Using large language models (LLMs) to synthesize training data

Prompt engineering enables researchers to generate customized training examples for lightweight “student” models.

The machine learning models that power conversational agents like Alexa are typically trained on labeled data, but data collection and labeling are expensive and complex, creating a bottleneck in the development process.

Large language models (LLMs) such as the 20-billion-parameter Alexa Teacher Model (AlexaTM 20B) might look like a way to break that bottleneck, since they excel in few-shot settings — i.e., when only a handful of labeled examples are available. But their size and computational costs are unsuitable for runtime systems, which require low latency and support high traffic volumes.

To enable models that are lightweight enough for runtime use, even when real training data is scarce, we propose teaching via data (TvD), in which we use an LLM-based “teacher” model to generate synthetic training data for a specific task, then use the generated data to fine-tune a smaller “student” model.

Related content
With an encoder-decoder architecture — rather than decoder only — the Alexa Teacher Model excels other large language models on few-shot tasks such as summarization and machine translation.

This blog post covers two of our recent papers on TvD. LINGUIST, published at the 2022 International Conference on Computational Linguistics (COLING), generates training data for joint intent classification and slot tagging (IC+ST). CLASP, published at the 2022 Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (AACL), generates training data for semantic parsing. Both tasks are core components of conversational AI.

We show that LINGUIST data generation improves on popular multilingual IC+ST benchmarks by 2 to 4 points absolute, while CLASP data generation improves multilingual semantic parsing by 5 to 6 points absolute.

The AlexaTM 20B model used in CLASP is now available on AWS JumpStart.

LINGUIST

Conversational-AI agents use intent classification and slot tagging (IC+ST) to understand the intent of a speaker’s request and identify the entities relevant to fulfilling that request. For example, when an agent is asked to “play ‘Wake Me Up’ by Avicii”, it might identify the intent as PlayMusic, with the slot value “wake me up” assigned to the slot Song and “Avicii” assigned to Artist. (Slot tagging in this context is also known as named-entity recognition, or NER.)

NLU example.png
An example of intent classification and slot tagging in natural-language understanding.

With real-world agents, the set of intents and slots grows over time as developers add support for new use cases. Furthermore, multilingual agents such as Alexa seek to maintain parity across languages when new intents and slots are developed, creating an additional bottleneck during development.

Suppose, for example, that we’re enabling a multilingual agent to understand the new intent GetWeather. To begin with, the intent may have only two associated utterances, in English and no other languages, annotated with the slots City and DayOfWeek. These two utterances alone are not enough to build a strong multilingual IC+ST model, so we need to obtain more training data.

GetWeather intent.png
Sample starter utterances for the GetWeather intent.

A simple baseline approach to expanding this dataset to a new language is to translate the text. Here is an example using AlexaTM 20B with an in-context one-shot prompt. The text in the yellow box is the input to the model, and we can sample as many outputs from the model as we want, shown in the blue boxes.

One-shot translation.png
Alternate translations sampled from AlexaTM 20B.

To get more examples in the original English, we can either translate these French outputs back to English (back-translation) or directly use a paraphrasing model, such as, again, AlexaTM 20B with an in-context prompt:

One-shot paraphrase.png
Using AlexTM 20B as a paraphrase generator.

While these approaches go a long way, they have two key limitations: (1) the outputs don’t have the slot tags labeled, so we need to use a separate model (e.g., one that does word alignment) to guess which output words are City and which DayOfWeek, a process that introduces noise; and (2) we cannot control the outputs — say, by restricting them to specific slot types and values.

Related content
Dialogue simulator and conversations-first modeling architecture provide ability for customers to interact with Alexa in a natural and conversational manner.

To address these two problems, we propose LINGUIST: language model instruction tuning to generate annotated utterances for intent classification and slot tagging. To control outputs, we design an instruction prompt whose syntax resembles that of web markup languages like HTML/XML, which the language model is likely to have encountered during pretraining.

We also introduce an output format with brackets and numbers that enables the model to produce synthetic data with the slots already tagged. In the output “[1 boston ]”, for instance, the numeral “1” indicates the slot tag City. We then fine-tune the teacher model on prompts and targets from existing data — either from other intents or from a separate public dataset like MASSIVE.

When developing a new intent or slot with only a few examples, we can now instruct the LINGUIST model to generate the data we are looking for. For instance, we can generate data for the GetWeather intent that always uses “Dallas” as the City, tagged with the number 1. For the DayOfWeek slot, tagged as number 2, we can use the special wildcard instruction “*”, telling the model to fill in an appropriate value, and it will produce novel values like “Saturday” and “Thursday”, which did not appear in the original examples.

Basic LINGUIST prompt.png
By designing prompts that exploit regularities in the syntax of web markup languages like HTML/XML, we can fine-tune AlexaTM sequence-to-sequence models to generate labeled data with constrained slot values.

We also built a mechanism to control the output language: by simply changing the prompt to indicate “French” instead of English, we get outputs in French.

LINGUIST translation.png
Simply changing the word "English" to "French" in the prompt changes the model's output language.

Finally, LINGUIST can generate annotated training data even when we have zero examples to start with, by attending to natural-language label names like “GetWeather”, “City”, and “DayOfWeek”. In this case, there is less information on the input side, so the output contains more noise. However, the generated data is still useful for building a model for new intents and slots.

LINGUIST zero-shot.png
LINGUIST can produce coherent outputs even with zero examples.

In the paper, we show that LINGUIST outperforms state-of-the-art baselines like translation and paraphrasing by 2-4 points absolute on the public datasets SNIPS and mATIS++ across seven languages.

CLASP

While intent classification and slot tagging cover many interactions with conversational agents, they are limited in scope. For more complex queries, we instead apply semantic parsing (SP). Here is an example from the PIZZA dataset: “large pizza with extra cheese and pineapple hold the ham and two sprites please”. We need SP to recover relevant information like the value of the implicit Number slot, the scope of the modifiers Quantity and Not, and the association between multiple intents and slots.

PIZZA label example.png
An example of the labeling in the PIZZA dataset.

SP is even more difficult to annotate than IC+ST, so the training datasets tend to be smaller, especially in languages other than English; we don’t have a MASSIVE dataset for semantic parsing. For example, the PIZZA dataset has only 348 real examples to train on (and in our experiments, we also explore the lower-resource setting of 16 examples).

Related content
Traditionally, Alexa has interpreted customer requests according to their intents and slots. If you say, “Alexa, play ‘What’s Going On?’ by Marvin Gaye,” the intent should be PlayMusic, and “‘What’s Going On?’” and “Marvin Gaye” should fill the slots SongName and ArtistName.

Again adopting the teaching-via-data (TvD) approach, we propose CLASP: few-shot cross-lingual data augmentation for semantic parsing. CLASP consists of four strategies to prompt LLMs like AlexaTM 20B to generate SP training data.

The first two strategies, CLASP-RS (replace slots) and CLASP-TS (translate slots), modify an existing parse by replacing the slots with other values, either from a catalogue of options or via translation to a new language. Then the model generates text to match the new parse.

CLASP-RS.png
An example of how CLASP-RS uses prompt engineering to convert parses with substitute slot values into natural language.

The other two strategies, CLASP-GB (generate both) and CLASP-TB (translate both), give the model more flexibility, instructing it to generate both the parse and the text, in either the same language or a new language.

CLASP-TB.png
CLASP-TB uses prompt engineering to generate both parses and texts in new languages.

AlexaTM 20B can perform these generation tasks quite reliably from only a few in-context examples, which is remarkable given that it was pretrained only on public text from the web and is not specialized for semantic parsing.

For our experiments on data generation for semantic parsing, the baselines we selected include grammar sampling (drawback: unrealistic examples) and translation with alignment (drawback: alignment is challenging and introduces noise).

MTOP results.png
CLASP results on the mTOP dataset.

Using English-language examples from the PIZZA dataset, in the low-resource setting with only 16 real examples, we improve exact-match accuracy by 5 points absolute, topping 85%. On the popular mTOP dataset, we improve over machine translation by 6 points absolute across four new languages, by leveraging only one annotated example from each language.

At Amazon Alexa AI, we continue to explore TvD for tasks such as question answering and dialogue and for additional languages. We have just scratched the surface of what’s possible and are optimistic about the future of TvD. We look forward to continuing to invent methods to improve our models and make our customers’ lives better and easier every day.

Related content

US, WA, Seattle
Amazon is seeking an experienced, self-directed data scientist to support the research and analytical needs of Amazon Web Services' Sales teams. This is a unique opportunity to invent new ways of leveraging our large, complex data streams to automate sales efforts and to accelerate our customers' journey to the cloud. This is a high-visibility role with significant impact potential. You, as the right candidate, are adept at executing every stage of the machine learning development life cycle in a business setting; from initial requirements gathering to through final model deployment, including adoption measurement and improvement. You will be working with large volumes of structured and unstructured data spread across multiple databases and can design and implement data pipelines to clean and merge these data for research and modeling. Beyond mathematical understanding, you have a deep intuition for machine learning algorithms that allows you to translate business problems into the right machine learning, data science, and/or statistical solutions. You’re able to pick up and grasp new research and identify applications or extensions within the team. You’re talented at communicating your results clearly to business owners in concise, non-technical language. Key job responsibilities • Work with a team of analytics & insights leads, data scientists and engineers to define business problems. • Research, develop, and deliver machine learning & statistical solutions in close partnership with end users, other science and engineering teams, and business stakeholders. • Use AWS services like SageMaker to deploy scalable ML models in the cloud. • Examples of projects include modeling usage of AWS services to optimize sales planning, recommending sales plays based on historical patterns, and building a sales-facing alert system using anomaly detection.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.