Image shows an autonomous surface vehicle used for bathymetric mapping and water quality monitoring
This autonomous surface vehicle used for bathymetric mapping and water quality monitoring is part of a project being pursued by researchers at the Vehicle Autonomy and Intelligence Lab (VAIL) at Indiana University Bloomington.
Courtesy of Lantao Liu

How Lantao Liu and his team are helping robots adapt to challenges

The AWS Machine Learning Research Award winner is working to develop methods and open-source libraries that can potentially benefit the artificial intelligence and robotics communities.

Lantao Liu and his team at the Vehicle Autonomy and Intelligence Lab (VAIL) at Indiana University Bloomington want to help robots get better at navigating through complex and sometimes changing environments, while also boosting their ability to assess and process data. This challenge has significant applications, particularly in the realm of environmental modeling. Liu and his team are working to develop autonomous and machine learning methods and open-source libraries that can potentially benefit both the artificial intelligence and robotics communities.

“Machine learning algorithms are increasingly being developed for robotics missions. Many critical autonomy components are data-driven, where the data comes from onboard sensors such as LiDAR, sonar, and cameras,” says Liu who also is an assistant professor within the university’s Department of Intelligent Systems Engineering in the Luddy School of Informatics, Computing, and Engineering.

Photo is of Lantao Liu, who leads the Vehicle Autonomy and Intelligence Lab at Indiana University Bloomington
Lantao Liu leads the Vehicle Autonomy and Intelligence Lab at Indiana University Bloomington.
Courtesy of Lantao Liu

“The robots typically have weak computational capacity due to their limited dimensions and payloads, yet they require online learning with data processed on the fly,” he adds. “Unfortunately, many methods for solving these tasks entail large computational costs that can be very challenging for the robots. The key challenges have been computational-theoretical due to the increased complexity of stochastic modeling, but also practical due to the synergy of integrating hardware and software systems as well as customizing algorithms on the robots.”

Liu’s 2019 Amazon Machine Learning Research Award allows VAIL to access and leverage Amazon’s cloud computing tools and services for thousands of hours, boosting their work on both machine learning and autonomous systems.

“My lab works on various decision-making problems for different types of robots including aerial, ground, and aquatic vehicles. Our objective is to develop methodologies for autonomous robots to enhance their autonomy and intelligence in environmental sensing and modeling, search and rescue, among other applications of societal importance,” explains Liu.

Environmental sensing, modeling, and monitoring

One project being pursued by VAIL researchers involves a process that maps environmental attributes of interest, such as pollution in the water or air, by collecting corresponding measurement samples from different locations so that a “distribution map" (environment model) can be reconstructed.

“This mapping mechanism is also called environmental state estimation, a learning process where the parameters of an underlying environment model must be learned using streams of incoming sampling data collected by robots,” Liu explains.

“However, the environments can be dynamic, as can the associated environmental attributes to be mapped. A drawback to using robots is that the collection of samples requires a series of sequential, ordered, sampling operations (so data may not well represent the ground-truth map), and the entire sampling process is time consuming because the samples are typically spread over different spatial locations.

Environmental sensing, modeling, and monitoring using autonomous surface vehicles

“To provide a good estimate of the state of the environment at any time, the robot information-gathering sensing must be persistent to keep up with evolving environmental dynamics,” Liu explains. “One focus of our research has been developing principles that use data-driven methods to guide robots to learn the spatio-temporal and stochastic environment model, and utilize the learned model for path planning and decision-making solutions. This, in turn, benefits future environmental exploration and exploitation for subsequent modeling and monitoring.”

The VAIL team has been developing methods and software that can accurately characterize the spatiotemporal environment by designing a non-stationary modeling framework based on a variant of Gaussian processes (GPs).

“The map will not be the same everywhere,” says Liu. “There are locations on the map that vary more rapidly than others, and we need to accurately model both rapidly and slowly changing parts. It is even more challenging when the underlying map is dynamic, such as when we’re mapping pollution dispersion.

“In addition,” he explains, “the model computation must be fast for in-the-moment decisions. However, sensing data is continuously received, and the accumulated data quickly overwhelms the robots’ computing resources. To boost the learning performance, our researchers recently developed an adaptive learning approach where the key idea is a sparse approximation mechanism that incrementally incorporates the new incoming data with a learned model supported by ‘summarized old data.”

Robotic anomaly detection

In a related project, the lab has been developing a generic robotic anomaly detection framework, motivated by field experiments.

“Commonly, robots in the field encounter sensing and behavioral anomalies,” Liu explains. “For example, one of the thrusters of the autonomous surface vehicle (ASV) might malfunction in operation, resulting in a forward motion becoming a turning motion. Or the ASV might get stuck in aquatic plants or other underwater obstacles, which are difficult to perceive using cameras or LiDARs. The inertial measurement unit (IMU) can be sensitive to external disturbances such as magnetic fields and provide drifting readings. Surrounding objects, such as a tall tree near the shore, might block the GPS signals, which leads to inaccurate localization. Sonar data can also be affected by dynamic underwater objects or environmental disturbances.

“Resilient and adaptive robotic systems require cognitive capabilities to avoid anomalies and recover and learn from failures with minimal human intervention,” Liu adds. “Equipping robots with the self-examination ability to detect sensing and behavioral faults is an essential step. The intuitive idea of anomaly detection is to develop some concept of normality and treat the observations that deviate considerably from that as anomalies.

“It is difficult, if not impossible, to handcraft a model representing the expected behaviors of different kinds of robots in various applications,” Liu explains. “The framework learns the concept of normality via deep representation learning and graph neural networks. We train the framework using contrastive learning in a semi-supervised manner that utilizes the information in a large amount of unlabeled data and, optionally, a small amount of labeled data. During the development of this framework, the AWS EC2 instances have drastically accelerated the prototyping, training, and testing processes. We are currently finalizing this framework and will open-source software.

“Hopefully,” he adds, “it will also benefit the robotics and machine learning communities at large.”

Off-road autonomy

The AWS Machine Learning Research Award also helps VAIL research off-road autonomy.

“An important challenge is the stochastic modeling of unexpected robot behaviors,” he explains. “Basically, the robots operating in real-world complex environments need to reason about the long-term results of their physical interactions with the environment, but due to the high complexity of the real world, it is generally impossible to predict future events in an accurate manner.

“For example,” says Liu, “the effect of uneven road conditions or various disturbances on the robot’s motion is hard to model (or learn from data) precisely. It is even more challenging to model the interaction between the robot and the environment, especially when the environment is dynamic. Other representative scenarios include drones flying with strong winds or submarines moving under ocean currents, where air and water flows vary significantly in both space and time.

“Thus, it is necessary for the robots to consider these epistemic uncertainties caused by a lack of precise modeling of the environment while making decisions,” he explains. “We use Markov decision process as a basis to model autonomous decision-making under uncertainty problems. The solution to these problems is a closed-loop policy that maximizes a long-term goal and satisfies the safety constraints under a probabilistic interaction model between the robot and the environment. In principle, the resulting policy can generate a sequence of motor commands that complete the task assigned by a human, given that the probabilistic model can well describe the uncertainty of the world, and the computational method can allow the robot to calculate the policy within a reasonable amount of time.

“However,” Liu continues, “many real-world problems are non-trivial, and obtaining the required probabilistic model of the world is generally impossible. Our research focuses on solving these two challenges by developing novel methods and leveraging the strong computational power of GPUs. Our current focus is on addressing the computational part of the challenge by developing two planning algorithms that allow the robot to reason about its continuous motion on complicated terrain surfaces based on the kernel method (mesh-free) and finite-element method (mesh-based). Both methods leverage a set of discrete elements to represent the value function over the continuous space. The computation over the discrete parts can be parallelized, which allows our robot to reason and compute optimal policies in real-time to navigate through complicated terrains safely and efficiently.”

VAIL researchers have been working on using sampling methods to optimize over a class of parameterized policies.

robotdecisionmaking.gif
Lantao Liu and his team used AWS cloud computing services to speed up computation and analyses of robot decision-making policies in a simulated scenario.

“To do so, we first need to sample a large number of robot trajectories under the current policy, which can be computed quickly by the parallel architecture of Nvidia GPU CUDA cores,” Liu explains. “They use the gradient-based method for optimization of policy parameters: the policy is updated by computing the policy parameter gradients based on the sampled trajectories. The gradient computation and policy update involve large matrix operations, which can also be parallelized by GPUs for real-time solutions. They leverage AWS computation for this task.”

Navigable space segmentation for navigation

Liu notes that the AWS resources have also been very useful for the team’s visual autonomy research. Visual information has become increasingly important for robotic autonomy as it can provide rich information about surrounding environments, and VAIL’s visual data processing capability has been significantly improved due to the breakthrough on deep neural networks (DNNs). To develop deep approaches to process the vision perception, the team needs to develop models with complicated learning architectures, huge volumes of data, as well as various training strategies.

“A crucial capability for mobile robots to navigate in unknown environments is to construct obstacle-free space where the robot could move without collision,” Liu explains. “Roboticists have been developing methods for detecting such free space with the ray tracing of LiDAR beams to build occupancy maps in 2D or 3D space. Mapping methods with LiDAR require processing of large point cloud data, especially when a high-resolution LiDAR is used. As a much less expensive alternative, cameras have also been widely used for free space detection by leveraging DNNs to perform multi-class or binary-class segmentation of images.

Navigable space construction for robot visual navigation

“However,” he adds, “most existing DNN-based methods are built on a supervised-learning paradigm and rely on annotated datasets. The datasets usually contain a large amount of pixel-level annotated segmented images, which are prohibitively expensive and time-consuming to obtain for robotic applications in outdoor environments. To overcome limitations of fully supervised learning, we have been developing a new deep model based on variational auto-encoders. We target a representation learning-based framework to enable robots to learn navigable space segmentation in an unsupervised manner, with the aim of learning a polyline representation that compactly outlines the desired navigable space boundary. This is different from prevalent segmentation techniques which heavily rely on supervised learning strategies and typically demand immense pixel-level annotated images.

“We trained our model with the data from public datasets using GPUs,” Liu explains. “The large number of computing cores and memory space on AWS have enabled us to train our model fast and with high efficacy. This is crucial as it allows us to test and redesign models rapidly and provides great convenience to deploy the trained model to the robot systems.

“We then train our model with a small set of collected unlabeled images in real mission environments,” Liu adds. “Early testing shows that our model is able to detect navigable space in real time with high accuracy. “The computational resources provided by Amazon have greatly accelerated our design process.”

Research areas

Related content

US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, VA, Herndon
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences and inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, TX, Austin
Our team is involved with pre-silicon design verification for custom IP. A critical requirement of the verification flow is the requirement of legal and realistic stimulus of a custom Machine Learning Accelerator Chip. Content creation is built using formal methods that model legal behavior of the design and then solving the problem to create the specific assembly tests. The entire frame work for creating these custom tests is developed using a SMT solver and custom software code to guide the solution space into templated scenarios. This highly visible and innovative role requires the design of this solving framework and collaborating with design verification engineers, hardware architects and designers to ensure that interesting content can be created for the projects needs. Key job responsibilities Develop an understanding for a custom machine learning instruction set architecture. Model correctness of instruction streams using first order logic. Create custom API's to allow control over scheduling and randomness. Deploy algorithms to ensure concurrent code is safely constructed. Create coverage metrics to ensure solution space coverage. Use novel methods like machine learning to automate content creation. About the team Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for customers who require specialized security solutions for their cloud services. Annapurna Labs (our organization within AWS UC) designs silicon and software that accelerates innovation. Customers choose us to create cloud solutions that solve challenges that were unimaginable a short time ago—even yesterday. Our custom chips, accelerators, and software stacks enable us to take on technical challenges that have never been seen before, and deliver results that help our customers change the world. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
CN, 11, Beijing
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:北京朝阳区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML或搜索领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊的International Technology搜索团队改善Amazon的产品搜索服务。我们的目标是帮助亚马逊的客户找到他们所需的产品,并发现他们感兴趣的新产品。 这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些模型到搜索引擎中为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
CN, 44, Shenzhen
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:深圳福田区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊。这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
LU, Luxembourg
Join our team as an Applied Scientist II where you'll develop innovative machine learning solutions that directly impact millions of customers. You'll work on ambiguous problems where neither the problem nor solution is well-defined, inventing novel scientific approaches to address customer needs at the project level. This role combines deep scientific expertise with hands-on implementation to deliver production-ready solutions that drive measurable business outcomes. Key job responsibilities Invent: - Design and develop novel machine learning models and algorithms to solve ambiguous customer problems where textbook solutions don't exist - Extend state-of-the-art scientific techniques and invent new approaches driven by customer needs at the project level - Produce internal research reports with the rigor of top-tier publications, documenting scientific findings and methodologies - Stay current with academic literature and research trends, applying latest techniques when appropriate Implement: - Write production-quality code that meets or exceeds SDE I standards, ensuring solutions are testable, maintainable, and scalable - Deploy components directly into production systems supporting large-scale applications and services - Optimize algorithm and model performance through rigorous testing and iterative improvements - Document design decisions and implementation details to enable reproducibility and knowledge transfer - Contribute to operational excellence by analyzing performance gaps and proposing solutions Influence: - Collaborate with cross-functional teams to translate business goals into scientific problems and metrics - Mentor junior scientists and help new teammates understand customer needs and technical solutions - Present findings and recommendations to both technical and non-technical stakeholders - Contribute to team roadmaps, priorities, and strategic planning discussions - Participate in hiring and interviewing to build world-class science teams
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.