Alessandro Achille, a senior applied scientist at Amazon Web Services, is seen standing outside at night with a display of colored lights in the background
Alessandro Achille, a senior applied scientist at Amazon Web Services, is tackling fundamental challenges that are shaping the future of computer vision and large generative-AI models.

“I don't remember a time in my life when I wasn't interested in science"

From the urgent challenge of "machine unlearning" to overcoming the problem of critical learning periods in deep neural networks, Alessandro Achille is tackling fundamental issues on behalf of Amazon customers.

It was on a “hunting trip” to Italy in 2015 that computer vision pioneer Stefano Soatto first came across Alessandro Achille. More accurately, it was a mind-hunting trip, to the prestigious Scuola Normale Superiore in Pisa. The university was founded by Napoleon, and its alumni include Nobel-Prize-winning physicists Enrico Fermi and Carlo Rubbia and Field-Medal-winning mathematician Alessio Figalli. “It puts students through a grueling selection and training process,” says Soatto, “so those who survive are usually highly capable — and rugged.”

It was a successful trip that evolved into a powerful research partnership. Today, Achille is working as a senior applied scientist at Amazon Web Services' (AWS') AI Lab, on the California Institute of Technology (Caltech) campus, tackling fundamental challenges that are shaping the future of computer vision (CV) and large generative-AI models.

But back in 2015, Achille was immersed in a master’s in pure mathematics, “spiced up”, as he puts it, with algebraic topology.

Related content
Early on, Giovanni Paolini knew little about machine learning — now he’s leading new science on artificial intelligence that could inform AWS products.

“I don't remember a time in my life when I wasn't interested in science,” he says. Achille was particularly interested in the foundations of mathematics. “I focused on logic, because I’ve always had this nagging problem at the back of my mind of exactly why things are the way they are in mathematics.”

Achille’s first taste of computer vision arose when he and his peers decided to augment an annual school tradition: a 24-hour foosball tournament between mathematicians and physicists. Besides a sport competition, the event had become a showcase of the students’ engineering capabilities. That year, after adding live streaming and a fully automated scorekeeping system, the students thought it was time to add real-time tracking of the ball.

“It’s just a white blob moving on a green background. How hard could it be?” says Achille. The short answer is, harder than they thought. So Achille took a class that would teach him more — a choice that would eventually lead to an invitation from Soatto to join him at the University of California, Los Angeles, for a PhD in computer vision.

“In Italian education, it sometimes feels like there is a hierarchy,” says Achille. “The more abstract you are, the better you are doing!” So why the departure from pure mathematics? In the end, says Soatto, “Alessandro’s work became so abstract he couldn’t see a path to impact. That’s very frustrating for a really smart person who wants to make a difference in the world.”

Deep learning takes off

Achille’s PhD coincided with the rise of deep learning (DL), which would become a game-changing technology in machine learning and computer vision. “At the time, we didn't know if it was anything more than just a new, slightly more powerful tool. We didn’t know if DL had the power of abstraction, reasoning, and so on,” says Achille.

Related content
Two recent trends in the theory of deep learning are examinations of the double-descent phenomenon and more-realistic approaches to neural kernel methods.

The power of deep learning was becoming clear, though. During an internship in 2017, Achille worked on a computer vision model that could learn a representation of a dynamic scene — a 3-D shape that was moving, changing color, changing orientation, and so on.

The idea was to capture and isolate the semantic components of the scene — shape, size, color, or angle of rotation — rather than capturing the totality of the scene’s characteristics. Humans do this disentangling naturally. That’s how you would understand the sight of a blue banana, even if you had never seen one before: “banana” and “blue” are separate semantic components.

While Achille enjoyed the project and appreciated its importance, he was struck by the artificiality of the setting. “I was not working backwards from a use case,” he says. Shortly after, Achille became an intern at the AWS AI Lab that had just been established at the Caltech campus, where he was immediately given a real-world challenge to solve on a newly launched product called Custom Label.

Real-world problems

At the time, Custom Label allowed Amazon customers to access CV models that could be trained to identify, say, their company’s products in images — a particular faucet, for example. The models could also be trained to perform tasks like identifying something in a video or analyzing a satellite image.

AWS researchers realized it was impractical to expect a single model to accurately deal with such a range of esoteric image possibilities. A better approach was to pretrain many expert models on different imagery domains and then select the most appropriate one to fine-tune on the customer’s data. The problem for AWS was, how could it efficiently discover which of 100 or more pretrained CV models would perform best?

Alessandro Achille: The information in a deep neural network

During his research in machine learning, Achille became passionate about information theory — a mathematical framework for quantifying, storing, and communicating information. So he used that approach on this so-called model selection problem. “For a hammer, everything looks like a nail,” he laughs.

The problem is how to measure the “distance" between two learning tasks — the task a given AWS model has been pretrained on and the novel customer task. In other words, how much additional information is required by the pretrained model to produce a good performance on the customer task? The less additional information required, the better.

Achille was impressed by the task because it was an important customer issue with a fundamental mathematical problem behind it. “We formulated an algorithm to compute this efficiently, so we could easily select the expert model best suited to solving the customer’s task,” says Achille. “It was the first solution to this problem.”

Achille found Amazon’s applied approach to be a compelling way to work, and when Soatto established the AWS AI Labs, Achille was happy to join him there.

“One of the beauties of being at Amazon is that we’re tackling some of the world's most challenging emerging problems,” says Soatto. “Because when AWS customers have difficult problems to address, they come to us. From a scientific perspective, this is a goldmine.”

Machine unlearning

Achille is currently staking out a vein of research gold in a critical new area of artificial intelligence (AI): AI model disgorgement, more popularly known as "machine unlearning". It is critical in any implementation of machine learning models that the data used to train the model are used responsibly, in a privacy-preserving manner, and in accordance with the appropriate regulations and intellectual-property rights.

Related content
At this year’s ACL, Amazon researchers won an outstanding-paper award for showing that knowledge distillation using contrastive decoding in the teacher model and counterfactual reasoning in the student model improves the consistency of “chain of thought” reasoning.

Modern ML models have become very large and complex, requiring a great deal of data and computational resources to train. But what if, once a model is trained, the contributor of some of those training data decides, or is obligated by law, to withdraw the data from the model? Or what if some of the training data is discovered to be biased? Retraining a large model afresh, with some data withheld, may be impractical, particularly if the requirement for such changes becomes commonplace in the shifting legal landscape.

The next level

In 2019 that Soatto, Achille, and Achille's fellow UCLA PhD student Aditya Golatkar published a paper entitled “Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks”; the paper established a novel method for removing the effects of a subset of a deep neural network's training data, without requiring retraining.

Eternal sunshine of the spotless net: Selective forgetting in deep networks

“I was happy to see interest in ‘selective forgetting’ explode after we published this paper,” says Achille. “Model disgorgement is a fascinating problem, and not only because it's very important for AWS customers. It also demands that we understand everything about a model’s neural network. We need to understand where information is held in a model’s weights, how it is encoded, how it is measured.”

It is in this fundamental work that Achille took the field to “the next level”, says Soatto. And this year, Achille and Soatto, on a team also featuring Amazon Scholar Michael Kearns, coauthor of the book The Ethical Algorithm, led the field by introducing a taxonomy of possible disgorgement methods applicable to modern ML systems.

The paper also describes ways to train future models so that they are amenable to subsequent disgorgement.

Related content
The surprising dynamics related to learning that are common to artificial and biological systems.

“It is better for models to learn in a compartmentalized fashion, so in the event that some data is found to be problematic, everything that touched those data gets thrown away, while the rest of the model survives without having to retrain it from scratch,” says Soatto.

This work has been particularly satisfying, says Achille, as it obliged computer scientists, mathematicians, lawyers, and policymakers to work closely together to solve a pressing modern problem.

Critical learning periods

The breadth of Achille’s interests is formidable. His other prominent research includes work on “critical learning periods” in the training of deep networks. The work arose through serendipity, after a friend studying for a medical exam on the profound effect of critical learning periods in humans jokingly asked Achille if his networks also had them. Interest piqued, Achille explored the idea, and found some striking similarities.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

For example, take infantile strabismus, a condition in which a person's eyes do not align properly from birth or early infancy. If not treated early, the condition can cause amblyopia, whereby the brain learns to trust the properly working eye and to ignore the visual input from the misaligned eye, to avoid double vision.

This one-sided competition between the two eyes (data sources) leads to worsening vision in the misaligned eye and of course the loss of stereo vision, which is important for depth perception. Amblyopia is difficult to reverse if left untreated into adulthood. But treating the eyes early, enabling them to work together optimally, makes for a robust vision system.

Similarly, in the early training of multimodal deep neural networks, one type of data may become favored over another, simply through expediency. For example, in a visual-question-answering model, which is trained on images and captions, the easy-to-use textual information may outcompete visual information, leading to models that are effectively blind to visual information. Achille and his colleagues suggest that when a DL model takes such shortcuts, it has irreversible effects on the subsequent performance of the model, making it less flexible — and therefore less useful — when fine-tuned on novel data.

Off the charts

Having explored the causes of critical learning periods in deep networks, the team offered new techniques for stabilizing the early learning dynamics in model training and showed how this approach can actually prevent critical periods in deep networks. The practical benefits of this research aside, Achille enjoys exploring the parallelisms of artificial and biological systems.

“Look, we can all recognize that the actual hardware of a network and a brain are completely different, but can we also recognize that they are both systems that are trying to process information efficiently and trying to learn something?” he asks. Are there some fundamental dynamics of learning, and how it relates to the acquisition of information, that are shared between synthetic and biological systems? Watch this space.

Looking back on the eight years since his hunting trip to Pisa, Soatto considers what he most appreciates about his Amazon colleague.

“First, the brilliance of the way Alessandro frames problems: he thinks very abstractly, yet he is also a hacker who thinks broadly, all the way from mathematics to neuroscience, from art to engineering — this is very rare. Second, his curiosity, which is absolutely off the charts.”

For Achille’s part, when asked if he prefers tackling the challenges that arise from AWS products or working on fundamental science problems, he demurs. “I don’t need to split my time between product and fundamental research. For me, it ends up being the same thing.”

Indeed, one of Amazon’s most abstract thinkers has found a path to true impact.

Research areas

Related content

US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: 1 Washington Street, Newark, NJ 07102 Duties: Independently own, design, and implement scalable and reliable solutions to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the approach is unclear. Acquire data by building the necessary SQL/ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3/edX storage systems. Deliver artifacts on medium size projects that affect important business decisions. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products and product features. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, large language models and/or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports to Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s degree in Statistics, Computer Science, Computer Engineering, Data Science, Machine Learning, Applied Math, Operations Research, or a related field plus two (2) years of experience as a Data Scientist or other occupation involving data processing and predictive Machine Learning modeling at scale. Experience may be gained concurrently and must include: Two (2) years in each of the following: - Utilizing specialized modelling software including Python or R - Building statistical models and machine learning models using large datasets from multiple resources - Building non-linear models including Neural Nets, Deep Learning, or Gradient Boosting. One (1) year in each of the following: - Building production-ready solutions or applications relying on Large Language Models (LLM), accessed programmatically and beyond just prompting - Evaluating LLM results at scale or fine-tuning LLMs - Building production-ready recommendation systems - Using database technologies including SQL or ETL. Alternatively, will accept a Bachelor’s degree and five (5) years of experience. Salary: $169,550 - 207,500 /year. Multiple positions. Apply online: www.amazon.jobs Job Code: ADBL175.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a frontend engineer on the team, you will build the platform and tooling that power data creation, evaluation, and experimentation across the lab. Your work will be used daily by annotators, engineers, and researchers. This is a hands-on technical leadership role. You will ship a lot of code while defining frontend architecture, shared abstractions, and UI systems across the platform. We are looking for someone with strong engineering fundamentals, sound product judgment, and the ability to build polished UIs in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Define and evolve architecture for a research tooling platform with multiple independently evolving tools. - Design and implement reusable UI components, frontend infrastructure, and APIs. - Collaborate directly with Research, Human -Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through implementation, rollout, and long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a backend engineer on the team, you will build and operate core services that ingest, process, and distribute large-scale, multi-modal datasets to internal tools and data pipelines across the lab. This is a hands-on technical leadership role. You will ship a lot of code while defining backend architecture and operational standards across the platform. The platform is built primarily in TypeScript today, with plans to introduce Python services in the future. We are looking for someone who can balance rapid experimentation with operational rigor to build reliable services in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Design and evolve backend architecture and interfaces for core services. - Define and own standards for production health, performance, and observability. - Collaborate directly with Research, Human Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
FR, Courbevoie
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Amazon's Pricing & Promotions Science is seeking a driven Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing and Promotions Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning and reinforcement learning modeling expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. The Price Optimization science team drives cross-domain and cross-system improvements through: - invent and deliver price optimization, simulation, and competitiveness tools for Sellers. - shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. - Promotion optimization initiatives exploring CX, discount amount, and cross-product optimization opportunities. - Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into many partner-team architectures, and is highly relevant to the customer, therefore this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication. About the team About the team: the Pricing Discovery and Optimization team within P2 Science owns price quality, discovery and discount optimization initiatives, including criteria for internal price matching, price discovery into search, p13N and SP, pricing bandits, and Promotion type optimization. We leverage planet scale data on billions of Amazon and external competitor products to build advanced optimization models for pricing, elasticity estimation, product substitutability, and optimization. We preserve long term customer trust by ensuring Amazon's prices are always competitive and error free.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
US, WA, Seattle
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities Key job responsibilities include: * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research