updated_flats_photo.png
To achieve the vision of developing robots in simulation first, Amazon must not only create models of complex robots, but also the objects they will interact with regularly.

At Amazon Robotics, simulation gains traction

Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

Building and fine-tuning robotic systems takes lots of time. This is especially true for robots designed to interact within and manipulate an ever-changing array of objects in Amazon facilities. Developing robotic systems in a virtual environment can accelerate this process, but it’s harder than it looks.

Engineers have been accelerating new-product design using digital models and virtual simulations for decades. But these existing tools don’t meet Amazon’s need to develop and scale its fleet of complex robots.

To understand why, consider video games. Modern video games simulate worlds that look visually realistic at interactive rates.

“Take a race car game, for example. Everything looks physically plausible, but the forces behind the movements aren’t necessarily accurate,” says Andrew Marchese, an Amazon Robotics principal applied scientist who specializes in robotic manipulation. “They approximate some of the torques and forces that push and pull an object in the real world. So, a car’s acceleration may look realistic, even though the car’s engine is not big enough to generate the force needed to jump across the missing section of a bridge.”

Many industrial simulations also rely on approximations. Amazon, for example, uses visual simulators to plan its facilities and approximate how robots will move and interact safely with associates.

Comparing Robin real and simulated workcells
This side-by-side comparison shows the same perception and motion planning software driving both a real and simulated Robin robotic workcell.

“To develop complex robotic manipulation systems, we need both visual realism and accurate physics,” says Marchese. “There aren’t many simulators that can do both. Moreover, where we can, we need to preserve and exploit structure in the governing equations — this helps us analyze and control the robotic systems we build.”

The more complex the system, the more likely those small gaps between virtual and physical devices turn into chasms. Developers in the field call it the sim2real gap.

“This is why it is commonplace in robotics to write and test code against physical systems,” Marchese says. “But this approach is not scalable for the variety of types and configurations of robots Amazon is developing. Doing things this way, there is just not enough time or hardware for everyone on a project team to keep testing a system until they get it right.

“Our ambition is to develop robots in simulation first,” Marchese adds. “We want to write software against virtual robots, test it in realistic simulations, verify safety on a real robot, and deploy. And our team is making real progress in doing this.”

Modeling the underlying physics 

To achieve this vision, Amazon must not only create models of complex robots but also the objects they will interact with regularly.

A robotic arm, for example, might include a pneumatic gripper with multiple suction cups on the end. A model of that arm must evaluate the flow of air through the gripper’s tubes and valves, the contact forces of the rubber cups on a package, how the deformation of the cups during contact changes airflow, and what happens if only some cups make contact.

Understanding Robin vacuum gripper behavior
As shown in this video of Robin's vacuum tool, Amazon’s workcell simulations model the robot's end-of-arm tool. These high-fidelity pneumatic and multi-body models enable developers to test both nominal and anomalous behavior — like dropping packages.
Understanding Robin vacuum gripper behavior
This video demonstrates how Amazon's models can mimic successful robot behavior as well. Amazon scientists and engineers use these types of experiments to calibrate and validate their models.

In addition, it must also simulate how the robot’s vision system identifies individual items in a pile of mixed packages, and how its arm calculates the approach angle and force needed to lift it. It is a lot to do in a single simulation environment, especially in high-fidelity.

“The complexity of Amazon’s facilities makes this an even greater challenge,” says Clay Flannigan, Amazon Robotics senior manager, advanced robotics.

“Simulating robots is hard because robots interact with the world and the world is complex,” Flannigan explains. “There are many simulators that understand the movement of rigid robots in free space. But we stock essentially millions of items, and we want our robots to be able to interact with millions of different items in our inventory. This is an enormously difficult robotics challenge.”

Consider, for example, the range of packages a robotic arm might encounter. They include rigid boxes that hold a single, immobile object encased in cardboard or foam. That box is straightforward to model. Other boxes look the same on the outside but contain products that may shift their weight when lifted. Harder still are bubble-wrap mailers that deform and shift their center of gravity when lifted.

Given the number of packages Amazon handles every day, creating one-off models based on empirical tests isn’t feasible. Instead, Flannigan says, the company wants to model the underlying physics of these interactions.

An accurate first principles model requires highly detailed physics. In addition to airflow, a pneumatic gripper must also model contact forces, inertia, friction, and aerodynamics. While the physics are well understood, their application to individual components must be verified to ensure the models are accurate.

Building and verifying such models is a massive undertaking. Fortunately, though, MIT researchers have been working on a toolkit to model robotic components for years. It is called Drake.

Building a platform

Drake — the brainchild of Russ Tedrake, director of MIT’s Center for Robotics and vice-president of the Toyota Research Institute — is an open-source toolbox for modeling and optimizing robots and their control system.

Related content
Amazon Research Award recipient Russ Tedrake is teaching robots to manipulate a wide variety of objects in unfamiliar and constantly changing contexts.

The open-source part is critical to Amazon. Many modeling tools provide little or no insight into how their solvers produce their simulations. Drake, on the other hand, reveals its governing equations. “This lets us poke at the underlying physics and modify how they are applied,” Flannigan says. “If there is a bug, we can find it and fix it.”

Drake brings together several desirable elements for online simulation. The first is a robust multibody dynamics engine optimized for simulating robotic devices. The second is a systems framework that lets Amazon scientists write custom models and compose these into complex systems that represent actual robots. “At first the framework can seem a bit formal, but it is actually key to reusing and integrating components within large models,” Marchese said. The third is what he calls a “buffet of well-tested solvers” that resolve numerical optimizations at the core of Amazon’s models, sometimes as often as every time step of the simulation.

Another key feature is its robust contact solver. It calculates the forces that occur when rigid-body items interact with one another in a simulation.

“Figuring out those forces is a really difficult problem,” Marchese says. “If you don’t have a good contact solver, you might use the wrong force to grip an object, and drop it.”

Related content
The collaboration will support research, education, and outreach efforts in areas of mutual interest, beginning with artificial intelligence and robotics.

Drake’s powerful features make it a critical platform for Amazon’s virtual robot development plans. In fact, Drake is now a strategic project for Amazon. This enables Amazon developers to work more closely with and make code contributions to Drake. In addition, last year, Amazon and MIT launched a Science Hub, a collaboration focused on areas of mutual interest, including robotics.

Changing robot development

While there will always be a sim2real gap, Amazon scientists and engineers are working to narrow the gap. One way they do that is by leveraging real data to validate the fidelity of the simulator.

“We are always comparing the model with the hardware,” Flannigan says. “If we get first principles right, the error in model converges over time. There is always some uncertainty in our model, but once we quantify this, it is relatively easy to apply it again in similar applications.”

The bigger challenge remains in deformable objects — things that bend, flap, twist, and sag. The Amazon and Drake teams are both making progress on handling soft bodies with large deformations, like stuffed animals or squishy pet toys.

That is a challenge Vanessa Metcalf, an Amazon Robotics software development manager, is addressing. “Right now, we don’t have a practical way to empirically understand how a robot will pick up millions of different deformable items.

Watch the Robin robotic arm deftly handling packages

“Finding a model in simulation that we can apply to a broad category of products is a massive challenge, and we’re looking for ways to address it. For example, are there objects that have deformable parts but also rigid parts that are easier to model? We’re looking at what we can do first and build on that.”

Despite the challenges, Amazon simulations are already yielding results. One of the Amazon Robotics program teams came up with a new robotic manipulation concept they thought might improve fulfillment. They were able to use the simulator developed by Metcalf’s team to quickly validate the idea.

“It took about a month to test the concept in simulation,” Metcalf says. “It turned out to be a great idea that’s being implemented now. If we had to wait for the hardware to do the concept validation, it would have taken three times as long. That’s just one of many examples of how simulation can be incredibly impactful.”

As Amazon continues to chip away at simulation challenges, it is continuously improving its modeling infrastructure. And with good reason.

Our dream is that all of our robotics research and development starts in simulation. When someone has an idea, their first reaction would not be to order parts, but to use the simulator.
Vanessa Metcalf

Solving these challenges and achieving high-fidelity simulation would enable scientists and engineers to test new ideas and novel configurations as quickly as they could type their thoughts on a keyboard. They could generate conditions that rarely occur in prototype physical experiments, but that happen regularly within an organization that has robots that help deliver millions of packages a day. Teams could collaborate on different parts of a project simultaneously. No one would have to wait their turn for someone to reconfigure a robot prototype to test a new idea.

“Our dream is that all of our robotics research and development starts in simulation,” Metcalf says. “When someone has an idea, their first reaction would not be to order parts, but to use the simulator. They could develop an entire robotic workcell in a virtual environment, with a final safety check occurring on hardware.”

This reality is on the horizon, suggest Metcalf, Marchese and Flannigan. Although physics-based simulation has open challenges, Amazon is making real progress and the tools are accelerating the way Amazon develops new robots. Ultimately, this will result in more smiles from Amazon customers, and ever improving safety in its facilities.

Research areas

Related content

US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Supply team (within Sponsored Products) is looking for an Applied Scientist to join a fast-growing team with the mandate of creating new ad experiences that elevate the shopping experience for hundreds of millions customers worldwide. The Applied Scientist will take end-to-end ownership of driving new product/feature innovation by applying advanced statistical and machine learning models. The role will handle petabytes of unstructured data (images, text, videos) to extract insights into what metadata can be useful for us to highlight to simplify purchase decisions, and propose new experiences that increase shopper engagement. Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Key job responsibilities As an Applied Scientist on this team you will: Build machine learning models and perform data analysis to deliver scalable solutions to business problems. Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. Research new predictive learning approaches for the sponsored products business. Write production code to bring models into production. A day in the life You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We are seeking a Principal Scientist with deep expertise in Search. Your responsibility will be to advance the state-of-the-art for search science that leads to world-class products that impact Amazon's customers. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team This is a position on Core Ranking and Experimentation team in Palo Alto, CA. The team works on a variety of topics in search ranking and relevance, such as multi-objective optimization, personalization, and fast online experimentation. We work closely with teams in various parts of the stack to ensure that our science is translated to customer facing products.
US, WA, Bellevue
Amazon is looking for a passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Automatic Speech Recognition (ASR), Machine Translation (MT), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use of speech and language technology. You will gain hands on experience with Amazon’s heterogeneous speech, text, and structured data sources, and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in all areas of human language technology: ASR, MT, NLU, text-to-speech (TTS), and Dialog Management, in addition to Computer Vision.
IN, KA, Bangalore
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. The ATT team, based in Bangalore, is responsible for ensuring that ads are compliant to world-wide advertising policies and are of high quality, leading to higher conversion for the advertisers and providing a great experience for the shoppers. Machine learning, particularly multi-modal data understanding, is fundamental to the way we drive our business, meet our goals and satisfy our customers. ATT team invests in researching and developing state of art models that analyze various type of ad assets – text, audio, images and videos - to ensure compliance to advertising policies. We also help advertisers create more successful ads by creating ML models to assist ad generation as well as to provide data-driven interpretable insights. Key job responsibilities Major responsibilities · Deliver key goals to enhance advertiser experience and protect shopper trust by innovative use of computer vision, NLP and statistical techniques · Drive core business analytics and data science explorations to inform key business decisions and algorithm roadmap · Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation · Hire and develop top talent in machine learning and data science and accelerate the pace of innovation in the group · Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production
US, WA, Seattle
We are seeking a talented applied researcher to join the Search team responsible for developing reinforcement learning systems for Amazon's shopping experience and delivering it to millions of customers. We believe that shopping on Amazon should be simple, delightful, and full of "wow" moments for everyone.
US, NY, New York
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team Amazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. Lead marketplace design and development based on economic theory and data analysis. Provide technical and scientific guidance to team members. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. Collaborate with business and software teams across Amazon Ads. Stay up to date with recent scientific publications relevant to the team. Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. Amazon’s large scale brings with it unique problems to solve in designing, testing, and deploying relevance models. We are seeking a strong applied Scientist to join the Experimentation Infrastructure and Methods team. This team’s charter is to innovate and evaluate ranking at Amazon Search. In practice, we aim to create infrastructure and metrics, enable new experimental methods, and do proof-of-concept experiments, that enable Search Relevance teams to introduce new features faster, reduce the cost of experimentation, and deliver faster against Search goals. Key job responsibilities You will build search ranking systems and evaluation framework that extend to Amazon scale -- thousands of product types, billions of queries, and hundreds of millions of customers spread around the world. As a Senior Applied Scientist you will find the next set of big improvements to ranking evaluation, get your hands dirty by building models to help understand complexities of customer behavior, and mentor junior engineers and scientists. In addition to typical topics in ranking, we are particularly interested in evaluation, feature selection, explainability. A day in the life Our primary focus is improving search ranking systems. On a day-to-day this means building ML models, analyzing data from your recent A/B tests, and guiding teams on best practices. You will also find yourself in meetings with business and tech leaders at Amazon communicating your next big initiative. About the team We are a team consisting of software engineers and applied scientists. Our interests and activities span machine learning for better ranking, experimentation, statistics for better decision making, and infrastructure to make it all happen efficiently at scale.