blueswarm image.png
Swarm robotics involves scores of individual mobile robots that mimic the collective behavior demonstrated by animals. Certain robots, like the Bluebot pictured here, perform some of the same behaviors as a school of fish, such as aggregation, dispersion, and searching.
Courtesy of Radhika Nagpal, Harvard University

Schooling robots to behave like fish

Radhika Nagpal has created robots that can build towers without anyone in charge. Now she’s turned her focus to fulfillment center robots.

When Radhika Nagpal was starting graduate school in 1994, she and her future husband went snorkeling in the Caribbean. Nagpal, who grew up in a landlocked region of India, had never swum in the ocean before. It blew her away.

“The reef was super healthy and colorful, like being in a National Geographic television show,” she recalled. “As soon as I put my face in the water, this whole swarm of fish came towards me and then swerved to the right.”

Meet the Blueswarm
Blueswarm comprises seven identical miniature Bluebots that combine autonomous 3D multi-fin locomotion with 3D camera-based visual perception.

The fish fascinated her. As she watched, large schools of fish would suddenly stop or switch direction as if they were guided by a single mind. A series of questions occurred to her. How did they communicate with one another? What rules — think of them as algorithms — produced such complex group behaviors? What environmental prompts triggered their actions? And most importantly, what made collectives so much smarter and more successful than their individual members?

Radhika Nagpal is a professor of computer science at Harvard University’s Wyss Institute for Biologically Inspired Engineering and an Amazon Scholar
Radhika Nagpal is a professor of computer science at Harvard University’s Wyss Institute for Biologically Inspired Engineering and an Amazon Scholar.

Since then, Nagpal, a professor of computer science at Harvard University’s Wyss Institute for Biologically Inspired Engineering and an Amazon Scholar, has gone on to build swarming robots. Swarm robotics involves scores of individual mobile robots that mimic the collective behavior demonstrated by animals, e.g. how flocks of birds or schools of fish move together to achieve some end. The robots act as if they, too, were guided by a single mind, or, more precisely, a single computer. Yet they are not.

Instead, they follow a relatively simple set of behavioral rules. Without any external orders or directions, Nagpal’s swarms organize themselves to carry out surprisingly complex tasks, like spontaneously synchronizing their behavior, creating patterns, and even building a tower.

More recently, her lab developed swimming robots that performed some of the same behaviors as a school of fish, such as aggregation, dispersion, and searching. All without a leader.

Nagpal’s work demonstrates both how far we have come in creating self-organizing robot swarms that can perform tasks — and how far we still must go to emulate the complex tapestries woven by nature. It is a gap that Nagpal hopes to close by uncovering the secrets of swarm intelligence to make swarm robots far more useful.

Amorphous computing

The Caribbean fish sparked Nagpal’s imagination because she was already interested in distributed computing, where multiple computers collaborate to solve problems or transfer information without any single computer running the show. At MIT, where she had begun her PhD program, she was drawn to an offshoot of the field called amorphous computing. It investigates how limited, unreliable individuals — from cells to ants to fish — organize themselves to perform often complex tasks consistently without any hierarchies.

Amorphous computing was “hardware agnostic.” This meant that it sought rules that guided this behavior in both living organisms and computer systems. It asked, for example, how identical cells in an embryo form all the organs of an animal, how ants find the most direct route to food, or how fish coordinate their movements. By studying nature, these computer scientists hoped to build computer networks that operated on the same principles.

I got excited about how nature makes these complicated, distributed, mobile networks. Those multi-robot systems became a new direction of my research
Radhika Nagpal

After completing her doctoral work on self-folding materials inspired by how cells form tissues, Nagpal began teaching at Harvard. While there, she was visited by her friend James McLurkin, a pioneer in swarm robotics at MIT and iRobot.

“James is the one that got me into robot swarms by introducing me to all the things that ant and termite colonies do,” Nagpal said. “I got excited about how nature makes these complicated, distributed, mobile networks. James was developing that used similar principles to move around and work together. Those multi-robot systems became a new direction of my research.”

She was particularly taken by Namibian termites, which build large-scale nest mounds with multiple chambers and complex ventilation systems, often as high as 8 feet tall.

“As far as we know, there isn’t a blueprint or an a priori distribution between who’s doing the building and who is not. We know the queen does not set the agenda,” she explained. “These colonies start with hundreds of termites and expand their structure as they grow.”

The question fascinated her. “I have no idea how that works,” she said. “I mean, how do you create systems that are so adaptive?”

Finding the rules

Researchers have spent decades answering that question. One way, they found, is to act locally. Take, for example, a flock of geese at a pond. If one or two birds on the outside of the flock see a predator, they grow agitated and fly off, alerting the next nearest birds. The message percolates through flock. Once a certain number of birds have “voted” to fly off, the rest follow without any hesitation. They are not following a leader, only reacting only to the birds next to them.

How dynamic circle formation works

The same type of local behaviors could be used to make driverless vehicles safer. An autonomous vehicle, Nagpal explains, does not have to reason about all the other cars on the road, only the ones around it. By focusing on nearby vehicles, these distributed systems use less processing power without losing the ability to react to changes very quickly.

Such systems are highly scalable. “Instead of having to reason about everybody, your car only has to reason about its five neighbors,” Nagpal said. “I can make the system very large, but each individual’s reasoning space remains constant. That’s a traditional notion of scalable —the amount of processing per vehicle stays constant, but we’re allowed to increase the size of the system.”

Another key to swarm behavior involves embodied intelligence, the idea that brains interact with the world through bodies that can see, hear, touch, smell, and taste. This is a type of intelligence, too, Nagpal argues.

It’s almost like each individual fish acts like a distributed sensor. Instead of me doing all the work, somebody on the left can say, ‘Hey, I saw something.’ When the group divides the labor so that some of us look out for predators while the rest of us eat, it costs less in terms of energy and resources.
Radhika Nagpal

“When you think of an ant, there is not a concentrated set of neurons there,” she said, referring to the ant’s 20-microgram brain. “Instead, there is a huge amount of awareness in the body itself. I may wonder how an ant solves a problem, but I have to realize that somehow having a physical body full of sensors makes that easier. We do not really understand how to think about that still.”

Local actions, scalable behavior, and embodied intelligence are among the factors that make swarms successful. In fact, researchers have shown that the larger a school of fish, the more successful it is at evading predators, finding food, and not getting lost.

“It’s almost like each individual fish acts like a distributed sensor,” Nagpal said. “Instead of me doing all the work, somebody on the left can say, ‘Hey, I saw something.’ When the group divides the labor so that some of us look out for predators while the rest of us eat, it costs less in terms of energy and resources than trying to eat and look out for predators all by yourself.

“What’s really interesting about large insect colonies and fish schools is that they do really complicated things in a decentralized way, whereas people have a tendency to build hierarchies as soon as we have to work together,” she continued. “There is a cost to that, and if we try to do that with that with robots, we replicate the whole management structure and cost of a hierarchy.”

So Nagpal set out to build robots swarms that worked without top-down organization.

Animal behavior

A typical process in Nagpal’s group starts by identifying an interesting natural behavior and trying to discover the rules that generate those actions. Sometimes, they are surprisingly simple.

Take, for example, some behaviors exhibited by Nagpal’s colony of 1,000 interactive robots, each the size of quarter and each communicating with its nearest neighbors wirelessly. The robots will self-assemble into a simple line with a repeating color pattern based on only two rules: a motion rule that allows them to move around any stationary robots, and a pattern rule that tells them to take on the color of their two nearest neighbors.

Other combinations of simple rules spontaneously synchronize the blinking of robot lights, guide migrations, and get the robots to form the letter “K.”

Most impressively, Nagpal and her lab used a behavior found in termites, called stigmergy, to prompt self-organized robot swarms to build a tower. Stigmergy involves leaving a mark on the environment that triggers a specific behavior by another member of the group.

Stigmergy plays a role in how termites build their huge nests. One termite may sense that a spot would make a good place to build, so it puts down its equivalent of a mud brick. When a second termite comes along, the brick triggers it to place its brick there. As the number of bricks increase, the trigger grows stronger and other termites begin building pillars nearby. When they grow high enough, something triggers the termites to begin connecting them with roofs.

“The building environment has become a physical memory of what should happen next,” Nagpal said.

Nagpal used that type of structural memory to prompt her robotic swarm to build a ziggurat tower. The instructions included a motion rule about how to move through the tower and a pattern rule about where to place the blocks. She then built some small, block-carrying robots that built a smaller but no less impressive structure.

Her lab developed a compiler that could generate algorithms that would enable the robots to build specific types of structures — perhaps towers with minarets — by interacting with stigmergic physical memories. One day, algorithm-driven robots could move sandbags to shore up a levee in a hurricane or buttress a collapsed building. They could even monitor coral reefs, underwater infrastructure, and pipelines — if they could swim.

Schooling robofish

From the start, Nagpal wanted to build her own school of robotic fish, but the hardware was simply too clunky to make them practical. That changed with the advent of smartphones, with their low-cost, low-power processors, sensors, and batteries.

In 2018, she got her chance when she received an Amazon Machine Learning Research Award. This allowed her to build Blueswarm, a group of robotic fish that performed tasks like those she observed in the Caribbean years ago.

Each Bluebot is just four inches long, but it packs a small Raspberry Pi computer, two fish-eye cameras, and three blue LED lights. It also has a tail (caudal) fin for thrust, a dorsal fin to move up or down, and side fins (pectoral fins) to turn, stop, or swim backward.

Bluebots do not use Wi-Fi, GPS, or external cameras to communicate their positions without error. Instead, she wants to explore what behaviors are possible relying only on cameras and local perception of one’s mates.

How multi-behavior search works

Researchers, she explained, find it difficult to rely only upon local perception. It has been difficult to tackle fundamental questions, like how does a robot visually detect other members of the swarm, how they parse information, and what happens when one member moves in front of another. Limiting Bluebot sensing to local perception forces Nagpal and her team to think more deeply about what robots really need to know about their neighbors, especially when data is limited and imprecise. 

Bluebots can mimic several fish school behaviors by tracking LED lights on the neighboring fishbots around them. Using 3D cameras and simple algorithms, they estimate distance between lights on neighboring fish. (The closer they appear, the further the fish.)

Nagpal’s seven Bluebots form a circle (called milling) by turning right if there is a robot in front of them. If there is no robot, they turn left. After a few moments, the school will be swimming in a circle, a formation fish use to trap prey.

They can also search for a target flashing red light. First, the school disperses within the tank. When a Bluebot finds the red LED, it begins to flash its lights. This signals the nearest Bluebots to aggregate, followed by the rest. If a single robot had to conduct a similar search by itself, it would take significantly longer.

These behaviors are impressive for robots, but represent a small subset of fish school behaviors. They also take place in a static fish tank populated by only one school of robot fish. To go further, Nagpal wants to improve their sensors and perhaps use machine learning to discover new rules that could be combined to produce the aquatic equivalent of a tower.

In the end, though, Nagpal does not want to build a better fish. Instead, she wants to apply the lessons she has learned to real-world robots. She is doing just that during a sabbatical working at Amazon, which operates the largest fleet of robots — more than 200,000 units — in the world.

Practical uses

Nagpal had little previous experience working in industry, but she jumped at the chance to work with Amazon.

“There are few others with hundreds of robots moving around safely in a facility space,” she said. “And the opportunity to work on algorithms in a deployed system was very exciting."

There are few others [like Amazon] with hundreds of robots moving around safely in a facility space. And the opportunity to work on algorithms in a deployed system was very exciting.
Radhika Nagpal

“The other factor is that Amazon’s robots do a mix of centralized and decentralized decision-making," she continued. "The robots plan their own paths, but they also use the cloud to know more. That lets us ask: Is it better to know everything about all your neighbors all the time? Or is it better to only know about the neighbors that are closer to you?”

Her current focus is on sortation centers, where robots help route packages to shipping stations sorted by ZIP codes. Not surprisingly, robots setting out from multiple points to dozens of different locations require a degree of coordination. Amazon’s robots are already aware of other robots. If they see one, they will choose an alternate route. But what path should they take, Nagpal asks. She wants to make sure those robots are making the most effective possible choices.

Cities already manage this. They limit access to some roads, change speed limits, and add one-way streets. Computer networks do it as well, rerouting traffic when packet delivery slows down.

Some of those concepts, such as one-way travel lanes, also work in sortation centers. They could act as stigmergic signals to guide robot behavior. She also believes there might be a way to create simple swarm behaviors that enable robots to react to advanced data about incoming packages.

Once her sabbatical is over, Nagpal plans to return to the lab. She wants to keep working on her Bluebots, improving their vision, and turning them loose in environments that look more like the coral reef she went snorkeling in 25 years ago.

She is also dreaming of swarms of bigger robots for use in construction or trash collection.

“Maybe we could do what Amazon is doing, but do it outside,” she said. “We could have swarms of robots that actually do some sort of practical task. At Amazon, that task is delivery. But given Boston’s snowstorms, I think shoveling the sidewalks would be nice.”

Research areas

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Santa Clara
Amazon Q Business is an AI assistant powered by generative technology. It provides capabilities such as answering queries, summarizing information, generating content, and executing tasks based on enterprise data. We are seeking a Language Data Scientist II to join our data team. Our mission is to engineer high-quality datasets that are essential to the success of Amazon Q Business. From human evaluations and Responsible AI safeguards to Retrieval-Augmented Generation and beyond, our work ensures that Generative AI is enterprise-ready, safe, and effective for users. As part of our diverse team—including language engineers, linguists, data scientists, data engineers, and program managers—you will collaborate closely with science, engineering, and product teams. We are driven by customer obsession and a commitment to excellence. In this role, you will leverage data-centric AI principles to assess the impact of data on model performance and the broader machine learning pipeline. You will apply Generative AI techniques to evaluate how well our data represents human language and conduct experiments to measure downstream interactions. Key job responsibilities * oversee end-to-end evaluation data pipeline and propose evaluation metrics and methods * incorporate your knowledge of linguistic fundamentals, NLU, NLP to the data pipeline * process and analyze diverse media formats including audio recordings, video, images and text * perform statistical analysis of the data * write intuitive data generation & annotation guidelines * write advanced and nuanced prompts to optimize LLM outputs * write python scripts for data wrangling * automate repetitive workflows and improve existing processes * perform background research and vet available public datasets on topics such as long text retrieval, text generation, summarization, question-answering, and reasoning * leverage and integrate AWS services to optimize data collection workflows * collaborate with scientists, engineers, and product managers in defining data quality metrics and guidelines. * lead dive deep sessions with data annotators About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE