Using large language models (LLMs) to synthesize training data

Prompt engineering enables researchers to generate customized training examples for lightweight “student” models.

The machine learning models that power conversational agents like Alexa are typically trained on labeled data, but data collection and labeling are expensive and complex, creating a bottleneck in the development process.

Large language models (LLMs) such as the 20-billion-parameter Alexa Teacher Model (AlexaTM 20B) might look like a way to break that bottleneck, since they excel in few-shot settings — i.e., when only a handful of labeled examples are available. But their size and computational costs are unsuitable for runtime systems, which require low latency and support high traffic volumes.

To enable models that are lightweight enough for runtime use, even when real training data is scarce, we propose teaching via data (TvD), in which we use an LLM-based “teacher” model to generate synthetic training data for a specific task, then use the generated data to fine-tune a smaller “student” model.

Related content
With an encoder-decoder architecture — rather than decoder only — the Alexa Teacher Model excels other large language models on few-shot tasks such as summarization and machine translation.

This blog post covers two of our recent papers on TvD. LINGUIST, published at the 2022 International Conference on Computational Linguistics (COLING), generates training data for joint intent classification and slot tagging (IC+ST). CLASP, published at the 2022 Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (AACL), generates training data for semantic parsing. Both tasks are core components of conversational AI.

We show that LINGUIST data generation improves on popular multilingual IC+ST benchmarks by 2 to 4 points absolute, while CLASP data generation improves multilingual semantic parsing by 5 to 6 points absolute.

The AlexaTM 20B model used in CLASP is now available on AWS JumpStart.

LINGUIST

Conversational-AI agents use intent classification and slot tagging (IC+ST) to understand the intent of a speaker’s request and identify the entities relevant to fulfilling that request. For example, when an agent is asked to “play ‘Wake Me Up’ by Avicii”, it might identify the intent as PlayMusic, with the slot value “wake me up” assigned to the slot Song and “Avicii” assigned to Artist. (Slot tagging in this context is also known as named-entity recognition, or NER.)

NLU example.png
An example of intent classification and slot tagging in natural-language understanding.

With real-world agents, the set of intents and slots grows over time as developers add support for new use cases. Furthermore, multilingual agents such as Alexa seek to maintain parity across languages when new intents and slots are developed, creating an additional bottleneck during development.

Suppose, for example, that we’re enabling a multilingual agent to understand the new intent GetWeather. To begin with, the intent may have only two associated utterances, in English and no other languages, annotated with the slots City and DayOfWeek. These two utterances alone are not enough to build a strong multilingual IC+ST model, so we need to obtain more training data.

GetWeather intent.png
Sample starter utterances for the GetWeather intent.

A simple baseline approach to expanding this dataset to a new language is to translate the text. Here is an example using AlexaTM 20B with an in-context one-shot prompt. The text in the yellow box is the input to the model, and we can sample as many outputs from the model as we want, shown in the blue boxes.

One-shot translation.png
Alternate translations sampled from AlexaTM 20B.

To get more examples in the original English, we can either translate these French outputs back to English (back-translation) or directly use a paraphrasing model, such as, again, AlexaTM 20B with an in-context prompt:

One-shot paraphrase.png
Using AlexTM 20B as a paraphrase generator.

While these approaches go a long way, they have two key limitations: (1) the outputs don’t have the slot tags labeled, so we need to use a separate model (e.g., one that does word alignment) to guess which output words are City and which DayOfWeek, a process that introduces noise; and (2) we cannot control the outputs — say, by restricting them to specific slot types and values.

Related content
Dialogue simulator and conversations-first modeling architecture provide ability for customers to interact with Alexa in a natural and conversational manner.

To address these two problems, we propose LINGUIST: language model instruction tuning to generate annotated utterances for intent classification and slot tagging. To control outputs, we design an instruction prompt whose syntax resembles that of web markup languages like HTML/XML, which the language model is likely to have encountered during pretraining.

We also introduce an output format with brackets and numbers that enables the model to produce synthetic data with the slots already tagged. In the output “[1 boston ]”, for instance, the numeral “1” indicates the slot tag City. We then fine-tune the teacher model on prompts and targets from existing data — either from other intents or from a separate public dataset like MASSIVE.

When developing a new intent or slot with only a few examples, we can now instruct the LINGUIST model to generate the data we are looking for. For instance, we can generate data for the GetWeather intent that always uses “Dallas” as the City, tagged with the number 1. For the DayOfWeek slot, tagged as number 2, we can use the special wildcard instruction “*”, telling the model to fill in an appropriate value, and it will produce novel values like “Saturday” and “Thursday”, which did not appear in the original examples.

Basic LINGUIST prompt.png
By designing prompts that exploit regularities in the syntax of web markup languages like HTML/XML, we can fine-tune AlexaTM sequence-to-sequence models to generate labeled data with constrained slot values.

We also built a mechanism to control the output language: by simply changing the prompt to indicate “French” instead of English, we get outputs in French.

LINGUIST translation.png
Simply changing the word "English" to "French" in the prompt changes the model's output language.

Finally, LINGUIST can generate annotated training data even when we have zero examples to start with, by attending to natural-language label names like “GetWeather”, “City”, and “DayOfWeek”. In this case, there is less information on the input side, so the output contains more noise. However, the generated data is still useful for building a model for new intents and slots.

LINGUIST zero-shot.png
LINGUIST can produce coherent outputs even with zero examples.

In the paper, we show that LINGUIST outperforms state-of-the-art baselines like translation and paraphrasing by 2-4 points absolute on the public datasets SNIPS and mATIS++ across seven languages.

CLASP

While intent classification and slot tagging cover many interactions with conversational agents, they are limited in scope. For more complex queries, we instead apply semantic parsing (SP). Here is an example from the PIZZA dataset: “large pizza with extra cheese and pineapple hold the ham and two sprites please”. We need SP to recover relevant information like the value of the implicit Number slot, the scope of the modifiers Quantity and Not, and the association between multiple intents and slots.

PIZZA label example.png
An example of the labeling in the PIZZA dataset.

SP is even more difficult to annotate than IC+ST, so the training datasets tend to be smaller, especially in languages other than English; we don’t have a MASSIVE dataset for semantic parsing. For example, the PIZZA dataset has only 348 real examples to train on (and in our experiments, we also explore the lower-resource setting of 16 examples).

Related content
Traditionally, Alexa has interpreted customer requests according to their intents and slots. If you say, “Alexa, play ‘What’s Going On?’ by Marvin Gaye,” the intent should be PlayMusic, and “‘What’s Going On?’” and “Marvin Gaye” should fill the slots SongName and ArtistName.

Again adopting the teaching-via-data (TvD) approach, we propose CLASP: few-shot cross-lingual data augmentation for semantic parsing. CLASP consists of four strategies to prompt LLMs like AlexaTM 20B to generate SP training data.

The first two strategies, CLASP-RS (replace slots) and CLASP-TS (translate slots), modify an existing parse by replacing the slots with other values, either from a catalogue of options or via translation to a new language. Then the model generates text to match the new parse.

CLASP-RS.png
An example of how CLASP-RS uses prompt engineering to convert parses with substitute slot values into natural language.

The other two strategies, CLASP-GB (generate both) and CLASP-TB (translate both), give the model more flexibility, instructing it to generate both the parse and the text, in either the same language or a new language.

CLASP-TB.png
CLASP-TB uses prompt engineering to generate both parses and texts in new languages.

AlexaTM 20B can perform these generation tasks quite reliably from only a few in-context examples, which is remarkable given that it was pretrained only on public text from the web and is not specialized for semantic parsing.

For our experiments on data generation for semantic parsing, the baselines we selected include grammar sampling (drawback: unrealistic examples) and translation with alignment (drawback: alignment is challenging and introduces noise).

MTOP results.png
CLASP results on the mTOP dataset.

Using English-language examples from the PIZZA dataset, in the low-resource setting with only 16 real examples, we improve exact-match accuracy by 5 points absolute, topping 85%. On the popular mTOP dataset, we improve over machine translation by 6 points absolute across four new languages, by leveraging only one annotated example from each language.

At Amazon Alexa AI, we continue to explore TvD for tasks such as question answering and dialogue and for additional languages. We have just scratched the surface of what’s possible and are optimistic about the future of TvD. We look forward to continuing to invent methods to improve our models and make our customers’ lives better and easier every day.

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.