Alessandro Achille, a senior applied scientist at Amazon Web Services, is seen standing outside at night with a display of colored lights in the background
Alessandro Achille, a senior applied scientist at Amazon Web Services, is tackling fundamental challenges that are shaping the future of computer vision and large generative-AI models.

“I don't remember a time in my life when I wasn't interested in science"

From the urgent challenge of "machine unlearning" to overcoming the problem of critical learning periods in deep neural networks, Alessandro Achille is tackling fundamental issues on behalf of Amazon customers.

It was on a “hunting trip” to Italy in 2015 that computer vision pioneer Stefano Soatto first came across Alessandro Achille. More accurately, it was a mind-hunting trip, to the prestigious Scuola Normale Superiore in Pisa. The university was founded by Napoleon, and its alumni include Nobel-Prize-winning physicists Enrico Fermi and Carlo Rubbia and Field-Medal-winning mathematician Alessio Figalli. “It puts students through a grueling selection and training process,” says Soatto, “so those who survive are usually highly capable — and rugged.”

It was a successful trip that evolved into a powerful research partnership. Today, Achille is working as a senior applied scientist at Amazon Web Services' (AWS') AI Lab, on the California Institute of Technology (Caltech) campus, tackling fundamental challenges that are shaping the future of computer vision (CV) and large generative-AI models.

But back in 2015, Achille was immersed in a master’s in pure mathematics, “spiced up”, as he puts it, with algebraic topology.

Related content
Early on, Giovanni Paolini knew little about machine learning — now he’s leading new science on artificial intelligence that could inform AWS products.

“I don't remember a time in my life when I wasn't interested in science,” he says. Achille was particularly interested in the foundations of mathematics. “I focused on logic, because I’ve always had this nagging problem at the back of my mind of exactly why things are the way they are in mathematics.”

Achille’s first taste of computer vision arose when he and his peers decided to augment an annual school tradition: a 24-hour foosball tournament between mathematicians and physicists. Besides a sport competition, the event had become a showcase of the students’ engineering capabilities. That year, after adding live streaming and a fully automated scorekeeping system, the students thought it was time to add real-time tracking of the ball.

“It’s just a white blob moving on a green background. How hard could it be?” says Achille. The short answer is, harder than they thought. So Achille took a class that would teach him more — a choice that would eventually lead to an invitation from Soatto to join him at the University of California, Los Angeles, for a PhD in computer vision.

“In Italian education, it sometimes feels like there is a hierarchy,” says Achille. “The more abstract you are, the better you are doing!” So why the departure from pure mathematics? In the end, says Soatto, “Alessandro’s work became so abstract he couldn’t see a path to impact. That’s very frustrating for a really smart person who wants to make a difference in the world.”

Deep learning takes off

Achille’s PhD coincided with the rise of deep learning (DL), which would become a game-changing technology in machine learning and computer vision. “At the time, we didn't know if it was anything more than just a new, slightly more powerful tool. We didn’t know if DL had the power of abstraction, reasoning, and so on,” says Achille.

Related content
Two recent trends in the theory of deep learning are examinations of the double-descent phenomenon and more-realistic approaches to neural kernel methods.

The power of deep learning was becoming clear, though. During an internship in 2017, Achille worked on a computer vision model that could learn a representation of a dynamic scene — a 3-D shape that was moving, changing color, changing orientation, and so on.

The idea was to capture and isolate the semantic components of the scene — shape, size, color, or angle of rotation — rather than capturing the totality of the scene’s characteristics. Humans do this disentangling naturally. That’s how you would understand the sight of a blue banana, even if you had never seen one before: “banana” and “blue” are separate semantic components.

While Achille enjoyed the project and appreciated its importance, he was struck by the artificiality of the setting. “I was not working backwards from a use case,” he says. Shortly after, Achille became an intern at the AWS AI Lab that had just been established at the Caltech campus, where he was immediately given a real-world challenge to solve on a newly launched product called Custom Label.

Real-world problems

At the time, Custom Label allowed Amazon customers to access CV models that could be trained to identify, say, their company’s products in images — a particular faucet, for example. The models could also be trained to perform tasks like identifying something in a video or analyzing a satellite image.

AWS researchers realized it was impractical to expect a single model to accurately deal with such a range of esoteric image possibilities. A better approach was to pretrain many expert models on different imagery domains and then select the most appropriate one to fine-tune on the customer’s data. The problem for AWS was, how could it efficiently discover which of 100 or more pretrained CV models would perform best?

Alessandro Achille: The information in a deep neural network

During his research in machine learning, Achille became passionate about information theory — a mathematical framework for quantifying, storing, and communicating information. So he used that approach on this so-called model selection problem. “For a hammer, everything looks like a nail,” he laughs.

The problem is how to measure the “distance" between two learning tasks — the task a given AWS model has been pretrained on and the novel customer task. In other words, how much additional information is required by the pretrained model to produce a good performance on the customer task? The less additional information required, the better.

Achille was impressed by the task because it was an important customer issue with a fundamental mathematical problem behind it. “We formulated an algorithm to compute this efficiently, so we could easily select the expert model best suited to solving the customer’s task,” says Achille. “It was the first solution to this problem.”

Achille found Amazon’s applied approach to be a compelling way to work, and when Soatto established the AWS AI Labs, Achille was happy to join him there.

“One of the beauties of being at Amazon is that we’re tackling some of the world's most challenging emerging problems,” says Soatto. “Because when AWS customers have difficult problems to address, they come to us. From a scientific perspective, this is a goldmine.”

Machine unlearning

Achille is currently staking out a vein of research gold in a critical new area of artificial intelligence (AI): AI model disgorgement, more popularly known as "machine unlearning". It is critical in any implementation of machine learning models that the data used to train the model are used responsibly, in a privacy-preserving manner, and in accordance with the appropriate regulations and intellectual-property rights.

Related content
At this year’s ACL, Amazon researchers won an outstanding-paper award for showing that knowledge distillation using contrastive decoding in the teacher model and counterfactual reasoning in the student model improves the consistency of “chain of thought” reasoning.

Modern ML models have become very large and complex, requiring a great deal of data and computational resources to train. But what if, once a model is trained, the contributor of some of those training data decides, or is obligated by law, to withdraw the data from the model? Or what if some of the training data is discovered to be biased? Retraining a large model afresh, with some data withheld, may be impractical, particularly if the requirement for such changes becomes commonplace in the shifting legal landscape.

The next level

In 2019 that Soatto, Achille, and Achille's fellow UCLA PhD student Aditya Golatkar published a paper entitled “Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks”; the paper established a novel method for removing the effects of a subset of a deep neural network's training data, without requiring retraining.

Eternal sunshine of the spotless net: Selective forgetting in deep networks

“I was happy to see interest in ‘selective forgetting’ explode after we published this paper,” says Achille. “Model disgorgement is a fascinating problem, and not only because it's very important for AWS customers. It also demands that we understand everything about a model’s neural network. We need to understand where information is held in a model’s weights, how it is encoded, how it is measured.”

It is in this fundamental work that Achille took the field to “the next level”, says Soatto. And this year, Achille and Soatto, on a team also featuring Amazon Scholar Michael Kearns, coauthor of the book The Ethical Algorithm, led the field by introducing a taxonomy of possible disgorgement methods applicable to modern ML systems.

The paper also describes ways to train future models so that they are amenable to subsequent disgorgement.

Related content
The surprising dynamics related to learning that are common to artificial and biological systems.

“It is better for models to learn in a compartmentalized fashion, so in the event that some data is found to be problematic, everything that touched those data gets thrown away, while the rest of the model survives without having to retrain it from scratch,” says Soatto.

This work has been particularly satisfying, says Achille, as it obliged computer scientists, mathematicians, lawyers, and policymakers to work closely together to solve a pressing modern problem.

Critical learning periods

The breadth of Achille’s interests is formidable. His other prominent research includes work on “critical learning periods” in the training of deep networks. The work arose through serendipity, after a friend studying for a medical exam on the profound effect of critical learning periods in humans jokingly asked Achille if his networks also had them. Interest piqued, Achille explored the idea, and found some striking similarities.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

For example, take infantile strabismus, a condition in which a person's eyes do not align properly from birth or early infancy. If not treated early, the condition can cause amblyopia, whereby the brain learns to trust the properly working eye and to ignore the visual input from the misaligned eye, to avoid double vision.

This one-sided competition between the two eyes (data sources) leads to worsening vision in the misaligned eye and of course the loss of stereo vision, which is important for depth perception. Amblyopia is difficult to reverse if left untreated into adulthood. But treating the eyes early, enabling them to work together optimally, makes for a robust vision system.

Similarly, in the early training of multimodal deep neural networks, one type of data may become favored over another, simply through expediency. For example, in a visual-question-answering model, which is trained on images and captions, the easy-to-use textual information may outcompete visual information, leading to models that are effectively blind to visual information. Achille and his colleagues suggest that when a DL model takes such shortcuts, it has irreversible effects on the subsequent performance of the model, making it less flexible — and therefore less useful — when fine-tuned on novel data.

Off the charts

Having explored the causes of critical learning periods in deep networks, the team offered new techniques for stabilizing the early learning dynamics in model training and showed how this approach can actually prevent critical periods in deep networks. The practical benefits of this research aside, Achille enjoys exploring the parallelisms of artificial and biological systems.

“Look, we can all recognize that the actual hardware of a network and a brain are completely different, but can we also recognize that they are both systems that are trying to process information efficiently and trying to learn something?” he asks. Are there some fundamental dynamics of learning, and how it relates to the acquisition of information, that are shared between synthetic and biological systems? Watch this space.

Looking back on the eight years since his hunting trip to Pisa, Soatto considers what he most appreciates about his Amazon colleague.

“First, the brilliance of the way Alessandro frames problems: he thinks very abstractly, yet he is also a hacker who thinks broadly, all the way from mathematics to neuroscience, from art to engineering — this is very rare. Second, his curiosity, which is absolutely off the charts.”

For Achille’s part, when asked if he prefers tackling the challenges that arise from AWS products or working on fundamental science problems, he demurs. “I don’t need to split my time between product and fundamental research. For me, it ends up being the same thing.”

Indeed, one of Amazon’s most abstract thinkers has found a path to true impact.

Research areas

Related content

US, WA, Bellevue
Does the idea of creating technology solutions for delivering 11 Billion+ packages across the globe excite you? If yes, come join a fun-loving, diverse, and creative team at Amazon Last Mile! The vision of the team is "To create Earth’s safest, most adaptive, and efficient plans for Last Mile logistics". The Last Mile Delivery Technology team is instrumental in impacting customer satisfaction directly, by devising innovative ways to deliver packages quickly and cost-effectively to the customers, and at scale using Artificial Intelligence (AI), Machine Learning and Operations Research solutions. Last Mile Delivery Technology organization supports the design, planning and execution of last mile transportation for Amazon’s various parcel and grocery delivery programs. All these programs require a large number of decision support systems to operate at scale and serve our customers, spanning demand planning, jurisdiction planning, delivery channel and network design, capacity planning for on the road and under the roof at delivery stations, routing inputs and route optimization. While these decision support systems have thus far been approached through the lens of traditional optimization and machine learning, we are looking to re-envision this space and pursue Foundational AI research, to innovate and advance the state of these decision support systems. Specifically, we are looking to develop foundational models (including Large Language Models, Multimodal Language Models, Multimodal Models), and adaptations to serve last mile use cases. Beyond Amazon the work developed will spur new fundamental knowledge and innovation in the logistics space. Job Location : Bellevue WA or Austin TX. Key job responsibilities You have deep expertise in ML/AI, staying current with the latest research and techniques. You also invent or adapt new scientific approaches based on customer needs, producing high-quality research reports and contributing to peer-reviewed publications when appropriate You are a highly skilled software engineer whose work is consistently of high quality, meets industry standards, and incorporates best practices. You work semi-autonomously, contribute to operational excellence. You have strong interpersonal and leadership skills, effectively collaborating with your team, championing scientific advancements, onboarding new teammates, setting a high standard for your scientific contributions, and actively participating in the wider scientific community
US, WA, Seattle
The Worldwide Defect Elimination (WWDE) Science team in Amazon Customer Service builds state-of-the-art Artificial Intelligence (AI) models to enable defect-free shopping experiences for Amazon customers. We develop technology and mechanisms to discover, root cause, measure, and escalate defects for resolution before they impact a broader range of customers. We are looking for a creative problem solver and technically-skilled Research Scientist able and interested in building AI solutions to address customer issues at scale. The ideal candidate will lead the development of innovative solutions that identify, root cause, attribute, and summarize problems embedded in large volumes of customer feedback in different modalities. They will also utilize the latest advances in GenAI technology to explore billions of customer contacts and automate defect resolution workflows. As a part of this role, this candidate will collaborate with a large team of experts in the field and move the state of defect elimination research forward. This candidate should have a knack for leveraging AI to translate complex data insights into actionable strategies and can communicate these effectively to both technical and non-technical audiences. Key job responsibilities * Apply science models to extract actionable information from large volumes and varying modalities of customer feedback * Leverage GenAI/Large Language Model (LLM) technology for scaling and automating defect elimination workflows * Design and implement metrics to evaluate the effectiveness of AI models * Present deep dives and analysis to both technical and non-technical stakeholders, ensuring clarity and understanding and influencing business partners * Perform statistical analysis and statistical tests including hypothesis testing and A/B testing * Recognize and adopt best practices in reporting and analysis: data integrity, test design, analysis, validation, and documentation A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team The Worldwide Defect Elimination (WWDE) team's mission is to understand and resolve all issues impacting customers at scale. The WWDE Science team is a force multiplier within this group, helping to to apply science solutions to eliminate defects and enhance customer experience.
US, TX, Austin
The Automated Reasoning Group in AWS Utility Computing is looking for a Senior Applied Scientist with experience in building scalable automated reasoning solutions that delight customers. You will be part of a world-class team building the next generation of automated reasoning tools and services. You will apply your knowledge to propose solutions, create software prototypes, and develop prototypes into production systems using software development tools. In addition, you will support and scale your solutions to meet the ever-growing demand of customer use. You have demonstrated leadership in automated reasoning positions in industry or academia, strong verbal and written communication skills, are self-driven and deliver high quality results in a fast-paced environment. Each day, hundreds of thousands of developers make billions of transactions worldwide on AWS. They harness the power of the cloud to enable innovative applications, websites, and businesses. Using automated reasoning technology and mathematical proofs, AWS allows customers to answer questions about security, availability, durability, and functional correctness. We call this provable security, absolute assurance in security of the cloud and in the cloud. https://aws.amazon.com/security/provable-security/ Key job responsibilities As a Senior Applied Scientist, you will help shape the definition and vision for applied science across teams within AWS. We have a diverse portfolio of projects that target protocol, code, and hardware verification, and leadership opportunities exist for: - Advance automated code-level reasoning and invariant synthesis and proof repair for cloud-scale web services. - Build new engines and extending foundational proof engines that apply to distributed systems. - Researching the application of automated reasoning to novel software applications. - Building automated reasoning solutions for critical AWS DSLs for architectural configuration, migration, code generation, and other areas. - Improving integration and user experience of tools to support large-scale adoption and use of automated reasoning techniques. You will work in an agile, startup-like development environment, where you are always working on the most important things, and you will design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. This team is part of AWS Utility Computing: Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services.
AE, Dubai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for ML Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an ML Data Scientist, you will * Collaborate with ML scientist and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges * Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production * Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder * Provide customer and market feedback to Product and Engineering teams to help define product direction
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. A day in the life On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team.
US, WA, Seattle
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities We seek strong Applied Scientists with domain expertise in machine learning and deep learning, transformers, generative models, large language models, computer vision and multimodal models. You will devise innovative solutions at scale, pushing the technological and science boundaries. You will guide the design, modeling, and architectural choices of state-of-the-art large language models and multimodal models. You will devise and implement new algorithms and new learning strategies and paradigms. You will be technically hands-on and drive the execution from ideation to productionization. You will work in collaborative environment with other technical and business leaders, to innovate on behalf of the customer.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics
IL, Tel Aviv
Are you a MS or PhD student interested in a 2024 Research Science Internship, where you would be using your experience to initiate the design, development, execution and implementation of scientific research projects? If so, we want to hear from you! Is your research in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? If so, we want to hear from you! We are looking for motivated students with research interests in a variety of science domains to build state-of-the-art solutions for never before solved problems You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Research Science Intern, you will have following key job responsibilities; • Work closely with scientists and engineering teams (position-dependent) • Work on an interdisciplinary team on customer-obsessed research • Design new algorithms, models, or other technical solutions • Experience Amazon's customer-focused culture A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships and up to 12 months for part time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Join us in building on AWS, for AWS! Amazon Web Services (AWS) provides companies of all sizes with an infrastructure web services platform in the cloud (“Cloud Computing”). With AWS you can requisition compute power, storage, and many other services – gaining access to a suite of elastic IT infrastructure services as your business demands them. AWS is the leading platform for designing and developing applications for the cloud and is growing rapidly with hundreds of thousands of companies in over 190 countries on the platform. Developers all over the world rely on our storage, compute, and virtualized services. Our success depends on our world-class selling and field teams, and these teams rely on the Worldwide Sales Strategy and Operations (SMGS Ops) team to power their activities. We’re handling massive scale, providing data that drives the AWS business internally, and delivering products and services to help our Amazon Web Service selling teams, marketing groups, and customers. We’re looking for a Data Scientist to design and deliver solutions that combine machine learning, human-in-the-loop input, and distributed big data technologies. We're building a cutting-edge data platform to enable us to arm our field teams with the actionable intelligence needed to engage and serve every possible AWS customer in the world, to the fullest. This position may be based in Seattle, WA; Dallas, TX Key job responsibilities - Design solutions to complex and ambiguous data challenges, starting from first principles - Apply Machine Learning to solve data problems, such as record matching, at scale - Leverage company data from third-party sources in combination with internal AWS data to develop quantitative models answering critical business questions - Build human-in-the-loop workflows, to complement and augment ML solutions - Work with AWS machine learning and big data technologies such as Amazon Sagemaker, EMR, S3, DynamoDB, Lambda, and more - Experiment and explore new technologies to create innovative solutions - Use Natural Language Processing and language models to derive insights from unstructured sources like public company regulatory filings and annual reports About the team Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and we host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team also puts a high value on work-life balance. Striking a healthy balance between your personal and professional life is crucial to your happiness and success here, which is why we aren’t focused on how many hours you spend at work or online. Instead, we’re happy to offer a flexible schedule so you can have a more productive and well-balanced life—both in and outside of work. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Bellevue
The AGI Data Service team is seeking a dedicated, skilled, and innovative Scientist with a robust background in deep learning, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI-DS team, a Research Scientist will collaborate closely with talented colleagues to lead the development of advanced approaches and modeling techniques, driving forward the frontier of LLM technology. This includes innovating model-in-the-loop and human-in-the-loop approaches to ensure the collection of high-quality data, safeguarding data privacy and security for LLM training, and more. A scientist will also have a direct impact on enhancing customer experiences through state-of-the-art products and services that harness the power of speech and language technology. A day in the life The Scientist with the AGI team will support the science solution design, run experiments, research new algorithms, and find new ways of optimizing the customer experience; while setting examples for the team on good science practice and standards. Besides theoretical analysis and innovation, the scientist will also work closely with talented engineers and scientists to put algorithms and models into practice. The ideal candidate should be passionate about delivering experiences that delight customers and creating robust solutions. They will also create reliable, scalable and high-performance products that require exceptional technical expertise, and a sound understanding of Machine Learning.