Russ Tedrake (Massachusetts Institute of Technology).JPG
Russ Tedrake, a professor of electrical engineering and computer science and head of the Robot Locomotion Group at MIT, has used funding from his Amazon Research Awards to explore the challenge of robotic manipulation.
Gretchen Ertl

Real-world robotic-manipulation system

Amazon Research Award recipient Russ Tedrake is teaching robots to manipulate a wide variety of objects in unfamiliar and constantly changing contexts.

Russ Tedrake, a professor of electrical engineering and computer science and head of the Robot Locomotion Group at MIT, received his first Amazon Research Award (ARA) in 2017 — the first year that robotics was included as one of the ARA research areas.

Explore Tedrake's Amazon Research Awards

In a succession of ARA awards since then, Tedrake has continued to explore the challenge of robotic manipulation — the grasping and manipulation of objects in arbitrary spatial configurations.

“There's one level of manipulation that is basically just looking for big flat areas to attach to, and you don't think very much about the objects,” Tedrake says. “And there is a big step where you understand, not just that this is a flat surface, but that it has inertia distributed a certain way. If there was a big, heavy book, for instance, it would be much better to pick in the middle than at the edge. We've been trying to take the revolution in computer vision, take what we know about control, understand how to put those together, and push forward.”

Self-supervised learning in robotics

Related content
Learn how Bill Smart wants to simplify the ways that robots and people work together — and why waiting on a date one night changed his career path.

With their first ARA award, Tedrake’s group worked on applying self-supervised learning to problems of robotic manipulation. Today, self-supervised learning is all the rage, but at the time, it was little explored in robotics.

The basic method in self-supervised learning is to use unlabeled — but, often, algorithmically manipulated — data to train a machine learning model to represent data in a way that’s useful for some task. The model can then be fine-tuned on that task with very little labeled data.

In computer vision, for instance, self-supervised learning often involves taking two copies of the same image, randomly modifying one of them — cropping it, rotating it, changing its colors, adding noise, and so on — and training the model to recognize that both images are of the same object.

In Tedrake’s case, his team allowed a sensor-laden robotic arm to move around an object, simultaneously photographing it and measuring the distance to points on its surface using a depth camera. From the depth readings, software could construct a 3-D model of the object and use it to map points from one 2-D photo onto others.

Self-supervision to learn invariant object representations

From the point-mapped images, a neural network could then learn an invariant representation of the object, one that allows it to identify parts of the object regardless of perspective — for instance, to identify the handle of a coffee mug whether it was viewed from the top, the side, or straight on.

The goal: enable a robot to grasp objects at specified points — to, say, pick up coffee mugs by their handles. That, however, requires the robot to generalize from a canonical instance of an object — a mug with its handle labeled — to variants of the object — mugs that are squatter or tapered or have differently shaped handles.

Keypoint correspondences

So Tedrake and his students’ next ARA-sponsored project was to train a neural network to map keypoints across different instances of the same type of object. For instance, the points at which a mug’s handle joins the mug could constitute a set of keypoints; keypoints might also be points in free space, defined relative to the object, such as the opening left by the mug handle.

Tedrake’s group began with a neural network pretrained through self-supervision and fine-tuned it using multiple instances of the same types of objects — mugs and shoes of all shapes and sizes, for example. Instances of the same objects had been labeled with corresponding keypoints, so that the model could learn category-level structural principles, as opposed to simply memorizing diverse shapes. Tedrake’s group also augmented their training images of real objects with computer-generated images of objects in the same categories.

Learning keypoint correspondences

After training the model, the group tested it on a complete end-to-end robotic-manipulation task. “We can do the task with 99% confidence,” Tedrake says. “People would just come into the lab and take their shoes off, and we’d try to put a shoe on the rack. Daniela [Rus, a roboticist, the director of MIT’s Computer Science and Artificial Intelligence Laboratory, and fellow ARA recipient] had these super shiny black Italian shoes, and they did totally fool our system. But we just added them to the training set and trained the model, and then it worked fine.”

This system worked well so long as the object to be grasped (a shoe or, in a separate set of experiments, a coffee cup) remained stationary after the neural model had identified the grasp point. “But if the object slipped, or if someone moved it as the robot reached for it, it would still air ball in the way robots have done for far too long,” Tedrake says.

Adapting on the fly

Related content
The AWS Machine Learning Research Award winner is working to develop methods and open-source libraries that can potentially benefit the artificial intelligence and robotics communities.

So the next phase of the project was to teach the robot to use video feedback to adjust trajectories on the fly. Until now, Tedrake’s team had been using machine learning only for the robot’s perceptual system; they’d designed the control algorithms using traditional control-theoretical optimization. But now they switched to machine learning for controller design, too.

To train the controller model, Tedrake’s group used data from demonstrations in which one of the lab members teleoperated the robotic arm while other members knocked the target object around, so that its position and orientation changed. During training, the model took as input sensor data from the demonstrations and tried to predict the teleoperator’s control signals.

“By the end, we had versions that were just super robust, where you're antagonizing the robot, trying to knock objects away just as it reaches for them,” Tedrake says.

Still, producing those robust models required around 100 runs of the teleoperation experiment for each object, a resource-intensive data acquisition procedure. This led to the next step: generalizing the feedback model, so that the robot could learn to handle perturbations from just a handful — even just one — example.

Related content
While these systems look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

“From all that data, we’re now trying to learn, not the policy directly, but a dynamics model, and then you compute the policy after the fact,” Tedrake explains.

This requires a combination of machine learning and the more traditional, control-theoretical analysis that Tedrake’s group has specialized in. From data, the machine learning model learns vector representations of both the input and the control signal, but hand-tooled algorithms constrain the representation space to optimize the control signal selection. “It's basically turning it back into a planning and control problem, but in the feature space that was learned,” Tedrake explains.

And indeed, with his current ARA grant, Tedrake is pursuing ever more sophisticated techniques for analyzing planning and control problems. In a recent paper, he and two of his students, Tobia Marcucci and Jack Umenberger, together with Pablo Parrilo, a professor in MIT’s Laboratory for Information and Decision Systems, consider a variation on the shortest-path problem, or finding the shortest path through a graph with edges of varying lengths.

In Tedrake and his colleagues’ version of the problem, the locations of the graph nodes vary according to some function, and as a consequence, so do the edge lengths. This formalism lends itself to a wide range of problems, including motion planning for robots and autonomous vehicles.

An example of Tedrake and his colleagues’ variation of the shortest-path problem. White circles represent locations of vertices, which can vary anywhere within the pale-blue polygons; the dotted blue lines represent the current distances between vertices along the shortest route through the graph. Black arrows represent the direction of flow through the graph.
An example of Tedrake and his colleagues’ variation of the shortest-path problem. White circles represent locations of vertices, which can vary anywhere within the pale-blue polygons; the dotted blue lines represent the current distances between vertices along the shortest route through the graph. Black arrows represent the direction of flow through the graph.

Computing the shortest path through such a graph is an NP-complete problem, meaning it is computationally intractable for graphs of sufficient size. But the MIT researchers showed how to find an approximate solution efficiently.

This continued focus on traditional optimization techniques puts Tedrake at odds with the prevailing shift toward machine learning in so many branches of AI.

“Learning is working extremely well, but too often, I think, people have thrown the baby out with the bathwater,” he says. “There are some things that we still know how to do very, very well with control and optimization, and I'm trying to push the boundary back towards everything we do know how to do.”

Research areas

Related content

US, NY, New York
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at
FR, Clichy
The role can be based in any of our EU offices. Amazon Supply Chain forms the backbone of the fastest growing e-commerce business in the world. The sheer growth of the business and the company's mission "to be Earth’s most customer-centric company” makes the customer fulfillment business bigger and more complex with each passing year. The EU SC Science Optimization team is looking for a Science leader to tackle complex and ambiguous forecasting and optimization problems for our EU fulfillment network. The team owns the optimization of our Supply Chain from our suppliers to our customers. We are also responsible for analyzing the performance of our Supply Chain end-to-end and deploying Statistics, Econometrics, Operations Research and Machine Learning models to improve decision making within our organization, including forecasting, planning and executing our network. We work closely with Supply Chain Optimization Technology (SCOT) teams, who own the systems and the inputs we rely on to plan our networks, the worldwide scientific community, and with our internal EU stakeholders within Supply Chain, Transportation, Store and Finance. The ideal candidate has a well-rounded-technical/science background as well as a history of leading large projects end-to-end, and is comfortable in developing long term research strategy while ensuring the delivery of incremental results in an ever-changing operational environment. As a Sr. Science Manager, you will lead and grow a high-performing team of data and research scientists, technical program managers and business intelligence engineers. You will partner with operations, finance, store, science and engineering leadership to identify opportunities to drive efficiency improvement in our Fulfillment Center network flows via optimization and scalable execution. As a science leader, you will not only develop optimization solutions, but also influence strategy and outcomes across multiple partner science teams such as forecasting, transportation network design, or modelling teams. You will identify new areas of investment and research and work to align roadmaps to deliver on these opportunities. This role is inherently cross-functional and requires an ability to communicate, influence and earn the trust of science, technical, operations and business leadership.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at Key job responsibilities Estimate econometric models using large datasets. Must know SQL and Matlab.
US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
US, WA, Seattle
Amazon Prime Video is changing the way millions of customers enjoy digital content. Prime Video delivers premium content to customers through purchase and rental of movies and TV shows, unlimited on-demand streaming through Amazon Prime subscriptions, add-on channels like Showtime and HBO, and live concerts and sporting events like NFL Thursday Night Football. In total, Prime Video offers nearly 200,000 titles and is available across a wide variety of platforms, including PCs and Macs, Android and iOS mobile devices, Fire Tablets and Fire TV, Smart TVs, game consoles, Blu-ray players, set-top-boxes, and video-enabled Alexa devices. Amazon believes so strongly in the future of video that we've launched our own Amazon Studios to produce original movies and TV shows, many of which have already earned critical acclaim and top awards, including Oscars, Emmys and Golden Globes. The Global Consumer Engagement team within Amazon Prime Video builds product and technology solutions that drive customer activation and engagement across all our supported devices and global footprint. We obsess over finding effective, programmatic and scalable ways to reach customers via a broad portfolio of both in-app and out-of-app experiences. We would love to have you join us to build models that can classify and detect content available on Prime Video. We need you to analyze the video, audio and textual signal streams and improve state-of-art solutions while being scalable to Amazon size data. We need to solve problems across many cultures and languages, working alongside an operations team generating labels across many languages to help us achieve these goals. Our team consistently strives to innovate, and holds several novel patents and inventions in the motion picture and television industry. We are highly motivated to extend the state of the art. As a member of our team, you will apply your deep knowledge of Computer Vision and Machine Learning to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on addressing fundamental computer vision models like video understanding and video summarization in addition to building appropriate large scale datasets. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with independence and are often assigned to focus on areas with significant impact on audience satisfaction. You must be equally comfortable with digging in to customer requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than pleasing our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies and deep learning approaches to your solutions. We embrace the challenges of a fast paced market and evolving technologies, paving the way to universal availability of content. You will be encouraged to see the big picture, be innovative, and positively impact millions of customers. This is a young and evolving business where creativity and drive will have a lasting impact on the way video is enjoyed worldwide.
US, CA, Palo Alto
Join a team working on cutting-edge science to innovate search experiences for Amazon shoppers! Amazon Search helps customers shop with ease, confidence and delight WW. We aim to transform Search from an information retrieval engine to a shopping engine. In this role, you will build models to generate and recommend search queries that can help customers fulfill their shopping missions, reduce search efforts and let them explore and discover new products. You will also build models and applications that will increase customer awareness of related products and product attributes that might be best suited to fulfill the customer needs. Key job responsibilities On a day-to-day basis, you will: Design, develop, and evaluate highly innovative, scalable models and algorithms; Design and execute experiments to determine the impact of your models and algorithms; Work with product and software engineering teams to manage the integration of successful models and algorithms in complex, real-time production systems at very large scale; Share knowledge and research outcomes via internal and external conferences and journal publications; Project manage cross-functional Machine Learning initiatives. About the team The mission of Search Assistance is to improve search feature by reducing customers’ effort to search. We achieve this through three customer-facing features: Autocomplete, Spelling Correction and Related Searches. The core capability behind the three features is backend service Query Recommendation.
US, CA, Palo Alto
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning (ML) pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for energetic, entrepreneurial, and self-driven science leaders to join the team. Key job responsibilities As a Principal Applied Scientist in the team, you will: Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. Work with our engineering partners and draw upon your experience to meet latency and other system constraints. Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!"?
US, CA, Santa Clara
AWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on foundation models, large-scale representation learning, and distributed learning methods and systems. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new representation learning solutions. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to synergistically combine them, and how to scale the modeling methods to learn with huge models and on large datasets. Join us to work as an integral part of a team that has diverse experiences in this space. We actively work on these areas: * Hardware-informed efficient model architecture, training objective and curriculum design * Distributed training, accelerated optimization methods * Continual learning, multi-task/meta learning * Reasoning, interactive learning, reinforcement learning * Robustness, privacy, model watermarking * Model compression, distillation, pruning, sparsification, quantization About Us Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.