Responsible AI in the generative era

Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

In recent years, and even recent months, there have been rapid and dramatic advances in the technology known as generative AI. Generative AI models are trained on inconceivably massive collections of text, code, images, and other rich data. They are now able to produce, on demand, coherent and compelling stories, news summaries, poems, lyrics, paintings, and programs. The potential practical uses of generative AI are only just beginning to be understood but are likely to be manifold and revolutionary and to include writing aids, creative content production and refinement, personal assistants, copywriting, code generation, and much more.

Kearns with caption
Michael Kearns, a professor of computer and information science at the University of Pennsylvania and an Amazon Scholar.

There is thus considerable excitement about the transformations and new opportunities that generative AI may bring. There are also understandable concerns — some of them new twists on those of traditional responsible AI (such as fairness and privacy) and some of them genuinely new (such as the mimicry of artistic or literary styles). In this essay, I survey these concerns and how they might be addressed over time.

I will focus primarily on technical approaches to the risks, while acknowledging that social, legal, regulatory, and policy mechanisms will also have important roles to play. At Amazon, our hope is that such a balanced approach can significantly reduce the risks, while still preserving much of the excitement and usefulness of generative AI.

What is generative AI?

To understand what generative AI is and how it works, it is helpful to begin with the example of large language models (LLMs). Imagine the thought experiment in which we start with some sentence fragment like Once upon a time, there was a great ..., and we poll people on what word they would add next. Some might say wizard, others might say queen, monster, and so on. We would also expect that given the fairy tale nature of the fragment, words such as apricot or fork would be rather unlikely suggestions.

Related content
Model using ASR hypotheses as extra inputs reduces word error rate of human transcriptions by almost 11%.

If we poll a large enough population, a probability distribution over next words would begin to emerge. We could then randomly pick a word from that distribution (say wizard), and now our sequence would be one word longer — Once upon a time, there was a great wizard ... — and we could again poll for the next word. In this manner we could theoretically generate entire stories, and if we restarted the whole process, the crowd would produce an entirely different narrative due to the inherent randomness.

Dramatic advances in machine learning have effectively made this thought experiment a reality. But instead of polling crowds of people, we use a model to predict likely next words, one trained on a massive collection of documents — public collections of fiction and nonfiction, Wikipedia entries and news articles, transcripts of human dialogue, open-source code, and much more.

LLM objective.gif
An example of how a language model uses context to predict the next word in a sentence.

If the training data contains enough sentences beginning Once upon a time, there was a great …, it will be easy to sample plausible next words for our initial fragment. But LLMs can generalize and create as well, and not always in ways that humans might expect. The model might generate Once upon a time, there was a great storm based on occurrences of tremendous storm in the training data, combined with the learned synonymy of great and tremendous. This completion can happen despite great storm never appearing verbatim in the training data and despite the completions more expected by humans (like wizard and queen).

The resulting models are just as complex as their training data, often described by hundreds of billions of numbers (or parameters, in machine learning parlance), hence the “large” in LLM. LLMs have become so good that not only do they consistently generate grammatically correct text, but they create content that is coherent and often compelling, matching the tone and style of the fragments they were given (known as prompts). Start them with a fairy tale beginning, and they generate fairy tales; give them what seems to be the start of a news article, and they write a news-like article. The latest LLMs can even follow instructions rather than simply extend a prompt, as in Write lyrics about the Philadelphia Eagles to the tune of the Beatles song “Get Back”.

Related content
Models that map spoken language to objects in an image would make it easier for customers to communicate with multimodal devices.

Generative AI isn’t limited to text, and many models combine language and images, as in Create a painting of a skateboarding cat in the style of Andy Warhol. The techniques for building such systems are a bit more complex than for LLMs and involve learning a model of proximity between text and images, which can be done using data sources like captioned photos. If there are enough images containing cats that have the word cat in the caption, the model will capture the proximity between the word and pictures of cats.

The examples above suggest that generative AI is a form of entertainment, but many potential practical uses are also beginning to emerge, including generative AI as a writing tool (Shorten the following paragraphs and improve their grammar), for productivity (Extract the action items from this meeting transcript), for creative content (Propose logo designs for a startup building a dog-walking app), for simulating focus groups (Which of the following two product descriptions would Florida retirees find more appealing?), for programming (Give me a code snippet to sort a list of numbers), and many others.

So the excitement over the current and potential applications of generative AI is palpable and growing. But generative AI also gives rise to some new risks and challenges in the responsible use of AI and machine learning. And the likely eventual ubiquity of generative models in everyday life and work amplifies the stakes in addressing these concerns thoughtfully and effectively.

So what’s the problem?

The “generative” in generative AI refers to the fact that the technology can produce open-ended content that varies with repeated tries. This is in contrast to more traditional uses of machine learning, which typically solve very focused and narrow prediction problems.

For example, consider training a model for consumer lending that predicts whether an applicant would successfully repay a loan. Such a model might be trained using the lender’s data on past loans, each record containing applicant information (work history, financial information such as income, savings, and credit score, and educational background) along with whether the loan was repaid or defaulted.

Related content
NSF deputy assistant director Erwin Gianchandani on the challenges addressed by funded projects.

The typical goal would be to train a model that was as accurate as possible in predicting payment/default and then apply it to future applications to guide or make lending decisions. Such a model makes only lending outcome predictions and cannot generate fairy tales, improve grammar, produce whimsical images, write code, and so on. Compared to generative AI, it is indeed a very narrow and limited model.

But the very limitations also make the application of certain dimensions of responsible AI much more manageable. Consider the goal of making our lending model fair, which would typically be taken to mean the absence of demographic bias. For example, we might want to make sure that the error rate of the predictions of our model (and it generally will make errors, since even human loan officers are imperfect in predicting who will repay) is approximately equal on men and women. Or we might more specifically ask that the false-rejection rate — the frequency with which the model predicts default by an applicant who is in fact creditworthy — be the same across gender groups.

Once armed with this definition of fairness, we can seek to enforce it in the training process. In other words, instead of finding a model that minimizes the overall error rate, we find one that does so under the additional condition that the false-rejection rates on men and women are approximately equal (say, within 1% of each other). We might also want to apply the same notion of fairness to other demographic properties (such as young, middle aged, and elderly). But the point is that we can actually give reasonable and targeted definitions of fairness and develop training algorithms that enforce them.

It is also easy to audit a given model for its adherence to such notions of fairness (for instance, by estimating the error rates on both male and female applicants). Finally, when the predictive task is so targeted, we have much more control over the training data: we train on historical lending decisions only, and not on arbitrarily rich troves of general language, image, and code data.

Now consider the problem of making sure an LLM is fair. What might we even mean by this? Well, taking a cue from our lending model, we might ask that the LLM treat men and women equally. For instance, consider a prompt like Dr. Hanson studied the patient’s chart carefully, and then … . In service of fairness, we might ask that in the completions generated by an LLM, Dr. Hanson be assigned male and female pronouns with roughly equal frequency. We might argue that to do otherwise perpetuates the stereotype that doctors are typically male.

Related content
Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

But then should we not also do this for mentions of nurses, firefighters, accountants, pilots, carpenters, attorneys, and professors? It’s clear that measuring just this one narrow notion of fairness will quickly become unwieldy. And it isn’t even obvious in what contexts it should be enforced. What if the prompt described Dr. Hanson as having a beard? What about the Women’s National Basketball Association (WNBA)? Should mention of a WNBA player in a prompt elicit male pronouns half the time?

Defining fairness for LLMs is even murkier than we suggest above, again because of the open-ended content they generate. Let’s turn from pronoun choices to tone. What if an LLM, when generating content about a woman, uses an ever-so-slightly more negative tone (in choice of words and level of enthusiasm) than when generating content about a man? Again, even detecting and quantifying such differences would be a very challenging technical problem. The field of sentiment analysis in natural-language processing might suggest some possibilities, but currently, it focuses on much coarser distinctions in narrower settings, such as distinguishing positive from negative sentiment in business news articles about particular corporations.

So one of the prices we pay for the rich, creative, open-ended content that generative AI can produce is that it becomes commensurately harder (compared to traditional predictive ML) to define, measure, and enforce fairness.

From fairness to privacy

In a similar vein, let’s consider privacy concerns. It is of course important that a consumer lending model not leak information about the financial or other data of the individual applicants in the training data. (One way this can happen is if model predictions are accompanied by confidence scores; if the model expresses 100% confidence that a loan application will default, it’s likely because that application, with a default outcome, was in the training data.) For this kind of traditional, more narrow ML, there are now techniques for mitigating such leaks by making sure model outputs are not overly dependent on any particular piece of training data.

Related content
Calibrating noise addition to word density in the embedding space improves utility of privacy-protected text.

But the open-ended nature of generative AI broadens the set of concerns from verbatim leaks of training data to more subtle copying phenomena. For example, if a programmer has written some code using certain variable names and then asks an LLM for help writing a subroutine, the LLM may generate code from its training data, but with the original variable names replaced with those chosen by the programmer. So the generated code is not literally in the training data but is different only in a cosmetic way.

There are defenses against these challenges, including curation of training data to exclude private information, and techniques to detect similarity of code passages. But more subtle forms of replication are also possible, and as I discuss below, this eventually bleeds into settings where generative AI reproduces the “style” of content in its training data.

And while traditional ML has begun developing techniques for explaining the decisions or predictions of trained models, they don’t always transfer to generative AI, in part because current generative models sometimes produce content that simply cannot be explained (such as scientific citations that don’t exist, something I’ll discuss shortly).

The special challenges of responsible generative AI

So the usual concerns of responsible AI become more difficult for generative AI. But generative AI also gives rise to challenges that simply don’t exist for predictive models that are more narrow. Let’s consider some of these.

Toxicity. A primary concern with generative AI is the possibility of generating content (whether it be text, images, or other modalities) that is offensive, disturbing, or otherwise inappropriate. Once again, it is hard to even define and scope the problem. The subjectivity involved in determining what constitutes toxic content is an additional challenge, and the boundary between restricting toxic content and censorship may be murky and context- and culture-dependent. Should quotations that would be considered offensive out of context be suppressed if they are clearly labeled as quotations? What about opinions that may be offensive to some users but are clearly labeled as opinions? Technical challenges include offensive content that may be worded in a very subtle or indirect fashion, without the use of obviously inflammatory language.

Related content
Prompt engineering enables researchers to generate customized training examples for lightweight “student” models.

Hallucinations. Considering the next-word distribution sampling employed by LLMs, it is perhaps not surprising that in more objective or factual use cases, LLMs are susceptible to what are sometimes called hallucinations — assertions or claims that sound plausible but are verifiably incorrect. For example, a common phenomenon with current LLMs is creating nonexistent scientific citations. If one of these LLMs is prompted with the request Tell me about some papers by Michael Kearns, it is not actually searching for legitimate citations but generating ones from the distribution of words associated with that author. The result will be realistic titles and topics in the area of machine learning, but not real articles, and they may include plausible coauthors but not actual ones.

In a similar vein, prompts for financial news stories result not in a search of (say) Wall Street Journal articles but news articles fabricated by the LLM using the lexicon of finance. Note that in our fairy tale generation scenario, this kind of creativity was harmless and even desirable. But current LLMs have no levers that let users differentiate between “creativity on” and “creativity off” use cases.

Related content
Combining contrastive training and selection of hard negative examples establishes new benchmarks.

Intellectual property. A problem with early LLMs was their tendency to occasionally produce text or code passages that were verbatim regurgitations of parts of their training data, resulting in privacy and other concerns. But even improvements in this regard have not prevented reproductions of training content that are more ambiguous and nuanced. Consider the aforementioned prompt for a multimodal generative model Create a painting of a skateboarding cat in the style of Andy Warhol. If the model is able to do so in a convincing yet still original manner because it was trained on actual Warhol images, objections to such mimicry may arise.

Plagiarism and cheating. The creative capabilities of generative AI give rise to worries that it will be used to write college essays, writing samples for job applications, and other forms of cheating or illicit copying. Debates on this topic are happening at universities and many other institutions, and attitudes vary widely. Some are in favor of explicitly forbidding any use of generative AI in settings where content is being graded or evaluated, while others argue that educational practices must adapt to, and even embrace, the new technology. But the underlying challenge of verifying that a given piece of content was authored by a person is likely to present concerns in many contexts.

Disruption of the nature of work. The proficiency with which generative AI is able to create compelling text and images, perform well on standardized tests, write entire articles on given topics, and successfully summarize or improve the grammar of provided articles has created some anxiety that some professions may be replaced or seriously disrupted by the technology. While this may be premature, it does seem that generative AI will have a transformative effect on many aspects of work, allowing many tasks previously beyond automation to be delegated to machines.

What can we do?

The challenges listed above may seem daunting, in part because of how unfamiliar they are compared to those of previous generations of AI. But as technologists and society learn more about generative AI and its uses and limitations, new science and new policies are already being created to address those challenges.

For toxicity and fairness, careful curation of training data can provide some improvements. After all, if the data doesn’t contain any offensive or biased words or phrases, an LLM simply won’t be able to generate them. But this approach requires that we identify those offensive phrases in advance and are certain that there are absolutely no contexts in which we would want them in the output. Use-case-specific testing can also help address fairness concerns — for instance, before generative AI is used in high-risk domains such as consumer lending, the model could be tested for fairness for that particular application, much as we might do for more narrow predictive models.

Related content
Amazon Visiting Academic Barbara Poblete helps to build safer, more-diverse online communities — and to aid disaster response.

For less targeted notions of toxicity, a natural approach is to train what we might call guardrail models that detect and filter out unwanted content in the training data, in input prompts, and in generated outputs. Such models require human-annotated training data in which varying types and degrees of toxicity or bias are identified, which the model can generalize from. In general, it is easier to control the output of a generative model than it is to curate the training data and prompts, given the extreme generality of the tasks we intend to address.

For the challenge of producing high-fidelity content free of hallucinations, an important first step is to educate users about how generative AI actually works, so there is no expectation that the citations or news-like stories produced are always genuine or factually correct. Indeed, some current LLMs, when pressed on their inability to quote actual citations, will tell the user that they are just language models that don’t verify their content with external sources. Such disclaimers should be more frequent and clear. And the specific case of hallucinated citations could be mitigated by augmenting LLMs with independent, verified citation databases and similar sources, using approaches such as retrieval-augmented generation. Another nascent but intriguing approach is to develop methods for attributing generated outputs to particular pieces of training data, allowing users to assess the validity of those sources. This could help with explainability as well.

Concerns around intellectual property are likely to be addressed over time by a mixture of technology, policy, and legal mechanisms. In the near term, science is beginning to emerge around various notions of model disgorgement, in which protected content or its effects on generative outputs are reduced or removed. One technology that might eventually prove relevant is differential privacy, in which a model is trained in a way that ensures that any particular piece of training data has negligible effects on the outputs the model subsequently produces.

Related content
By exploiting consistencies across components of ensemble classifiers, a new approach reduces data requirements by up to 89%.

Another approach is so-called sharding approaches, which divide the training data into smaller portions on which separate submodels are trained; the submodels are then combined to form the overall model. In order to undo the effects of any particular item of data on the overall model, we need only remove it from its shard and retrain that submodel, rather than retraining the entire model (which for generative AI would be sufficiently expensive as to be prohibitive).

Finally, we can consider filtering or blocking approaches, where before presentation to the user, generated content is explicitly compared to protected content in the training data or elsewhere and suppressed (or replaced) if it is too similar. Limiting the number of times any specific piece of content appears in the training data also proves helpful in reducing verbatim outputs.

Some interesting approaches to discouraging cheating using generative AI are already under development. One is to simply train a model to detect whether a given (say) text was produced by a human or by a generative model. A potential drawback is that this creates an arms race between detection models and generative AI, and since the purpose of generative AI is to produce high-quality content plausibly generated by a human, it’s not clear that detection methods will succeed in the long run.

An intriguing alternative is watermarking or fingerprinting approaches that would be implemented by the developers of generative models themselves. For example, since at each step LLMs are drawing from the distribution over the next word given the text so far, we can divide the candidate words into “red” and “green” lists that are roughly 50% of the probability each; then we can have the LLM draw only from the green list. Since the words on the green list are not known to users, the likelihood that a human would produce a 10-word sentence that also drew only from the green lists is ½ raised to the 10th power, which is only about 0.0009. In this way we can view all-green content as providing a virtual proof of LLM generation. Note that the LLM developers would need to provide such proofs or certificates as part of their service offering.

LLM watermarking.AI.gif
At each step, the model secretly divides the possible next words into green and red lists. The next word is then sampled only from the green list.
LLM watermarking.human.gif
A human generating a sentence is unaware of the division into green and red lists and is thus very likely to choose a sequence that mixes green and red words. Since, on long sentences, the likelihood of a human choosing an all-green sequence is vanishingly small, we can view all-green sentences as containing a proof they were generated by AI.

Disruption to work as we know it does not have any obvious technical defenses, and opinions vary widely on where things will settle. Clearly, generative AI could be an effective productivity tool in many professional settings, and this will at a minimum alter the current division of labor between humans and machines. It’s also possible that the technology will open up existing occupations to a wider community (a recent and culturally specific but not entirely ludicrous quip on social media was “English is the new programming language”, a nod to LLM code generation abilities) or even create new forms of employment, such as prompt engineer (a topic with its own Wikipedia entry, created in just February of this year).

But perhaps the greatest defense against concerns over generative AI may come from the eventual specialization of use cases. Right now, generative AI is being treated as a fascinating, open-ended playground in which our expectations and goals are unclear. As we have discussed, this open-endedness and the plethora of possible uses are major sources of the challenges to responsible AI I have outlined.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

But soon more applied and focused uses will emerge, like some of those I suggested earlier. For instance, consider using an LLM as a virtual focus group — creating prompts that describe hypothetical individuals and their demographic properties (age, gender, occupation, location, etc.) and then asking the LLM which of two described products they might prefer.

In this application, we might worry much less about censoring content and much more about removing any even remotely toxic output. And we might choose not to eradicate the correlations between gender and the affinity for certain products in service of fairness, since such correlations are valuable to the marketer. The point is that the more specific our goals for generative AI are, the easier it is to make sensible context-dependent choices; our choices become more fraught and difficult when our expectations are vague.

Finally, we note that end user education and training will play a crucial role in the productive and safe use of generative AI. As the potential uses and harms of generative AI become better and more widely understood, users will augment some of the defenses I have outlined above with their own common sense.

Conclusion

Generative AI has stoked both legitimate enthusiasm and legitimate fears. I have attempted to partially survey the landscape of concerns and to propose forward-looking approaches for addressing them. It should be emphasized that addressing responsible-AI risks in the generative age will be an iterative process: there will be no “getting it right” once and for all. This landscape is sure to shift, with changes to both the technology and our attitudes toward it; the only constant will be the necessity of balancing the enthusiasm with practical and effective checks on the concerns.

Related content

US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Targeting and Recommendations team within Sponsored Products and Brands empowers advertisers with intelligent targeting controls and one-click campaign recommendations that automatically populate optimal settings based on ASIN data. This comprehensive suite provides advanced targeting capabilities through AI-generated keyword and ASIN suggestions, sophisticated targeting controls including Negative Targeting, Manual Targeting with Product Attribute Targeting (PAT) and Keyword Targeting (KWT), and Automated Targeting (ATv2). Our vision is to build a revolutionary, highly personalized and context-aware agentic advertiser guidance system that seamlessly integrates Large Language Models (LLMs) with sophisticated tooling, operating across both conversational and traditional ad console experiences while scaling from natural language queries to proactive, intelligent guidance delivery based on deep advertiser understanding, ultimately enhancing both targeting precision and one-click campaign optimization. Through strategic partnerships across Ad Console, Sales, and Marketing teams, we identify high-impact opportunities spanning from strategic product guidance to granular keyword optimization and deliver them through personalized, scalable experiences grounded in state-of-the-art agent architectures, reasoning frameworks, sophisticated tool integration, and model customization approaches including tuning, MCP, and preference optimization. This presents an exceptional opportunity to shape the future of e-commerce advertising through advanced AI technology at unprecedented scale, creating solutions that directly impact millions of advertisers. Key job responsibilities * Design and build targeting and 1 click recommendation agents to guide advertisers in conversational and non-conversational experience. * Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). * Collaborate with peers across engineering and product to bring scientific innovations into production. * Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. * Develop agentic architectures that integrate planning, tool use, and long-horizon reasoning. A day in the life As an Applied Scientist on our team, your days will be immersed in collaborative problem-solving and strategic innovation. You'll partner closely with expert applied scientists, software engineers, and product managers to tackle complex advertising challenges through creative, data-driven solutions. Your work will center on developing sophisticated machine learning and AI models, leveraging state-of-the-art techniques in natural language processing, recommendation systems, and agentic AI frameworks. From designing novel targeting algorithms to building personalized guidance systems, you'll contribute to breakthrough innovations
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
About Sponsored Products and Brands The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: * Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. * Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. * Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. * Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. * Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases