Image shows an autonomous surface vehicle used for bathymetric mapping and water quality monitoring
This autonomous surface vehicle used for bathymetric mapping and water quality monitoring is part of a project being pursued by researchers at the Vehicle Autonomy and Intelligence Lab (VAIL) at Indiana University Bloomington.
Courtesy of Lantao Liu

How Lantao Liu and his team are helping robots adapt to challenges

The AWS Machine Learning Research Award winner is working to develop methods and open-source libraries that can potentially benefit the artificial intelligence and robotics communities.

Lantao Liu and his team at the Vehicle Autonomy and Intelligence Lab (VAIL) at Indiana University Bloomington want to help robots get better at navigating through complex and sometimes changing environments, while also boosting their ability to assess and process data. This challenge has significant applications, particularly in the realm of environmental modeling. Liu and his team are working to develop autonomous and machine learning methods and open-source libraries that can potentially benefit both the artificial intelligence and robotics communities.

“Machine learning algorithms are increasingly being developed for robotics missions. Many critical autonomy components are data-driven, where the data comes from onboard sensors such as LiDAR, sonar, and cameras,” says Liu who also is an assistant professor within the university’s Department of Intelligent Systems Engineering in the Luddy School of Informatics, Computing, and Engineering.

Photo is of Lantao Liu, who leads the Vehicle Autonomy and Intelligence Lab at Indiana University Bloomington
Lantao Liu leads the Vehicle Autonomy and Intelligence Lab at Indiana University Bloomington.
Courtesy of Lantao Liu

“The robots typically have weak computational capacity due to their limited dimensions and payloads, yet they require online learning with data processed on the fly,” he adds. “Unfortunately, many methods for solving these tasks entail large computational costs that can be very challenging for the robots. The key challenges have been computational-theoretical due to the increased complexity of stochastic modeling, but also practical due to the synergy of integrating hardware and software systems as well as customizing algorithms on the robots.”

Liu’s 2019 Amazon Machine Learning Research Award allows VAIL to access and leverage Amazon’s cloud computing tools and services for thousands of hours, boosting their work on both machine learning and autonomous systems.

“My lab works on various decision-making problems for different types of robots including aerial, ground, and aquatic vehicles. Our objective is to develop methodologies for autonomous robots to enhance their autonomy and intelligence in environmental sensing and modeling, search and rescue, among other applications of societal importance,” explains Liu.

Environmental sensing, modeling, and monitoring

One project being pursued by VAIL researchers involves a process that maps environmental attributes of interest, such as pollution in the water or air, by collecting corresponding measurement samples from different locations so that a “distribution map" (environment model) can be reconstructed.

“This mapping mechanism is also called environmental state estimation, a learning process where the parameters of an underlying environment model must be learned using streams of incoming sampling data collected by robots,” Liu explains.

“However, the environments can be dynamic, as can the associated environmental attributes to be mapped. A drawback to using robots is that the collection of samples requires a series of sequential, ordered, sampling operations (so data may not well represent the ground-truth map), and the entire sampling process is time consuming because the samples are typically spread over different spatial locations.

Environmental sensing, modeling, and monitoring using autonomous surface vehicles

“To provide a good estimate of the state of the environment at any time, the robot information-gathering sensing must be persistent to keep up with evolving environmental dynamics,” Liu explains. “One focus of our research has been developing principles that use data-driven methods to guide robots to learn the spatio-temporal and stochastic environment model, and utilize the learned model for path planning and decision-making solutions. This, in turn, benefits future environmental exploration and exploitation for subsequent modeling and monitoring.”

The VAIL team has been developing methods and software that can accurately characterize the spatiotemporal environment by designing a non-stationary modeling framework based on a variant of Gaussian processes (GPs).

“The map will not be the same everywhere,” says Liu. “There are locations on the map that vary more rapidly than others, and we need to accurately model both rapidly and slowly changing parts. It is even more challenging when the underlying map is dynamic, such as when we’re mapping pollution dispersion.

“In addition,” he explains, “the model computation must be fast for in-the-moment decisions. However, sensing data is continuously received, and the accumulated data quickly overwhelms the robots’ computing resources. To boost the learning performance, our researchers recently developed an adaptive learning approach where the key idea is a sparse approximation mechanism that incrementally incorporates the new incoming data with a learned model supported by ‘summarized old data.”

Robotic anomaly detection

In a related project, the lab has been developing a generic robotic anomaly detection framework, motivated by field experiments.

“Commonly, robots in the field encounter sensing and behavioral anomalies,” Liu explains. “For example, one of the thrusters of the autonomous surface vehicle (ASV) might malfunction in operation, resulting in a forward motion becoming a turning motion. Or the ASV might get stuck in aquatic plants or other underwater obstacles, which are difficult to perceive using cameras or LiDARs. The inertial measurement unit (IMU) can be sensitive to external disturbances such as magnetic fields and provide drifting readings. Surrounding objects, such as a tall tree near the shore, might block the GPS signals, which leads to inaccurate localization. Sonar data can also be affected by dynamic underwater objects or environmental disturbances.

“Resilient and adaptive robotic systems require cognitive capabilities to avoid anomalies and recover and learn from failures with minimal human intervention,” Liu adds. “Equipping robots with the self-examination ability to detect sensing and behavioral faults is an essential step. The intuitive idea of anomaly detection is to develop some concept of normality and treat the observations that deviate considerably from that as anomalies.

“It is difficult, if not impossible, to handcraft a model representing the expected behaviors of different kinds of robots in various applications,” Liu explains. “The framework learns the concept of normality via deep representation learning and graph neural networks. We train the framework using contrastive learning in a semi-supervised manner that utilizes the information in a large amount of unlabeled data and, optionally, a small amount of labeled data. During the development of this framework, the AWS EC2 instances have drastically accelerated the prototyping, training, and testing processes. We are currently finalizing this framework and will open-source software.

“Hopefully,” he adds, “it will also benefit the robotics and machine learning communities at large.”

Off-road autonomy

The AWS Machine Learning Research Award also helps VAIL research off-road autonomy.

“An important challenge is the stochastic modeling of unexpected robot behaviors,” he explains. “Basically, the robots operating in real-world complex environments need to reason about the long-term results of their physical interactions with the environment, but due to the high complexity of the real world, it is generally impossible to predict future events in an accurate manner.

“For example,” says Liu, “the effect of uneven road conditions or various disturbances on the robot’s motion is hard to model (or learn from data) precisely. It is even more challenging to model the interaction between the robot and the environment, especially when the environment is dynamic. Other representative scenarios include drones flying with strong winds or submarines moving under ocean currents, where air and water flows vary significantly in both space and time.

“Thus, it is necessary for the robots to consider these epistemic uncertainties caused by a lack of precise modeling of the environment while making decisions,” he explains. “We use Markov decision process as a basis to model autonomous decision-making under uncertainty problems. The solution to these problems is a closed-loop policy that maximizes a long-term goal and satisfies the safety constraints under a probabilistic interaction model between the robot and the environment. In principle, the resulting policy can generate a sequence of motor commands that complete the task assigned by a human, given that the probabilistic model can well describe the uncertainty of the world, and the computational method can allow the robot to calculate the policy within a reasonable amount of time.

“However,” Liu continues, “many real-world problems are non-trivial, and obtaining the required probabilistic model of the world is generally impossible. Our research focuses on solving these two challenges by developing novel methods and leveraging the strong computational power of GPUs. Our current focus is on addressing the computational part of the challenge by developing two planning algorithms that allow the robot to reason about its continuous motion on complicated terrain surfaces based on the kernel method (mesh-free) and finite-element method (mesh-based). Both methods leverage a set of discrete elements to represent the value function over the continuous space. The computation over the discrete parts can be parallelized, which allows our robot to reason and compute optimal policies in real-time to navigate through complicated terrains safely and efficiently.”

VAIL researchers have been working on using sampling methods to optimize over a class of parameterized policies.

robotdecisionmaking.gif
Lantao Liu and his team used AWS cloud computing services to speed up computation and analyses of robot decision-making policies in a simulated scenario.

“To do so, we first need to sample a large number of robot trajectories under the current policy, which can be computed quickly by the parallel architecture of Nvidia GPU CUDA cores,” Liu explains. “They use the gradient-based method for optimization of policy parameters: the policy is updated by computing the policy parameter gradients based on the sampled trajectories. The gradient computation and policy update involve large matrix operations, which can also be parallelized by GPUs for real-time solutions. They leverage AWS computation for this task.”

Navigable space segmentation for navigation

Liu notes that the AWS resources have also been very useful for the team’s visual autonomy research. Visual information has become increasingly important for robotic autonomy as it can provide rich information about surrounding environments, and VAIL’s visual data processing capability has been significantly improved due to the breakthrough on deep neural networks (DNNs). To develop deep approaches to process the vision perception, the team needs to develop models with complicated learning architectures, huge volumes of data, as well as various training strategies.

“A crucial capability for mobile robots to navigate in unknown environments is to construct obstacle-free space where the robot could move without collision,” Liu explains. “Roboticists have been developing methods for detecting such free space with the ray tracing of LiDAR beams to build occupancy maps in 2D or 3D space. Mapping methods with LiDAR require processing of large point cloud data, especially when a high-resolution LiDAR is used. As a much less expensive alternative, cameras have also been widely used for free space detection by leveraging DNNs to perform multi-class or binary-class segmentation of images.

Navigable space construction for robot visual navigation

“However,” he adds, “most existing DNN-based methods are built on a supervised-learning paradigm and rely on annotated datasets. The datasets usually contain a large amount of pixel-level annotated segmented images, which are prohibitively expensive and time-consuming to obtain for robotic applications in outdoor environments. To overcome limitations of fully supervised learning, we have been developing a new deep model based on variational auto-encoders. We target a representation learning-based framework to enable robots to learn navigable space segmentation in an unsupervised manner, with the aim of learning a polyline representation that compactly outlines the desired navigable space boundary. This is different from prevalent segmentation techniques which heavily rely on supervised learning strategies and typically demand immense pixel-level annotated images.

“We trained our model with the data from public datasets using GPUs,” Liu explains. “The large number of computing cores and memory space on AWS have enabled us to train our model fast and with high efficacy. This is crucial as it allows us to test and redesign models rapidly and provides great convenience to deploy the trained model to the robot systems.

“We then train our model with a small set of collected unlabeled images in real mission environments,” Liu adds. “Early testing shows that our model is able to detect navigable space in real time with high accuracy. “The computational resources provided by Amazon have greatly accelerated our design process.”

Research areas

Related content

  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
  • Amazon Research Awards team
    November 25, 2025
    Awardees, who represent 41 universities in 8 countries, have access to Amazon public datasets, along with AWS AI/ML services and tools.
US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: 1 Washington Street, Newark, NJ 07102 Duties: Independently own, design, and implement scalable and reliable solutions to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the approach is unclear. Acquire data by building the necessary SQL/ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3/edX storage systems. Deliver artifacts on medium size projects that affect important business decisions. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products and product features. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, large language models and/or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports to Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s degree in Statistics, Computer Science, Computer Engineering, Data Science, Machine Learning, Applied Math, Operations Research, or a related field plus two (2) years of experience as a Data Scientist or other occupation involving data processing and predictive Machine Learning modeling at scale. Experience may be gained concurrently and must include: Two (2) years in each of the following: - Utilizing specialized modelling software including Python or R - Building statistical models and machine learning models using large datasets from multiple resources - Building non-linear models including Neural Nets, Deep Learning, or Gradient Boosting. One (1) year in each of the following: - Building production-ready solutions or applications relying on Large Language Models (LLM), accessed programmatically and beyond just prompting - Evaluating LLM results at scale or fine-tuning LLMs - Building production-ready recommendation systems - Using database technologies including SQL or ETL. Alternatively, will accept a Bachelor’s degree and five (5) years of experience. Salary: $169,550 - 207,500 /year. Multiple positions. Apply online: www.amazon.jobs Job Code: ADBL175.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a frontend engineer on the team, you will build the platform and tooling that power data creation, evaluation, and experimentation across the lab. Your work will be used daily by annotators, engineers, and researchers. This is a hands-on technical leadership role. You will ship a lot of code while defining frontend architecture, shared abstractions, and UI systems across the platform. We are looking for someone with strong engineering fundamentals, sound product judgment, and the ability to build polished UIs in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Define and evolve architecture for a research tooling platform with multiple independently evolving tools. - Design and implement reusable UI components, frontend infrastructure, and APIs. - Collaborate directly with Research, Human -Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through implementation, rollout, and long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a backend engineer on the team, you will build and operate core services that ingest, process, and distribute large-scale, multi-modal datasets to internal tools and data pipelines across the lab. This is a hands-on technical leadership role. You will ship a lot of code while defining backend architecture and operational standards across the platform. The platform is built primarily in TypeScript today, with plans to introduce Python services in the future. We are looking for someone who can balance rapid experimentation with operational rigor to build reliable services in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Design and evolve backend architecture and interfaces for core services. - Define and own standards for production health, performance, and observability. - Collaborate directly with Research, Human Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
FR, Courbevoie
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Amazon's Pricing & Promotions Science is seeking a driven Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing and Promotions Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning and reinforcement learning modeling expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. The Price Optimization science team drives cross-domain and cross-system improvements through: - invent and deliver price optimization, simulation, and competitiveness tools for Sellers. - shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. - Promotion optimization initiatives exploring CX, discount amount, and cross-product optimization opportunities. - Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into many partner-team architectures, and is highly relevant to the customer, therefore this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication. About the team About the team: the Pricing Discovery and Optimization team within P2 Science owns price quality, discovery and discount optimization initiatives, including criteria for internal price matching, price discovery into search, p13N and SP, pricing bandits, and Promotion type optimization. We leverage planet scale data on billions of Amazon and external competitor products to build advanced optimization models for pricing, elasticity estimation, product substitutability, and optimization. We preserve long term customer trust by ensuring Amazon's prices are always competitive and error free.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
US, WA, Seattle
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities Key job responsibilities include: * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research