Watch Amazon's mobile robots in action

How Amazon robots navigate congestion

Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

Each day, Amazon receives millions of orders. For each one, it makes a promise about when those items will show up on customers’ doorsteps.

Related content
Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

Amazon’s fleet of more than half a million mobile robots is critical to meeting those deadlines. The typical Amazon fulfillment center has four floors, each several football fields in size, and 4,000 or more robots shuttling products to stations where associates select them for shipment. In some buildings, additional robots then sort those outgoing packages by zip code for delivery.

For Amazon Robotics researchers, the sheer number of robots requires some creative problem solving.

“Imagine that we want our robots to pick up and deliver as many items as possible during a set amount of time,” said Michael Wolf, a principal applied scientist at Amazon Robotics AI. “At first, we can increase throughput by adding more robots. But at a certain point, their sheer numbers start to cause congestion. The robots can interfere with each other and decrease the efficiency of the overall system.”

This is a challenge few organizations face. Amazon, because of its enormous scale and the need to delight its customers, has become a leader in utilizing robots while its science teams work to keep congestion from impacting operational efficiency.

Related content
Scientists and engineers are developing a new generation of simulation tools accurate enough to develop and test robots virtually.

Joey Durham, a senior manager of research and science for Amazon Robotics, has helped lead the way. He joined Kiva Systems, a pioneer in warehouse robots, just before Amazon acquired the company 10 years ago. At the time, the average Kiva customer used about 250 robots. Amazon’s vision was to push far beyond those boundaries.

“When we first started looking at it, we thought it would take more than 8,000 robots to keep an Amazon fulfillment center running,” Durham said. “There just was not enough room for them all. That’s when we said, ‘Wow, we really have to solve the congestion problem.’ And we have addressed it — we’ve gotten dramatically more efficient.”

While Amazon’s answers to the congestion challenge have evolved over time, its first solutions did not involve traffic management. Instead, it was all about helping robots make better decisions.

Understanding the floor

To understand why better decisions matter, consider how Amazon’s large rectangular fulfillment centers are laid out. Robots and four-sided storage shelves called pods, that contain millions of individual products, sit in the middle.

Pods containing products flow from the middle to stations spaced around the perimeter, where associates select the items needed to fulfill each order and place them in bins. When a particular pod is needed, a robot slips under the 1,000-lb pod, lifts it off the floor, and carries it to the station. This is the opposite of traditional warehouses, where workers travel miles of aisles daily, picking products one by one. By eliminating those trips, Amazon dramatically boosts productivity.

Related content
An advanced perception system, which detects and learns from its own mistakes, enables Robin robots to select individual objects from jumbled packages — at production scale.

When Amazon receives an order, that order is assigned to the facility or facilities best able to fulfill it. A cloud-based computer system then decides which pod to use for each item in an order and which orders to process together to optimize the items delivered per pod. Like carpooling, picking more items per pod will reduce the amount of congestion that the robots will experience.

There are tradeoffs along the way. Amazon wants to store the maximum amount of goods on the floor. At the same time, it wants to move products to stations as efficiently as possible. “The challenge we’re always facing is how to increase storage space while still giving the robots enough room to maneuver,” Durham said.

Finding the flow

While good work allocation and route decisions smooth traffic flow and reduce unnecessary trips, managing the actual movement of robots is also important. To simplify the task, Amazon’s cloud computing service creates the virtual equivalent of a map of a city grid, on which robots can travel ‘north-south’ or ‘east-west’. Once a robot picks up a pod, the computing service creates a route to its final destination.

Watch Amazon robots navigate
To optimize overall system efficiency and ensure the robots do not interfere with one another, Amazon has developed algorithms to coordinate robotic motion

To optimize overall system efficiency and ensure the robots do not interfere with one another, Amazon has developed algorithms to coordinate robotic motion. The major challenge is creating plans fast enough to stay ahead of all the moving robots. One method the team uses is to compute “social rules” to guide the overall flow of robots to avoid traffic snarls, but also consider whether a robot should be allowed to break those rules to take a short cut and get to its destination more efficiently.

There are literally trillions of possibilities, and we have to solve these problems in real time.
Michael Wolf

Yet the dynamic nature of the fulfillment center means new orders arrive constantly, associates sign in and out of stations, and robots halt when they sense unexpected problems. Couple that with the number of pods and robots on the floor and Amazon’s scale, and you begin to realize the scope of the challenge. “There are literally trillions of possibilities, and we have to solve these problems in real time,” Wolf said.

Instead, the system seeks to constantly adapt the plan to conditions on the floor. “That reaction is more important to us than a globally optimized schedule,” Durham explained. “Ideally, we’d want both. So, we have to find this delicate balance between making sure the system is reactive and as optimal as possible.”

Going down the chutes

Once orders are packed and labeled, they go to the sortation center. There, associates and robotic arms pull packages off a conveyor, scan a bar code for destination information, and put each package on a small robot. The robot then weaves its way around an array of holes in the floor, each one representing a different group of zip codes. When it comes to the right one, it drops the package down the chute that goes to the loading dock below, where it goes out for delivery. A typical sortation floor has several hundred chutes and one thousand robots carrying packages to them.

Sortation, however, offers fewer options for optimization than fulfillment. In sortation, randomly jumbled packages roll down the conveyor and the system must deal with whatever it finds when the packages arrive.

So, Amazon Robotics researchers set about designing better traffic management patterns. Computers in the cloud plan a path for each robot. As on the fulfillment floor, the sortation center defines virtual streets that govern in which direction a robot can move — but here the streets are wider.

This gives rise to new problems and new algorithms to solve them. For example, what happens when several robots meet at a multi-lane intersection where some want to go straight or turn across oncoming traffic? To create a more optimal traffic flow, Amazon Robotics researchers are developing a new multi-agent planning system that will consider more robots at a time.

Related content
Amazon Research Award recipient Russ Tedrake is teaching robots to manipulate a wide variety of objects in unfamiliar and constantly changing contexts.

But even the state-of-the-art in multi-agent planning cannot plan fast enough for the thousand or more robots in an Amazon building. So, Durham’s teams are inventing “hybrid” solutions that combine fast planning for single robots with coordination techniques inspired by state-of-the-art methods. The goal, Durham said, is to find and resolve conflicts before they occur.

“Our goal is to create a plan that evolves,” Durham said. “We do not have the luxury to sit down at time-zero and come up with a perfect plan to get our robots moving. Instead, we start with the plan that is already up and running and that we resolved a second ago. Then, we update it with what has changed, what has gone wrong, and what new things have appeared and then reprioritize what robots should do.”

Building on increments

Multi-agent planning will be a major step forward, but Amazon has many more concepts in the works. Amazon has unparalleled experience with robots and its researchers want to use machine learning to better address common challenges. Then they can incorporate those learned policies and heuristics into an even better multi-agent system.

“As those robots are moving and looking around, they could assess what they see and look up the best policy in the cloud for dealing with it,” Wolf said. “It would save us the cost of duplicating those policies for every robot and it makes updating policies around the world easier.”

Amazon researchers are also developing “learning algorithms that allow the system to predict where patches of congestion will appear on the floor in the future, and also when they will disappear,” says Wolf, “This ability to anticipate makes planning even more knowledgeable.”

Amazon hopes to build on this work by reaching out to academics, who are exploring new concepts that are not yet ready for commercialization.

Related content
The collaboration will support research, education, and outreach efforts in areas of mutual interest, beginning with artificial intelligence and robotics.

In October, the company announced a collaboration with Massachusetts Institute of Technology to create a Science Hub for robotics and artificial intelligence. There, Amazon is working with professor Cathy Wu, who uses machine learning to study the traffic flow of autonomous and human-driven cars in cities, and professor Cynthia Barnhart, who is an expert in operations research problems such as how to allocate robots to tasks.

They are exploring how to use machine learning to make robot fleets avoid congestion. Scientists at Amazon hope to leverage academic research to develop better algorithms for predicting congestion before it even appears and planning algorithms to avoid it.

The ultimate goal is to continue to extend technology in new directions. Machine learning-derived polices and better prediction and planning algorithms will enable Amazon to both ramp up the number of robots in its sortation and fulfillment centers and safely increase the flow of traffic. This will help customers to get their packages even faster.

That is only the beginning. Despite enormous strides, robotics remains a young and rapidly evolving science. Amazon, for example, funds multiple projects at several universities that range from machine learning and shared autonomy to hardware redesign and human-robot interaction. “We have an opportunity not just to use science improve products for our customers, but to support robotics researchers as a public good," said Jeremy Wyatt, senior applied science manager.

Yet Amazon also offers something more, something that comes only with scale.

“Amazon has the most challenging, full-scale, real-world problems I see in industry,” Wolf said. “If you want to have an impact on the real world, it is the place to be in robotics research. It gives researchers an opportunity to see our solutions deployed on hundreds of thousands of robots. And, because our operations are always evolving, there’s always an exciting new challenge to solve on the horizon.”

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques