updated_flats_photo.png
To achieve the vision of developing robots in simulation first, Amazon must not only create models of complex robots, but also the objects they will interact with regularly.

At Amazon Robotics, simulation gains traction

Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

Building and fine-tuning robotic systems takes lots of time. This is especially true for robots designed to interact within and manipulate an ever-changing array of objects in Amazon facilities. Developing robotic systems in a virtual environment can accelerate this process, but it’s harder than it looks.

Engineers have been accelerating new-product design using digital models and virtual simulations for decades. But these existing tools don’t meet Amazon’s need to develop and scale its fleet of complex robots.

To understand why, consider video games. Modern video games simulate worlds that look visually realistic at interactive rates.

“Take a race car game, for example. Everything looks physically plausible, but the forces behind the movements aren’t necessarily accurate,” says Andrew Marchese, an Amazon Robotics principal applied scientist who specializes in robotic manipulation. “They approximate some of the torques and forces that push and pull an object in the real world. So, a car’s acceleration may look realistic, even though the car’s engine is not big enough to generate the force needed to jump across the missing section of a bridge.”

Many industrial simulations also rely on approximations. Amazon, for example, uses visual simulators to plan its facilities and approximate how robots will move and interact safely with associates.

Comparing Robin real and simulated workcells
This side-by-side comparison shows the same perception and motion planning software driving both a real and simulated Robin robotic workcell.

“To develop complex robotic manipulation systems, we need both visual realism and accurate physics,” says Marchese. “There aren’t many simulators that can do both. Moreover, where we can, we need to preserve and exploit structure in the governing equations — this helps us analyze and control the robotic systems we build.”

The more complex the system, the more likely those small gaps between virtual and physical devices turn into chasms. Developers in the field call it the sim2real gap.

“This is why it is commonplace in robotics to write and test code against physical systems,” Marchese says. “But this approach is not scalable for the variety of types and configurations of robots Amazon is developing. Doing things this way, there is just not enough time or hardware for everyone on a project team to keep testing a system until they get it right.

“Our ambition is to develop robots in simulation first,” Marchese adds. “We want to write software against virtual robots, test it in realistic simulations, verify safety on a real robot, and deploy. And our team is making real progress in doing this.”

Modeling the underlying physics 

To achieve this vision, Amazon must not only create models of complex robots but also the objects they will interact with regularly.

A robotic arm, for example, might include a pneumatic gripper with multiple suction cups on the end. A model of that arm must evaluate the flow of air through the gripper’s tubes and valves, the contact forces of the rubber cups on a package, how the deformation of the cups during contact changes airflow, and what happens if only some cups make contact.

Understanding Robin vacuum gripper behavior
As shown in this video of Robin's vacuum tool, Amazon’s workcell simulations model the robot's end-of-arm tool. These high-fidelity pneumatic and multi-body models enable developers to test both nominal and anomalous behavior — like dropping packages.
Understanding Robin vacuum gripper behavior
This video demonstrates how Amazon's models can mimic successful robot behavior as well. Amazon scientists and engineers use these types of experiments to calibrate and validate their models.

In addition, it must also simulate how the robot’s vision system identifies individual items in a pile of mixed packages, and how its arm calculates the approach angle and force needed to lift it. It is a lot to do in a single simulation environment, especially in high-fidelity.

“The complexity of Amazon’s facilities makes this an even greater challenge,” says Clay Flannigan, Amazon Robotics senior manager, advanced robotics.

“Simulating robots is hard because robots interact with the world and the world is complex,” Flannigan explains. “There are many simulators that understand the movement of rigid robots in free space. But we stock essentially millions of items, and we want our robots to be able to interact with millions of different items in our inventory. This is an enormously difficult robotics challenge.”

Consider, for example, the range of packages a robotic arm might encounter. They include rigid boxes that hold a single, immobile object encased in cardboard or foam. That box is straightforward to model. Other boxes look the same on the outside but contain products that may shift their weight when lifted. Harder still are bubble-wrap mailers that deform and shift their center of gravity when lifted.

Given the number of packages Amazon handles every day, creating one-off models based on empirical tests isn’t feasible. Instead, Flannigan says, the company wants to model the underlying physics of these interactions.

An accurate first principles model requires highly detailed physics. In addition to airflow, a pneumatic gripper must also model contact forces, inertia, friction, and aerodynamics. While the physics are well understood, their application to individual components must be verified to ensure the models are accurate.

Building and verifying such models is a massive undertaking. Fortunately, though, MIT researchers have been working on a toolkit to model robotic components for years. It is called Drake.

Building a platform

Drake — the brainchild of Russ Tedrake, director of MIT’s Center for Robotics and vice-president of the Toyota Research Institute — is an open-source toolbox for modeling and optimizing robots and their control system.

Related content
Amazon Research Award recipient Russ Tedrake is teaching robots to manipulate a wide variety of objects in unfamiliar and constantly changing contexts.

The open-source part is critical to Amazon. Many modeling tools provide little or no insight into how their solvers produce their simulations. Drake, on the other hand, reveals its governing equations. “This lets us poke at the underlying physics and modify how they are applied,” Flannigan says. “If there is a bug, we can find it and fix it.”

Drake brings together several desirable elements for online simulation. The first is a robust multibody dynamics engine optimized for simulating robotic devices. The second is a systems framework that lets Amazon scientists write custom models and compose these into complex systems that represent actual robots. “At first the framework can seem a bit formal, but it is actually key to reusing and integrating components within large models,” Marchese said. The third is what he calls a “buffet of well-tested solvers” that resolve numerical optimizations at the core of Amazon’s models, sometimes as often as every time step of the simulation.

Another key feature is its robust contact solver. It calculates the forces that occur when rigid-body items interact with one another in a simulation.

“Figuring out those forces is a really difficult problem,” Marchese says. “If you don’t have a good contact solver, you might use the wrong force to grip an object, and drop it.”

Related content
The collaboration will support research, education, and outreach efforts in areas of mutual interest, beginning with artificial intelligence and robotics.

Drake’s powerful features make it a critical platform for Amazon’s virtual robot development plans. In fact, Drake is now a strategic project for Amazon. This enables Amazon developers to work more closely with and make code contributions to Drake. In addition, last year, Amazon and MIT launched a Science Hub, a collaboration focused on areas of mutual interest, including robotics.

Changing robot development

While there will always be a sim2real gap, Amazon scientists and engineers are working to narrow the gap. One way they do that is by leveraging real data to validate the fidelity of the simulator.

“We are always comparing the model with the hardware,” Flannigan says. “If we get first principles right, the error in model converges over time. There is always some uncertainty in our model, but once we quantify this, it is relatively easy to apply it again in similar applications.”

The bigger challenge remains in deformable objects — things that bend, flap, twist, and sag. The Amazon and Drake teams are both making progress on handling soft bodies with large deformations, like stuffed animals or squishy pet toys.

That is a challenge Vanessa Metcalf, an Amazon Robotics software development manager, is addressing. “Right now, we don’t have a practical way to empirically understand how a robot will pick up millions of different deformable items.

Watch the Robin robotic arm deftly handling packages

“Finding a model in simulation that we can apply to a broad category of products is a massive challenge, and we’re looking for ways to address it. For example, are there objects that have deformable parts but also rigid parts that are easier to model? We’re looking at what we can do first and build on that.”

Despite the challenges, Amazon simulations are already yielding results. One of the Amazon Robotics program teams came up with a new robotic manipulation concept they thought might improve fulfillment. They were able to use the simulator developed by Metcalf’s team to quickly validate the idea.

“It took about a month to test the concept in simulation,” Metcalf says. “It turned out to be a great idea that’s being implemented now. If we had to wait for the hardware to do the concept validation, it would have taken three times as long. That’s just one of many examples of how simulation can be incredibly impactful.”

As Amazon continues to chip away at simulation challenges, it is continuously improving its modeling infrastructure. And with good reason.

Our dream is that all of our robotics research and development starts in simulation. When someone has an idea, their first reaction would not be to order parts, but to use the simulator.
Vanessa Metcalf

Solving these challenges and achieving high-fidelity simulation would enable scientists and engineers to test new ideas and novel configurations as quickly as they could type their thoughts on a keyboard. They could generate conditions that rarely occur in prototype physical experiments, but that happen regularly within an organization that has robots that help deliver millions of packages a day. Teams could collaborate on different parts of a project simultaneously. No one would have to wait their turn for someone to reconfigure a robot prototype to test a new idea.

“Our dream is that all of our robotics research and development starts in simulation,” Metcalf says. “When someone has an idea, their first reaction would not be to order parts, but to use the simulator. They could develop an entire robotic workcell in a virtual environment, with a final safety check occurring on hardware.”

This reality is on the horizon, suggest Metcalf, Marchese and Flannigan. Although physics-based simulation has open challenges, Amazon is making real progress and the tools are accelerating the way Amazon develops new robots. Ultimately, this will result in more smiles from Amazon customers, and ever improving safety in its facilities.

Research areas

Related content

US, CA, Culver City
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are forming a new organization within Prime Video to redefine our operational landscape through the power of artificial intelligence. As a Applied Scientist within this initiative, you will be a technical leader helping to design and build the intelligent systems that power our vision. You will tackle complex and ambiguous problems, designing and delivering scalable and resilient agentic AI and ML solutions from the ground up. You will not only write high-quality, maintainable software and models, but also mentor other scientists, influence our technical strategy, and drive engineering best practices across the team. Your work will directly contribute to making Prime Video's operations more efficient and will set the technical foundation for years to come. Key job responsibilities • Lead the design and architecture of highly scalable, available, and resilient services for our AI automation platform. • Write high-quality, maintainable, and robust code to solve complex business problems, building flexible systems without over-engineering. • Act as a technical leader and mentor for other engineers on the team, assisting with career growth and encouraging excellence. • Work through ambiguous requirements, cut through complexity, and translate business needs into scalable technical solutions. • Take ownership of the full software development lifecycle, including design, testing, deployment, and operations. • Work closely with product managers, scientists, and other engineers to build and launch new features and systems. About the team This role offers a unique opportunity to shape the future of one of Amazon's most exciting businesses through the application of AI technologies. If you're passionate about leveraging AI to drive real-world impact at massive scale, we want to hear from you.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, NY, New York
The Ads Measurement Science team in the Measurement, Ad Tech, and Data Science (MADS) team of Amazon Ads serves a centralized role developing solutions for a multitude of performance measurement products. We create solutions which measure the comprehensive impact of advertiser's ad spend, including sales impacts both online and offline and across timescales, and provide actionable insights that enable our advertisers to optimize their media portfolios. We also own the science solutions for AI tools that unlock new insights and automate high-effort customer workflows, such as custom query and report generation based on natural language user requests. We leverage a host of scientific technologies to accomplish this mission, including Generative AI, classical ML, Causal Inference, Natural Language Processing, and Computer Vision. As an Applied Scientist on the team, you will lead measurement solutions end-to-end from inception to production. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. Key job responsibilities - Leverage deep expertise in one or more scientific disciplines to invent solutions to ambiguous ads measurement problems - Disambiguate problems to propose clear evaluation frameworks and success criteria - Work autonomously and write high quality technical documents - Implement a significant portion of critical-path code, and partner with engineers to directly carry solutions into production - Partner closely with other scientists to deliver large, multi-faceted technical projects - Share and publish works with the broader scientific community through meetings and conferences - Communicate clearly to both technical and non-technical audiences - Contribute new ideas that shape the direction of the team's work - Mentor more junior scientists and participate in the hiring process About the team We are a team of scientists across Applied, Research, Data Science and Economist disciplines. You will work with colleagues with deep expertise in ML, NLP, CV, Gen AI, and Causal Inference with a diverse range of backgrounds. We partner closely with top-notch engineers, product managers, sales leaders, and other scientists with expertise in the ads industry and on building scalable modeling and software solutions.
US, WA, Seattle
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Bellevue
Are you inspired by invention? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Last Mile Simulations and Analytics Engineering team. WW AMZL Simulations and Analytics Engineering team is looking to build out our Simulation team to drive innovation across our Last Mile network. We start with the customer and work backwards in everything we do. If you’re interested in joining a rapidly growing team working to build a unique, solutions advisory group with a relentless focus on the customer, you’ve come to the right place. This is a blue-sky role that gives you a chance to roll up your sleeves and dive into big data sets in order to build discrete event 3D simulations using tools like Flexsim, Anylogic, Emulate 3D etc and experimentation systems at scale, build optimization algorithms and leverage cutting-edge technologies across Amazon. This is an opportunity to think big about how to solve a challenging problem for the customers. As a Simulation Scientist, you are expected to deep dive into complex problems and drive relentlessly towards innovative solutions working with cross functional teams. Be comfortable interfacing and influencing various functional teams and individuals at all levels of the organization in order to be successful. Lead strategic modelling and simulation projects related to drive process design decisions. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. You will apply cutting edge designs and methodologies for complex use cases across Last Mile network to drive innovation. In addition, you will contribute to the end state vision for simulation and experimentation of future delivery stations at Amazon. Key job responsibilities Key job responsibilities • Lead the design, implementation, and delivery of the simulation data science solutions to perform system of systems discrete event simulations for significantly complex operational processes that have a long-term impact on a product, business, or function using FlexSim, Demo 3D, AnyLogic or any other Discrete Event Simulation (DES) software packages • Lead strategic modeling and simulation research projects to drive process design decisions • Be an exemplary practitioner in simulation science discipline to establish best practices and simplify problems to develop discrete event simulations faster with higher standards • Identify and tackle intrinsically hard process flow simulation problems (e.g., highly complex, ambiguous, undefined, with less existing structure, or having significant business risk or potential for significant impact • Deliver artifacts that set the standard in the organization for excellence, from process flow control algorithm design to validation to implementations to technical documents using simulations • Be a pragmatic problem solver by applying judgment and simulation experience to balance cross-organization trade-offs between competing interests and effectively influence, negotiate, and communicate with internal and external business partners, contractors and vendors for multiple simulation projects • Provide simulation data and measurements that influence the business strategy of an organization. Write effective white papers and artifacts while documenting your approach, simulation outcomes, recommendations, and arguments • Lead and actively participate in reviews of simulation research science solutions. You bring clarity to complexity, probe assumptions, illuminate pitfalls, and foster shared understanding within simulation data science discipline • Pay a significant role in the career development of others, actively mentoring and educating the larger simulation data science community on trends, technologies, and best practices • Use advanced statistical /simulation tools and develop codes (python or another object oriented language) for data analysis , simulation, and developing modeling algorithms • Lead and coordinate simulation efforts between internal teams and outside vendors to develop optimal solutions for the network, including equipment specification, material flow control logic, process design, and site layout • Deliver results according to project schedules and quality A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a highly innovative product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Science manager to join our Applied AI team and lead a cross-functional team of scientists and engineers who work on LLM-based solutions. On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. You will be responsible for leading a cross functional team of scientists and engineer and developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Senior Applied Science Manager who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in leading teams that build highly scalable systems and system design, have excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
The Seller Fees organization drives the monetization infrastructure powering Amazon's global marketplace, processing billions of transactions for over two million active third-party sellers worldwide. Our team owns the complete technical stack and strategic vision for fee computation systems, leveraging advanced machine learning to optimize seller experiences and maintain fee integrity at unprecedented scale. We're seeking an exceptional Applied Scientist to push the boundaries of large-scale ML systems in a business-critical domain. This role presents unique opportunities to • Architect and deploy state-of-the-art transformer-based models for fee classification and anomaly detection across hundreds of millions of products • Pioneer novel applications of multimodal LLMs to analyze product attributes, images, and seller metadata for intelligent fee determination • Build production-scale generative AI systems for fee integrity and seller communications • Advance the field of ML through novel research in high-stakes, large-scale transaction processing • Develop SOTA causal inference frameworks integrated with deep learning to understand fee impacts and optimize seller outcomes • Collaborate with world-class scientists and engineers to solve complex problems at the intersection of deep learning, economics, and large business systems. If you're passionate about advancing the state-of-the-art in applied ML/AI while tackling challenging problems at global scale, we want you on our team! Key job responsibilities Responsibilities: . Design measurable and scalable science solutions that can be adopted across stores worldwide with different languages, policy and requirements. · Integrate AI (both generative and symbolic) into compound agentic workflows to transform complex business systems into intelligent ones for both internal and external customers. · Develop large scale classification and prediction models using the rich features of text, image and customer interactions and state-of-the-art techniques. · Research and implement novel machine learning, statistical and econometrics approaches. · Write high quality code and implement scalable models within the production systems. · Stay up to date with relevant scientific publications. · Collaborate with business and software teams both within and outside of the fees organization.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems.