ICLR: Why does deep learning work, and what are its limits?

Two recent trends in the theory of deep learning are examinations of the double-descent phenomenon and more-realistic approaches to neural kernel methods.

At this year’s International Conference on Learning Representations (ICLR), René Vidal, a professor of radiology and electrical engineering at the University of Pennsylvania and an Amazon Scholar, was a senior area chair, overseeing a team of reviewers charged with evaluating paper submissions to the conference. And the paper topic that his team focused on, Vidal says, was the theory of deep learning.

Vidal at ICLR.AS.16x9.png
René Vidal, the Rachleff University Professor at the University of Pennsylvania, with joint appointments in the School of Medicine's Department of Radiology and the Department of Electrical and Systems Engineering, a Penn Integrates Knowledge University Professor, and an Amazon Scholar.

“While representation learning and deep learning have been incredibly successful and have produced spectacular results for many application domains, deep networks remain black boxes,” Vidal explains. “How you design deep networks remains an art; there is a lot of trial and error on each and every dataset. So by and large, the area of mathematics of deep learning aims to have theorems, mathematical proofs, that guarantee the performance of deep networks.

“You can ask questions such as ‘Why is it the case that deep networks generalize from one data set to another?’ ‘Can you have a theorem that tells you the classification error on a new dataset versus the classification error on the training data set?’ ‘Can you derive a bound on that error as, say, a function of the number of training examples?’

“There are questions that pertain to optimization. These days, you are minimizing a loss function over, sometimes, billions of parameters. And because the optimization problems are so large, and you have so many training examples, for computational reasons, you are limited to very simple optimization methods. Can you prove convergence for these nonconvex problems? Can you understand what you converge to? Why is it the case that these very simple optimization methods are so successful for these very complex problems?’”

Double descent

In particular, Vidal says, two topics in the theory of deep learning have been drawing increased attention recently. The first is the so-called double-descent phenomenon. The conventional wisdom in AI used to hold that the size of a neural network had to be carefully tailored to both the problem it addressed and the amount of training data available. If the network was too small, it couldn’t learn complex patterns in the data; but if it got too large, it could simply memorize the correct answers for all the data in its training set — a particularly egregious case of overfitting — and it wouldn’t generalize to new inputs.

Related content
The surprising dynamics related to learning that are common to artificial and biological systems.

As a consequence, for a given problem and a given set of training data, as the size of a neural network grows, its error rate on the previously unseen data of the test set goes down. At some point, however, the error rate starts to go up again, as the network begins to overfit the data.

In the last few years, however, a number of papers have reported the surprising result that as the network continues to grow, the error rate goes back down again. This the double-descent phenomenon — and no one is sure why it happens.

“The error goes down as the size of the model grows, then back up as it overfits,” Vidal explains. “And it gets to a peak at the so-called interpolation limit, which is exactly when, during training, you can achieve zero error, because the network is big enough that it can memorize. But from then on, the testing error goes down again. There have been a lot of papers trying to explain why this happens.”

The neural tangent kernel

Another interesting recent trend in the theory of deep networks, Vidal says, involves new forms of analysis based on the neural tangent kernel.

Related content
Machine learning systems often act on “features” extracted from input data. In a natural-language-understanding system, for instance, the features might include words’ parts of speech, as assessed by an automatic syntactic parser, or whether a sentence is in the active or passive voice.

“In the past — say, the year 2000 — the way we did learning was by using so-called kernel methods,” Vidal explains. “Kernel methods are based on taking your data and embedding it with a fixed embedding into a very-high-dimensional space, where everything looks linear. We can use classical linear learning techniques in that embedding space, but the embedding space was fixed.

“You can think of deep learning as learning that embedding — mapping the input data to some high-dimensional space. In fact, that’s exactly representation learning. The neural-tangent-kernel regime — a type of initialization, a type of neural network, a type of training — is a regime under which you can approximate the learning dynamics of a deep network using kernels. And therefore you can use classical techniques to understand why they generalize and why not.

“That regime is very unrealistic — networks with infinite width or initializations that don't change the weights too much during training. In this very contrived and specialized setting, things are easier and we can understand them better. The current trend is how we go away from these unrealistic assumptions and acknowledge that the problem is hard: you do want weights to change during training, because if they don't, you're not learning much.”

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

Indeed, Vidal has engaged this topic himself, in a paper accepted to this year’s Conference on Artificial Intelligence and Statistics (AISTATS), whose coauthors are his old research team from Johns Hopkins University.

“The three assumptions we are trying to get rid of are, one, can we get theorems for networks with finite width as opposed to infinite width?” Vidal says. “Number two is, can we get theorems for gradient-descent-like methods that have a finite step size? Because many earlier theorems assumed a really teeny tiny step size — like, infinitesimally small. And the third assumption we are relaxing is this assumption on the initialization, which becomes much more general.”

The limits of representation learning

When ICLR was founded, in 2013, it was a venue for researchers to explore alternatives to machine learning methods, such as kernel methods, that represented data in fixed, prespecified ways. Now, however, deep learning — which uses learned representations — has taken over the field of machine learning, and the difference between ICLR and the other major machine learning conferences has shrunk.

As someone who spent 20 years as a professor of biomedical engineering at Hopkins, however, Vidal has a keen awareness of the limitations of representation learning. For some applications, he says, domain knowledge is still essential.

Related content
The first step in training a neural network to solve a problem is usually the selection of an architecture: a specification of the number of computational nodes in the network and the connections between them. Architectural decisions are generally based on historical precedent, intuition, and plenty of trial and error.

“It happens in domains where data or labels may not be abundant,” he explains. “This is the case, for example, in the medical domain, where maybe there are 100 patients in a study, or maybe you can't put the data on a website where everyone can annotate it.

“Just to give you one concrete example, I had a project where we needed to produce a blood test, and we needed to classify white blood cells into different kinds. No one is ever going to take videos of millions of cells, and you're not going to have a pathologist annotate each and every cell to do object detection the way we do in computer vision.

“So all we could get were the actual results of the blood test: what are the concentrations? And you might have a million cells of class one, class two, and class three, and you just have these very weak labels. But the domain experts said, we can do cell purification by adding these chemicals here and there, and we do centrifugation and I don't know what, and then we get cells of only one type in this specimen. Therefore you can now pretend that you have labels, because we know that cells that had different labels didn't survive this chemistry. And we said, ‘Wow, that’s great!’

“If you do things with 100% people who are all data scientists and machine learning people, they tend to think that all you need is a bigger network and more data. But I think, as at Amazon, where you need to think backwards from the customer, you need to solve real problems, and the solution isn't always more data and more annotations.”

Research areas

Related content

US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Senior Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As a Senior Applied Scientist, you will leverage your technical expertise and experience to demonstrate leadership in tackling large complex problems, setting the direction and collaborating with other talented applied scientists and engineers to research and develop LLM modeling and engineering techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering, Model Fine-Tuning, Reinforcement Learning from Human Feedback (RLHF), Evaluation, etc. Your work will directly impact our customers in the form of novel products and services .
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Research Scientist with fabrication and data analysis experience working on all elements of a superconducting circuit. The position is on-site at our lab, located on the in Pasadena, CA. The ideal candidate will have had prior experience building software tools for data analysis and visualization to enable deep diving into fabrication details, electrical test data. We are looking for candidates with strong engineering principles, resourcefulness and data science experience. Organization and communication skills are essential. Key job responsibilities * Develop and automate data pipeline pertinent to superconducting device fabrication. * Develop analytical tools to uncover new information about established and new processes. * Develop new or contribute to modifying existing data visualization tools. * Utilize machine learning to enable better deeper dives into fabrication and related data. * Interface with various software, design, fabrication and electrical test teams to enable new functionalities. A day in the life The role will be vital to the fabrication team and quantum computing device integration mechanism. The candidate will develop software based analytical tools to enable data driven decisions across projects related to fabrication and supporting infrastructure. Each fabrication run delivers additional data. The candidate will stay close to the details of fabrication providing data analysis and quick feedback to key stakeholders. At the end of fabrication runs custom and standardized reports will be generated by the candidate to provide insights into data generated from the run. This position may require occasional weekend work. About the team AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
CA, ON, Toronto
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As the Data Science Manager on this team, you will: - Lead of team of scientists, business intelligence engineers, etc., on solving science problems with a high degree of complexity and ambiguity. - Develop science roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers in the organization. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: - Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. - Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. - Lead marketplace design and development based on economic theory and data analysis. - Provide technical and scientific guidance to team members. - Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment - Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. - Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Collaborate with business and software teams across Amazon Ads. - Stay up to date with recent scientific publications relevant to the team. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches