Russ Tedrake (Massachusetts Institute of Technology).JPG
Russ Tedrake, a professor of electrical engineering and computer science and head of the Robot Locomotion Group at MIT, has used funding from his Amazon Research Awards to explore the challenge of robotic manipulation.
Gretchen Ertl

Real-world robotic-manipulation system

Amazon Research Award recipient Russ Tedrake is teaching robots to manipulate a wide variety of objects in unfamiliar and constantly changing contexts.

Russ Tedrake, a professor of electrical engineering and computer science and head of the Robot Locomotion Group at MIT, received his first Amazon Research Award (ARA) in 2017 — the first year that robotics was included among the ARA research areas.

Explore Tedrake's Amazon Research Awards

In a succession of ARA awards since then, Tedrake has continued to explore the challenge of robotic manipulation — the grasping and manipulation of objects in arbitrary spatial configurations.

“There's one level of manipulation that is basically just looking for big flat areas to attach to, and you don't think very much about the objects,” Tedrake says. “And there is a big step where you understand, not just that this is a flat surface, but that it has inertia distributed a certain way. If there was a big, heavy book, for instance, it would be much better to pick in the middle than at the edge. We've been trying to take the revolution in computer vision, take what we know about control, understand how to put those together, and push forward.”

Self-supervised learning in robotics

Related content
Learn how Bill Smart wants to simplify the ways that robots and people work together — and why waiting on a date one night changed his career path.

With their first ARA award, Tedrake’s group worked on applying self-supervised learning to problems of robotic manipulation. Today, self-supervised learning is all the rage, but at the time, it was little explored in robotics.

The basic method in self-supervised learning is to use unlabeled — but, often, algorithmically manipulated — data to train a machine learning model to represent data in a way that’s useful for some task. The model can then be fine-tuned on that task with very little labeled data.

In computer vision, for instance, self-supervised learning often involves taking two copies of the same image, randomly modifying one of them — cropping it, rotating it, changing its colors, adding noise, and so on — and training the model to recognize that both images are of the same object.

In Tedrake’s case, his team allowed a sensor-laden robotic arm to move around an object, simultaneously photographing it and measuring the distance to points on its surface using a depth camera. From the depth readings, software could construct a 3-D model of the object and use it to map points from one 2-D photo onto others.

Self-supervision to learn invariant object representations

From the point-mapped images, a neural network could then learn an invariant representation of the object, one that allows it to identify parts of the object regardless of perspective — for instance, to identify the handle of a coffee mug whether it was viewed from the top, the side, or straight on.

The goal: enable a robot to grasp objects at specified points — to, say, pick up coffee mugs by their handles. That, however, requires the robot to generalize from a canonical instance of an object — a mug with its handle labeled — to variants of the object — mugs that are squatter or tapered or have differently shaped handles.

Keypoint correspondences

So Tedrake and his students’ next ARA-sponsored project was to train a neural network to map keypoints across different instances of the same type of object. For instance, the points at which a mug’s handle joins the mug could constitute a set of keypoints; keypoints might also be points in free space, defined relative to the object, such as the opening left by the mug handle.

Tedrake’s group began with a neural network pretrained through self-supervision and fine-tuned it using multiple instances of the same types of objects — mugs and shoes of all shapes and sizes, for example. Instances of the same objects had been labeled with corresponding keypoints, so that the model could learn category-level structural principles, as opposed to simply memorizing diverse shapes. Tedrake’s group also augmented their training images of real objects with computer-generated images of objects in the same categories.

Learning keypoint correspondences

After training the model, the group tested it on a complete end-to-end robotic-manipulation task. “We can do the task with 99% confidence,” Tedrake says. “People would just come into the lab and take their shoes off, and we’d try to put a shoe on the rack. Daniela [Rus, a roboticist, the director of MIT’s Computer Science and Artificial Intelligence Laboratory, and fellow ARA recipient] had these super shiny black Italian shoes, and they did totally fool our system. But we just added them to the training set and trained the model, and then it worked fine.”

This system worked well so long as the object to be grasped (a shoe or, in a separate set of experiments, a coffee cup) remained stationary after the neural model had identified the grasp point. “But if the object slipped, or if someone moved it as the robot reached for it, it would still air ball in the way robots have done for far too long,” Tedrake says.

Adapting on the fly

Related content
The AWS Machine Learning Research Award winner is working to develop methods and open-source libraries that can potentially benefit the artificial intelligence and robotics communities.

So the next phase of the project was to teach the robot to use video feedback to adjust trajectories on the fly. Until now, Tedrake’s team had been using machine learning only for the robot’s perceptual system; they’d designed the control algorithms using traditional control-theoretical optimization. But now they switched to machine learning for controller design, too.

To train the controller model, Tedrake’s group used data from demonstrations in which one of the lab members teleoperated the robotic arm while other members knocked the target object around, so that its position and orientation changed. During training, the model took as input sensor data from the demonstrations and tried to predict the teleoperator’s control signals.

“By the end, we had versions that were just super robust, where you're antagonizing the robot, trying to knock objects away just as it reaches for them,” Tedrake says.

Still, producing those robust models required around 100 runs of the teleoperation experiment for each object, a resource-intensive data acquisition procedure. This led to the next step: generalizing the feedback model, so that the robot could learn to handle perturbations from just a handful — even just one — example.

Related content
While these systems look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

“From all that data, we’re now trying to learn, not the policy directly, but a dynamics model, and then you compute the policy after the fact,” Tedrake explains.

This requires a combination of machine learning and the more traditional, control-theoretical analysis that Tedrake’s group has specialized in. From data, the machine learning model learns vector representations of both the input and the control signal, but hand-tooled algorithms constrain the representation space to optimize the control signal selection. “It's basically turning it back into a planning and control problem, but in the feature space that was learned,” Tedrake explains.

And indeed, with his current ARA grant, Tedrake is pursuing ever more sophisticated techniques for analyzing planning and control problems. In a recent paper, he and two of his students, Tobia Marcucci and Jack Umenberger, together with Pablo Parrilo, a professor in MIT’s Laboratory for Information and Decision Systems, consider a variation on the shortest-path problem, or finding the shortest path through a graph with edges of varying lengths.

In Tedrake and his colleagues’ version of the problem, the locations of the graph nodes vary according to some function, and as a consequence, so do the edge lengths. This formalism lends itself to a wide range of problems, including motion planning for robots and autonomous vehicles.

An example of Tedrake and his colleagues’ variation of the shortest-path problem. White circles represent locations of vertices, which can vary anywhere within the pale-blue polygons; the dotted blue lines represent the current distances between vertices along the shortest route through the graph. Black arrows represent the direction of flow through the graph.
An example of Tedrake and his colleagues’ variation of the shortest-path problem. White circles represent locations of vertices, which can vary anywhere within the pale-blue polygons; the dotted blue lines represent the current distances between vertices along the shortest route through the graph. Black arrows represent the direction of flow through the graph.

Computing the shortest path through such a graph is an NP-complete problem, meaning it is computationally intractable for graphs of sufficient size. But the MIT researchers showed how to find an approximate solution efficiently.

This continued focus on traditional optimization techniques puts Tedrake at odds with the prevailing shift toward machine learning in so many branches of AI.

“Learning is working extremely well, but too often, I think, people have thrown the baby out with the bathwater,” he says. “There are some things that we still know how to do very, very well with control and optimization, and I'm trying to push the boundary back towards everything we do know how to do.”

Research areas

Related content

GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
GB, London
Are you a MS or PhD student interested in a 2026 Research Science Internship, where you would be using your experience to initiate the design, development, execution and implementation of scientific research projects? If so, we want to hear from you! Is your research in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? If so, we want to hear from you! We are looking for motivated students with research interests in a variety of science domains to build state-of-the-art solutions for never before solved problems You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Research Science Intern, you will have following key job responsibilities; • Work closely with scientists and engineering teams (position-dependent) • Work on an interdisciplinary team on customer-obsessed research • Design new algorithms, models, or other technical solutions • Experience Amazon's customer-focused culture A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.