurement, cryogenic hardware, and theory teams. Design, implement, test, deploy, and maintain innovative solutions that meet both strict performance and cost metrics. Provide mentorship to junior team members. Research enabling technologies necessary for AWS to produce commercially viable quantum computers.
CA, BC, Vancouver
We are looking for a senior audio applied scientist with experience and expertise in speech and audio signal processing, machine learning, automatic speech recognition, and/or natural language processing to work on state-of-the-art solutions for applications including speech enhancement, voice analytics, and real-time transcription of conversational audio. Amazon Connect is a highly disruptive cloud-based contact center that enables businesses to deliver engaging, dynamic, and personal customer service experiences. Amazon Connect is the result of the ten years of development that went into building the tools Amazon uses to provide its award winning customer service at massive and launching it as a publicly available service. With Amazon Connect, you can create your own cloud-based contact center and be taking calls in minutes. Our team’s charter as part of the Amazon Connect organization is to think big, re-imagine, innovate, and deliver novel, state-of-the-art solutions to audio and video problems. We are interested in all aspects of audio, video, and media technology, and we leverage the latest machine learning and signal processing techniques to surprise and delight our customers. Our applications include real-time audio/video communications, audio/video scene analysis, anomaly detection, audio/speech/music/image/video processing, enhancement, analysis, synthesis and coding. We have the nimbleness of a small startup but, at the same time, the immense resources of AWS - the world leader in cloud computing - behind us as well. If you want to innovate on the cutting edge while having a profound and direct impact on the end customer experience, this is the team to be on! About the team AWS Applications and Higher Level Abstractions (Apps) provides horizontal and industry vertical applications for business users with the same on-demand scalability, reliability, pay-as-you-go pricing, and machine learning expertise that drive AWS services. The AWS Applications group includes services such as Amazon Connect (a cost-effective cloud contact center), our End User Computing (including Amazon Workspaces, AppStream, etc.), Marketing Tech (Amazon Pinpoint), and Autonomous Checkout and Biometric Identity Services (Just Walk Out, Amazon One) for retail, sports, travel, and other verticals. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
IN, KA, Bengaluru
The Amazon Artificial General Intelligence (AGI) team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment