updated_flats_photo.png
To achieve the vision of developing robots in simulation first, Amazon must not only create models of complex robots, but also the objects they will interact with regularly.

At Amazon Robotics, simulation gains traction

Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

Building and fine-tuning robotic systems takes lots of time. This is especially true for robots designed to interact within and manipulate an ever-changing array of objects in Amazon facilities. Developing robotic systems in a virtual environment can accelerate this process, but it’s harder than it looks.

Engineers have been accelerating new-product design using digital models and virtual simulations for decades. But these existing tools don’t meet Amazon’s need to develop and scale its fleet of complex robots.

To understand why, consider video games. Modern video games simulate worlds that look visually realistic at interactive rates.

“Take a race car game, for example. Everything looks physically plausible, but the forces behind the movements aren’t necessarily accurate,” says Andrew Marchese, an Amazon Robotics principal applied scientist who specializes in robotic manipulation. “They approximate some of the torques and forces that push and pull an object in the real world. So, a car’s acceleration may look realistic, even though the car’s engine is not big enough to generate the force needed to jump across the missing section of a bridge.”

Many industrial simulations also rely on approximations. Amazon, for example, uses visual simulators to plan its facilities and approximate how robots will move and interact safely with associates.

Comparing Robin real and simulated workcells
This side-by-side comparison shows the same perception and motion planning software driving both a real and simulated Robin robotic workcell.

“To develop complex robotic manipulation systems, we need both visual realism and accurate physics,” says Marchese. “There aren’t many simulators that can do both. Moreover, where we can, we need to preserve and exploit structure in the governing equations — this helps us analyze and control the robotic systems we build.”

The more complex the system, the more likely those small gaps between virtual and physical devices turn into chasms. Developers in the field call it the sim2real gap.

“This is why it is commonplace in robotics to write and test code against physical systems,” Marchese says. “But this approach is not scalable for the variety of types and configurations of robots Amazon is developing. Doing things this way, there is just not enough time or hardware for everyone on a project team to keep testing a system until they get it right.

“Our ambition is to develop robots in simulation first,” Marchese adds. “We want to write software against virtual robots, test it in realistic simulations, verify safety on a real robot, and deploy. And our team is making real progress in doing this.”

Modeling the underlying physics 

To achieve this vision, Amazon must not only create models of complex robots but also the objects they will interact with regularly.

A robotic arm, for example, might include a pneumatic gripper with multiple suction cups on the end. A model of that arm must evaluate the flow of air through the gripper’s tubes and valves, the contact forces of the rubber cups on a package, how the deformation of the cups during contact changes airflow, and what happens if only some cups make contact.

Understanding Robin vacuum gripper behavior
As shown in this video of Robin's vacuum tool, Amazon’s workcell simulations model the robot's end-of-arm tool. These high-fidelity pneumatic and multi-body models enable developers to test both nominal and anomalous behavior — like dropping packages.
Understanding Robin vacuum gripper behavior
This video demonstrates how Amazon's models can mimic successful robot behavior as well. Amazon scientists and engineers use these types of experiments to calibrate and validate their models.

In addition, it must also simulate how the robot’s vision system identifies individual items in a pile of mixed packages, and how its arm calculates the approach angle and force needed to lift it. It is a lot to do in a single simulation environment, especially in high-fidelity.

“The complexity of Amazon’s facilities makes this an even greater challenge,” says Clay Flannigan, Amazon Robotics senior manager, advanced robotics.

“Simulating robots is hard because robots interact with the world and the world is complex,” Flannigan explains. “There are many simulators that understand the movement of rigid robots in free space. But we stock essentially millions of items, and we want our robots to be able to interact with millions of different items in our inventory. This is an enormously difficult robotics challenge.”

Consider, for example, the range of packages a robotic arm might encounter. They include rigid boxes that hold a single, immobile object encased in cardboard or foam. That box is straightforward to model. Other boxes look the same on the outside but contain products that may shift their weight when lifted. Harder still are bubble-wrap mailers that deform and shift their center of gravity when lifted.

Given the number of packages Amazon handles every day, creating one-off models based on empirical tests isn’t feasible. Instead, Flannigan says, the company wants to model the underlying physics of these interactions.

An accurate first principles model requires highly detailed physics. In addition to airflow, a pneumatic gripper must also model contact forces, inertia, friction, and aerodynamics. While the physics are well understood, their application to individual components must be verified to ensure the models are accurate.

Building and verifying such models is a massive undertaking. Fortunately, though, MIT researchers have been working on a toolkit to model robotic components for years. It is called Drake.

Building a platform

Drake — the brainchild of Russ Tedrake, director of MIT’s Center for Robotics and vice-president of the Toyota Research Institute — is an open-source toolbox for modeling and optimizing robots and their control system.

Related content
Amazon Research Award recipient Russ Tedrake is teaching robots to manipulate a wide variety of objects in unfamiliar and constantly changing contexts.

The open-source part is critical to Amazon. Many modeling tools provide little or no insight into how their solvers produce their simulations. Drake, on the other hand, reveals its governing equations. “This lets us poke at the underlying physics and modify how they are applied,” Flannigan says. “If there is a bug, we can find it and fix it.”

Drake brings together several desirable elements for online simulation. The first is a robust multibody dynamics engine optimized for simulating robotic devices. The second is a systems framework that lets Amazon scientists write custom models and compose these into complex systems that represent actual robots. “At first the framework can seem a bit formal, but it is actually key to reusing and integrating components within large models,” Marchese said. The third is what he calls a “buffet of well-tested solvers” that resolve numerical optimizations at the core of Amazon’s models, sometimes as often as every time step of the simulation.

Another key feature is its robust contact solver. It calculates the forces that occur when rigid-body items interact with one another in a simulation.

“Figuring out those forces is a really difficult problem,” Marchese says. “If you don’t have a good contact solver, you might use the wrong force to grip an object, and drop it.”

Related content
The collaboration will support research, education, and outreach efforts in areas of mutual interest, beginning with artificial intelligence and robotics.

Drake’s powerful features make it a critical platform for Amazon’s virtual robot development plans. In fact, Drake is now a strategic project for Amazon. This enables Amazon developers to work more closely with and make code contributions to Drake. In addition, last year, Amazon and MIT launched a Science Hub, a collaboration focused on areas of mutual interest, including robotics.

Changing robot development

While there will always be a sim2real gap, Amazon scientists and engineers are working to narrow the gap. One way they do that is by leveraging real data to validate the fidelity of the simulator.

“We are always comparing the model with the hardware,” Flannigan says. “If we get first principles right, the error in model converges over time. There is always some uncertainty in our model, but once we quantify this, it is relatively easy to apply it again in similar applications.”

The bigger challenge remains in deformable objects — things that bend, flap, twist, and sag. The Amazon and Drake teams are both making progress on handling soft bodies with large deformations, like stuffed animals or squishy pet toys.

That is a challenge Vanessa Metcalf, an Amazon Robotics software development manager, is addressing. “Right now, we don’t have a practical way to empirically understand how a robot will pick up millions of different deformable items.

Watch the Robin robotic arm deftly handling packages

“Finding a model in simulation that we can apply to a broad category of products is a massive challenge, and we’re looking for ways to address it. For example, are there objects that have deformable parts but also rigid parts that are easier to model? We’re looking at what we can do first and build on that.”

Despite the challenges, Amazon simulations are already yielding results. One of the Amazon Robotics program teams came up with a new robotic manipulation concept they thought might improve fulfillment. They were able to use the simulator developed by Metcalf’s team to quickly validate the idea.

“It took about a month to test the concept in simulation,” Metcalf says. “It turned out to be a great idea that’s being implemented now. If we had to wait for the hardware to do the concept validation, it would have taken three times as long. That’s just one of many examples of how simulation can be incredibly impactful.”

As Amazon continues to chip away at simulation challenges, it is continuously improving its modeling infrastructure. And with good reason.

Our dream is that all of our robotics research and development starts in simulation. When someone has an idea, their first reaction would not be to order parts, but to use the simulator.
Vanessa Metcalf

Solving these challenges and achieving high-fidelity simulation would enable scientists and engineers to test new ideas and novel configurations as quickly as they could type their thoughts on a keyboard. They could generate conditions that rarely occur in prototype physical experiments, but that happen regularly within an organization that has robots that help deliver millions of packages a day. Teams could collaborate on different parts of a project simultaneously. No one would have to wait their turn for someone to reconfigure a robot prototype to test a new idea.

“Our dream is that all of our robotics research and development starts in simulation,” Metcalf says. “When someone has an idea, their first reaction would not be to order parts, but to use the simulator. They could develop an entire robotic workcell in a virtual environment, with a final safety check occurring on hardware.”

This reality is on the horizon, suggest Metcalf, Marchese and Flannigan. Although physics-based simulation has open challenges, Amazon is making real progress and the tools are accelerating the way Amazon develops new robots. Ultimately, this will result in more smiles from Amazon customers, and ever improving safety in its facilities.

Research areas

Related content

US, WA, Bellevue
The Worldwide Design Engineering (WWDE) organization delivers innovative, effective and efficient engineering solutions that continually improve our customers’ experience. WWDE optimizes designs throughout the entire Amazon value chain providing overall fulfillment solutions from order receipt to last mile delivery. We are seeking a Simulation Scientist to assist in designing and optimizing the fulfillment network concepts and process improvement solutions using discrete event simulations for our World Wide Design Engineering Team. Successful candidates will be visionary technical expert and natural self-starter who have the drive to apply simulation and optimization tools to solve complex flow and buffer challenges during the development of next generation fulfillment solutions. The Simulation Scientist is expected to deep dive into complex problems and drive relentlessly towards innovative solutions working with cross functional teams. Be comfortable interfacing and influencing various functional teams and individuals at all levels of the organization in order to be successful. Lead strategic modelling and simulation projects related to drive process design decisions. Responsibilities: - Lead the design, implementation, and delivery of the simulation data science solutions to perform system of systems discrete event simulations for significantly complex operational processes that have a long-term impact on a product, business, or function using FlexSim, Demo 3D, AnyLogic or any other Discrete Event Simulation (DES) software packages - Lead strategic modeling and simulation research projects to drive process design decisions - Be an exemplary practitioner in simulation science discipline to establish best practices and simplify problems to develop discrete event simulations faster with higher standards - Identify and tackle intrinsically hard process flow simulation problems (e.g., highly complex, ambiguous, undefined, with less existing structure, or having significant business risk or potential for significant impact - Deliver artifacts that set the standard in the organization for excellence, from process flow control algorithm design to validation to implementations to technical documents using simulations - Be a pragmatic problem solver by applying judgment and simulation experience to balance cross-organization trade-offs between competing interests and effectively influence, negotiate, and communicate with internal and external business partners, contractors and vendors for multiple simulation projects - Provide simulation data and measurements that influence the business strategy of an organization. Write effective white papers and artifacts while documenting your approach, simulation outcomes, recommendations, and arguments - Lead and actively participate in reviews of simulation research science solutions. You bring clarity to complexity, probe assumptions, illuminate pitfalls, and foster shared understanding within simulation data science discipline - Pay a significant role in the career development of others, actively mentoring and educating the larger simulation data science community on trends, technologies, and best practices - Use advanced statistical /simulation tools and develop codes (python or another object oriented language) for data analysis , simulation, and developing modeling algorithms - Lead and coordinate simulation efforts between internal teams and outside vendors to develop optimal solutions for the network, including equipment specification, material flow control logic, process design, and site layout - Deliver results according to project schedules and quality Key job responsibilities • You influence the scientific strategy across multiple teams in your business area. You support go/no-go decisions, build consensus, and assist leaders in making trade-offs. You proactively clarify ambiguous problems, scientific deficiencies, and where your team’s solutions may bottleneck innovation for other teams. A day in the life The dat-to-day activities include challenging and problem solving scenario with fun filled environment working with talented and friendly team members. The internal stakeholders are IDEAS team members, WWDE design vertical and Global robotics team members. The team solve problems related to critical Capital decision making related to Material handling equipment and technology design solutions. About the team World Wide Design EngineeringSimulation Team’s mission is to apply advanced simulation tools and techniques to drive process flow design, optimization, and improvement for the Amazon Fulfillment Network. Team develops flow and buffer system simulation, physics simulation, package dynamics simulation and emulation models for various Amazon network facilities, such as Fulfillment Centers (FC), Inbound Cross-Dock (IXD) locations, Sort Centers, Airhubs, Delivery Stations, and Air hubs/Gateways. These intricate simulation models serve as invaluable tools, effectively identifying process flow bottlenecks and optimizing throughput. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Amazon's Global Fixed Marketing Campaign Measurement & Optimization (CMO) team is looking for a senior economic expert in causal inference and applied ML to advance the economic measurement, accuracy validation and optimization methodologies of Amazon's global multi-billion dollar fixed marketing spend. This is a thought leadership position to help set the long-term vision, drive methods innovation, and influence cross-org methods alignment. This role is also an expert in modeling and measuring marketing and customer value with proven capacity to innovate, scale measurement, and mentor talent. This candidate will also work closely with senior Fixed Marketing tech, product, finance and business leadership to devise science roadmaps for innovation and simplification, and adoption of insights to influence important resource allocation, fixed marketing spend and prioritization decisions. Excellent communication skills (verbal and written) are required to ensure success of this collaboration. The candidate must be passionate about advancing science for business and customer impact. Key job responsibilities - Advance measurement, accuracy validation, and optimization methodology within Fixed Marketing. - Motivate and drive data generation to size. - Develop novel, innovative and scalable marketing measurement techniques and methodologies. - Enable product and tech development to scale science solutions and approaches. A day in the life - Propose and refine economic and scientific measurement, accuracy validation, and optimization methodology to improve Fixed Marketing models, outputs and business results - Brief global fixed marketing and retails executives about FM measurement and optimization approaches, providing options to address strategic priorities. - Collaborate with and influence the broader scientific methodology community. About the team CMO's vision is to maximizing long-term free cash flow by providing reliable, accurate and useful global fixed marketing measurement and decision support. The team measures and helps optimize the incremental impact of Amazon (Stores, AWS, Devices) fixed marketing investment across TV, Digital, Social, Radio, and many other channels globally. This is a fully self supported team composed of scientists, economists, engineers, and product/program leaders with S-Team visibility. We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
GB, Cambridge
Our team builds generative AI solutions that will produce some of the future’s most influential voices in media and art. We develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video, with Amazon Game Studios and Alexa, the ground-breaking service that powers the audio for Echo. Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language, Audio and Video technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and generative AI models to drive the state of the art in audio (and vocal arts) generation. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. * Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, TX, Austin
The Workforce Solutions Analytics and Tech team is looking for a senior Applied Scientist who is interested in solving challenging optimization problems in the labor scheduling and operations efficiency space. We are actively looking to hire senior scientists to lead one or more of these problem spaces. Successful candidates will have a deep knowledge of Operations Research and Machine Learning methods, experience in applying these methods to large-scale business problems, the ability to map models into production-worthy code in Python or Java, the communication skills necessary to explain complex technical approaches to a variety of stakeholders and customers, and the excitement to take iterative approaches to tackle big research challenges. As a member of our team, you'll work on cutting-edge projects that directly impact over a million Amazon associates. This is a high-impact role with opportunities to designing and improving complex labor planning and cost optimization models. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail and outstanding ability in balancing technical leadership with strong business judgment to make the right decisions about model and method choices. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. Key job responsibilities • Candidates will be responsible for developing solutions to better manage and optimize flexible labor capacity. The successful candidate should have solid research experience in one or more technical areas of Operations Research or Machine Learning. As a senior scientist, you will also help coach/mentor junior scientists on the team. • In this role, you will be a technical leader in applied science research with significant scope, impact, and high visibility. You will lead science initiatives for strategic optimization and capacity planning. They require superior logical thinkers who are able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. • Invent and design new solutions for scientifically-complex problem areas and identify opportunities for invention in existing or new business initiatives. • Successfully deliver large or critical solutions to complex problems in the support of medium-to-large business goals. • Apply mathematical optimization techniques and algorithms to design optimal or near optimal solution methodologies to be used for labor planning. • Research, prototype, simulate, and experiment with these models and participate in the production level deployment in Python or Java. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | Bellevue, WA, USA | Nashville, TN, USA | Seattle, WA, USA | Tempe, AZ, USA
CA, BC, Vancouver
Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in AI, Gen AI, Machine Learning, NLP, to help build LLM solutions for Amazon core shopping. Our team works on a variety of projects, including state of the art generative AI, LLM finetuning, alignment, prompt engineering, benchmarking solutions. Key job responsibilities As a Applied Scientist will be expected to work on state of the art technologies which will result in papers publications, however you will not be only theorizing about the algorithms, but you will also have the opportunity to implement them and see how they behave in the field. As a tech lead, this Applied scientist will also be expected to define the research direction, and influence multiple teams to build solutions that improve Amazon and Alexa customer experience. This is an incredible opportunity to validate your research on one of the most exciting Amazon AI products, where assumptions can be tested against real business scenarios and supported by an abundance of data. We are open to hiring candidates to work out of one of the following locations: Vancouver, BC, CAN
US, WA, Seattle
At Amazon, a large portion of our business is driven by third-party Sellers who set their own prices. The Pricing science team is seeking a Sr. Applied Scientist to use statistical and machine learning techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems, helping Marketplace Sellers offer Customers great prices. This role will be a key member of an Advanced Analytics team supporting Pricing related business challenges based in Seattle, WA. The Sr. Applied Scientist will work closely with other research scientists, machine learning experts, and economists to design and run experiments, research new algorithms, and find new ways to improve Seller Pricing to optimize the Customer experience. The Applied Scientist will partner with technology and product leaders to solve business and technology problems using scientific approaches to build new services that surprise and delight our customers. An Applied Scientist at Amazon applies scientific principles to support significant invention, develops code and are deeply involved in bringing their algorithms to production. They also work on cross-disciplinary efforts with other scientists within Amazon. The key strategic objectives for this role include: - Understanding drivers, impacts, and key influences on Pricing dynamics. - Optimizing Seller Pricing to improve the Customer experience. - Drive actions at scale to provide low prices and increased selection for customers using scientifically-based methods and decision making. - Helping to support production systems that take inputs from multiple models and make decisions in real time. - Automating feedback loops for algorithms in production. - Utilizing Amazon systems and tools to effectively work with terabytes of data. You can also learn more about Amazon science here - https://www.amazon.science/ We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Where will Amazon's growth come from in the next year? What about over the next five? Which product lines are poised to quintuple in size? Are we investing enough in our infrastructure, or too much? How do our customers react to changes in prices, product selection, or delivery times? These are among the most important questions at Amazon today. The Topline Forecasting team in the Supply Chain Optimization Technologies (SCOT) group is looking for innovative, passionate and results-oriented Economists to answer these questions. You will have an opportunity to own the long-run outlook for Amazon’s global consumer business and shape strategic decisions at the highest level. The successful candidate will be able to formalize problem definitions from ambiguous requirements, build econometrics models using Amazon’s world-class data systems, and develop cutting-edge solutions for non-standard problems. Key job responsibilities · Develop new econometric models or improve existing approaches using scalable techniques. · Extract data for analysis and model development from large, complex datasets. · Closely work with engineering teams to build scalable, efficient systems that implement prototypes in production. · Apply economic theory to solve business problems in a fast moving environment. · Distill problem definitions from informal business requirements and communicate technical solutions to senior business leaders. · Drive innovation and best practices in applied research across the Amazon research science community. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. Key job responsibilities On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. A day in the life You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. About the team The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for an Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. A day in the life On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA