Science innovations power Alexa Conversations dialogue management

Dialogue simulator and conversations-first modeling architecture provide ability for customers to interact with Alexa in a natural and conversational manner.

Today we announced the public beta launch of Alexa Conversations dialogue management. Alexa developers can now leverage a state-of-the-art dialogue manager powered by deep learning to create complex, nonlinear experiences — conversations that go well beyond today's typical one-shot interactions, such as "Alexa, what's the weather forecast for today?" or "Alexa, set a ten-minute pasta timer".

Alexa’s natural-language-understanding models classify requests according to domain, or the particular service that should handle the intent that the customer wants executed. The models also identify the slot types of the entities named in the requests, or the roles those entities play in fulfilling the request. In the request “Play ‘Rise Up’ by Andra Day”, the domain is Music, the intent is PlayMusic, and the names “Rise Up” and “Andra Day” fill the slots SongName and ArtistName.

Also at today's Alexa Live event, Nedim Fresko, vice president of Alexa Devices and Developers, announced that Amazon scientists have begun applying deep neural networks to custom skills and are seeing increases in accuracy. Read more here.

Natural conversations don’t follow these kinds of predetermined dialogue paths and often include anaphoric references (such as referring to a previously mentioned song by saying “play it”), contextual carryover of entities, customer revisions of requests, and many other types of interactions.

Alexa Conversations enables customers to interact with Alexa in a natural and conversational manner. At the same time, it relieves developers of the effort they would typically need to expend in authoring complex dialogue management rules, which are hard to maintain and often result in brittle customer experiences. Our dialogue augmentation algorithms and deep-learning models address the challenge of designing flexible and robust conversational experiences.

Dialogue management for Alexa Conversations is powered by two major science innovations: a dialogue simulator for data augmentation that generalizes a small number of sample dialogues provided by a developer into tens of thousands of annotated dialogues, and a conversations-first modeling architecture that leverages the generated dialogues to train deep-learning-based models to support dialogues beyond just the happy paths provided by the sample dialogues.

The Alexa Conversations dialogue simulator

Building high-performing deep-learning models requires large and diverse data sets, which are costly to acquire. With Alexa Conversations, the dialogue simulator automatically generates diversity from a few developer-provided sample dialogues that cover skill functionality, and it also generates difficult or uncommon exchanges that could occur.

The inputs to the dialogue simulator include developer application programming interfaces (APIs), slots and associated catalogues for slot values (e.g. city, state), and response templates (Alexa’s responses in different situations, such as requesting a slot value from the customer). These inputs together with their input arguments and output values define the skill-specific schema of actions and slots that the dialogue manager will predict.

Alexa Conversations dialogue simulator
The Alexa Conversations dialogue simulator generates tens of thousands of annotated dialogue examples that are used to train conversational models.

The dialogue simulator uses these inputs to generate additional sample dialogues in two steps.

In the first step, the simulator generates dialogue variations that represent different paths a conversation can take, such as different sequences of slot values and divergent paths that arise when a customer changes her mind.

More specifically, we conceive a conversation as a collaborative, goal-oriented interaction between two agents, a customer and Alexa. In this setting, the customer has a goal she wants to achieve, such as booking an airplane flight, and Alexa has access to resources, such as APIs for searching flight information or booking flights, that can help the customer reach her goal.

The simulated dialogues are generated through the interaction of two agent simulators, one for the customer, the other for Alexa. From the sample dialogues provided by the developer, the simulator first samples several plausible goals that customers interacting with the skill may want to achieve.

Conditioned on a sample goal, we generate synthetic interactions between the two simulator agents. The customer agent progressively reveals its goal to the Alexa agent, while the Alexa agent gathers the customer agent’s information, confirms information, and asks follow-up questions about missing information, guiding the interaction toward goal completion.

In the second step, the simulator injects language variations into the dialogue paths. The variations include alternate expressions of the same customer intention, such as “recommend me a movie” versus “I want to watch a movie”. Some of these alternatives are provided by the sample conversations and Alexa response templates, while others are generated through paraphrasing.

The variations also include alternate slot values (such as “Andra Day” or “Alicia Keys” for the slot ArtistName), which are sampled from slot catalogues provided by the developer. Through these two steps, the simulator generates tens of thousands of annotated dialogue examples that are used for training the conversational models.

The Alexa Conversations modeling architecture

A natural conversational experience could follow any one of a wide range of nonlinear dialogue patterns. Our conversations-first modeling architecture leverages dialogue-simulator and conversational-modeling components to support dialogue patterns that include carryover of entities, anaphora, confirmation of slots and APIs, and proactively offering related functionality, as well as robust support for a customer changing her mind midway through a conversation.

We follow an end-to-end dialogue-modeling approach, where the models take into account the current customer utterance and context from the entire conversation history to predict the optimal next actions for Alexa. Those actions might include calling a developer-provided API to retrieve information and relaying that information to the customer; asking for more information from the customer; or any number of other possibilities.

The modeling architecture is built using state-of-the-art deep-learning technology and consists of three models: a named-entity-recognition (NER) model, an action prediction (AP) model, and an argument-filling (AF) model. The models are built by combining supervised training techniques on the annotated synthetic dialogues generated by the dialogue simulator and unsupervised pretraining of large Transformer-based components on text corpora.

Alexa Conversations modeling architecture
The Alexa Conversations modeling architecture uses state-of-the-art deep-learning technology and consists of three models: a named-entity-recognition model, an action prediction model, and an argument-filling model. The models are built by combining supervised training techniques on the annotated synthetic dialogues generated by the dialogue simulator and unsupervised pretraining of large Transformer-based components on text corpora.

First, the NER model identifies slots in each of the customer utterances, selecting from slots the developer defined as part of the build-time assets (date, city, etc.). For example, for the request “search for flights to Seattle tomorrow”, the NER model will identify “Seattle” as a city slot and “tomorrow” as a date slot.

The NER model is a sequence-tagging model built using a bidirectional LSTM layer on top of a Transformer-based pretrained sentence encoder. In addition to the current sentence, NER also takes dialogue context as input, which is encoded through a hierarchical LSTM architecture that captures the conversational history, including past slots and Alexa actions.

Next, the AP model predicts the optimal next action for Alexa to take, such as calling an API or responding to the customer to either elicit more information or complete a request. The action space is defined by the APIs and Alexa response templates that the developer provides during the skill-authoring process.

The AP model is a classification model that, like the NER model, uses a hierarchical LSTM architecture to encode the current utterance and past dialogue context, which ultimately passes to a feed-forward network to generate the action prediction.

Finally, the AF model fills in the argument values for the API and response templates by looking at the entire dialogue for context. Using an attention-based pointing mechanism over the dialogue context, the AF model selects compatible slots from all slot values that the NER model recognized earlier.

For example, suppose slot values “Seattle” and “tomorrow” exist in the dialogue context for city and date slots respectively, and the AP model predicted the SearchFlight API as the optimal next action. The AF model will fill in the API arguments with the appropriate values, generating a complete API call: SearchFlight (city=“Seattle”, date="tomorrow").

The AP and AF models may also predict and generate more than one action after a customer utterance. For example, they may decide to first call an API to retrieve flight information and then call an Alexa response template to communicate this information to the customer. Therefore, the AP and AF models can make sequential predictions of actions, including the decision to stop predicting more actions and wait for the next customer request.

The finer points

Consistency check logic ensures that the resulting predictions are all valid actions, consistent with developer-provided information about their APIs. For example, the system would not generate an API call with an empty input argument, if that input argument is required by the developer.

The inputs include the entire dialogue history, as well as the latest customer request, and the resulting model predictions are contextual, relevant, and not repetitive. For example, if a customer has already provided the date of a trip while searching for a flight, Alexa will not ask for the date when booking the flight. Instead, the date provided earlier will contextually carry over and pass to the appropriate API.

We leveraged large pretrained Transformer components (BERT) that encode current and past requests in the conversation. To ensure state-of-the-art model build-time and runtime latency, we performed inference architecture optimizations such as accelerating embedding computation on GPUs, implementing efficient caching, and leveraging both data- and model-level parallelism.

We are excited about the advances that enable Alexa developers to build flexible and robust conversational experiences that allow customers to have natural interactions with their devices. Developers interested in learning more about the "how" of building these conversational experiences should read our accompanying developer blog.

For more information about the technical advances behind Alexa Conversations, at right are relevant publications related to our work in dialogue systems, dialogue state tracking, and data augmentation.

Acknowledgments: The entire Alexa Conversations team for making the innovations highlighted here possible.

Research areas

Related content

US, CA, Santa Clara
The AWS AI team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists develops the algorithms and models that have powered AWS SageMaker, SageMaker JumpStart, SageMaker Clarify, AWS Bedrock, AWS Ground Truth, Amazon Rekognition, Amazon Textract, and Amazon Lookout for Vision. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
IN, KA, Bangalore
Are you excited about delighting millions of customers by driving the most relevant marketing initiatives? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? Amazon is seeking a Data Scientist . This team is focused on driving key priorities of a)core shopping that elevates the shopping CX for all shoppers in all lifecycle stages, b) developing ways to accelerate lifecycle progression and build foundational capabilities to address the shopper needs and c)Alternate shopping models We are looking for a Data Scientist to join our efforts to support the next generation of analytics systems for measuring consumer behavior using machine learning and econometrics at big data scale at Amazon. You will work machine learning and statistical algorithms across multiple platforms to harness enormous volumes of online data at scale to define customer facing products and measure customer responses to various marketing initiatives. The Data Scientist will be a technical player in a team working to build custom science solutions to drive new customers, engage existing customers and drive marketing efficiencies by leveraging approaches that optimize Amazon’s systems using cutting edge quantitative techniques. The right candidate needs to be fluid in: · Data warehousing and EMR (Hive, Pig, R, Python). · Feature extraction, feature engineering and feature selection. · Machine learning, causal inference, statistical algorithms and recommenders. · Model evaluation, validation and deployment. · Experimental design and testing.
US, WA, Bellevue
AMZL Global Fleet and Products (GFP) organization is responsible for fleet programs and capacity for Last Mile deliveries. The Fleet Planning team is looking for a Data Scientist to drive the most efficient use of fleet. Last Mile fleet planning is a complex resource allocation problem. The goal of fleet allocation planning is to optimize the size and mix of fleet allocated to DSPs through various programs to improve branded fleet utilization. Changes in routes, last mile network, exiting DSPs and new DSP onboarding create continuous need for re-allocation of fleet to maintain an efficient network capacity. This requires allocation to adhere to various operational limits (repair network, EV range, Station Charging capability) and also match route’s cube need to vehicles capacity. As a Data Scientist on the Fleet Planning team (GFP), you will be responsible for building new science models (linear programs, statistical and ML models) and enhancing existing models for changing business needs. You would work with program managers in planning, procurement, redeployment, deployment, remarketing, variable fleet and infrastructure programs to build models that would support the requirements of all programs in a coherent plan. Key job responsibilities • Build models and automation for planners for generating vehicle allocation plans • Partner with program teams to test and measure success of implemented model • Lead reviews with senior leadership, deep dive model outputs and explain implications of model recommendations.
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse problems and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. Key job responsibilities The primary responsibilities of this role are to: - Design, develop, and evaluate innovative ML models to solve diverse problems and opportunities across industries - Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them - Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, CA, Santa Clara
About Amazon Health Amazon Health’s mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we (Health Storefront and Shared Tech) are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. Job summary We are seeking an exceptional Senior Applied Scientist to join a team of experts in the field of machine learning, and work together to break new ground in the world of healthcare to make personalized and empathetic care accessible, convenient, and cost-effective. We leverage and train state-of-the-art large-language-models (LLMs) and develop entirely new experiences to help customers find the right products and services to address their health needs. We work on machine learning problems for intent detection, dialogue systems, and information retrieval. You will work in a highly collaborative environment where you can pursue both near-term productization opportunities to make immediate, meaningful customer impacts while pursuing ambitious, long-term research. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. You will get the opportunity to pursue work that makes people's lives better and pushes the envelop of science. #everydaybetter Key job responsibilities - Translate product and CX requirements into science metrics and rigorous testing methodologies. - Invent and develop scalable methodologies to evaluate LLM outputs against metrics and guardrails. - Design and implement the best-in-class semantic retrieval system by creating high-quality knowledge base and optimizing embedding models and similarity measures. - Conduct tuning, training, and optimization of LLMs to achieve a compelling CX while reducing operational cost to be scalable. A day in the life In a fast-paced innovation environment, you work closely with product, UX, and business teams to understand customer's challenges. You translate product and business requirements into science problems. You dive deep into challenging science problems, enabling entirely new ML and LLM-driven customer experiences. You identify hypothesis and conduct rapid prototyping to learn quickly. You develop and deploy models at scale to pursue productizations. You mentor junior science team members and help influence our org in scientific best practices. About the team We are the Health AI team at HST (Health Store and Technology). The team consists of exceptional ML Scientists with diverse background in healthcare, robotics, customer analytics, and communication. We are committed to building and deploying the most advanced scientific capabilities and solutions for the products and services at Amazon Health.
US, CA, Santa Clara
As a Senior Scientist at AWS AI/ML leading the Personalization and Privacy AI teams, you will have deep subject matter expertise in the areas of recommender systems, personalization, generative AI and privacy. You will provide thought leadership on and lead strategic efforts in the personalization of models to be used by customer applications across a wide range of customer use cases. Particular new directions regarding personalizing the output of LLM and their applications will be at the forefront. You will work with product, science and engineering teams to deliver short- and long-term personalization solutions that scale to large number of builders developing Generative AI applications on AWS. You will lead and work with multiple teams of scientists and engineers to translate business and functional requirements into concrete deliverables. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for personalization, privacy and customization for generative AI. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Bellevue
At AWS, we use Artificial Intelligence to be able to identify every need of a customer across all AWS services before they have to tell us about it and help customers adopt best practices while architecting on the cloud. We are looking for Applied Scientists to drive innovation with Gen AI to bring paradigm shift to how the business operates and build “best in the world” experience that customers will love! Some of the science challenges we work on include fine-tuning Large language models, Reinforcement Learning, Auto-generating code from natural language and generating strategic insights and recommendations from very large datasets. You will have an opportunity to lead, invent, and design tech that will directly impact every customer across all AWS services. We are building industry-leading technology that cuts across a wide range of ML techniques from Natural Language Processing to Deep Learning and Generative Artificial Intelligence. You will be a key driver in taking something from an idea to an experiment to a prototype and finally to a live production system. Our team packs a punch with principal level product, science, engineering, and leadership talent. We are a results focused team and you have the opportunity to lead and establish a culture for the big things to come. We combine the culture of a startup, the innovation and creativity of a R&D Lab, the work-life balance of a mature organization, and technical challenges at the scale of AWS. We offer a playground of opportunities for builders to build, have fun, and make history! AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities - Deliver real world production systems at AWS scale. - Work closely with the business to understand the problem space, identify the opportunities and formulate the problems. - Use machine learning, data mining, statistical techniques, Generative AI and others to create actionable, meaningful, and scalable solutions for the business problems. - Analyze and extract relevant information from large amounts of data and derive useful insights. - Work with software engineering teams to deliver production systems with your ML models - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Bellevue
At AWS, we use Artificial Intelligence to be able to identify every need of a customer across all AWS services before they have to tell us about it and help customers adopt best practices while architecting on the cloud. We are looking for Applied Scientists to drive innovation with Gen AI to bring paradigm shift to how the business operates and build “best in the world” experience that customers will love! Some of the science challenges we work on include fine-tuning Large language models for domain specific use cases, Reinforcement Learning, Auto-generating code from natural language and generating strategic insights and recommendations from very large datasets. You will have an opportunity to lead, invent, and design tech that will directly impact every customer across all AWS services. We are building industry-leading technology that cuts across a wide range of ML techniques from Natural Language Processing to Deep Learning and Generative Artificial Intelligence. You will be a key driver in taking something from an idea to an experiment to a prototype and finally to a live production system. Our team packs a punch with principal level product, science, engineering, and leadership talent. We are a results focused team and you have the opportunity to lead and establish a culture for the big things to come. We combine the culture of a startup, the innovation and creativity of a R&D Lab, the work-life balance of a mature organization, and technical challenges at the scale of AWS. We offer a playground of opportunities for builders to build, have fun, and make history! AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities - Deliver real world production systems at AWS scale. - Work closely with the business to understand the problem space, identify the opportunities and formulate the problems. - Use machine learning, data mining, statistical techniques, Generative AI and others to create actionable, meaningful, and scalable solutions for the business problems. - Analyze and extract relevant information from large amounts of data and derive useful insights. - Work with software engineering teams to deliver production systems with your ML models - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
JP, 13, Tokyo
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. The Generative Artificial Intelligence (AI) Innovation Center team at AWS provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies leveraging cutting-edge generative AI algorithms. As an Applied Scientist, you'll partner with technology and business teams to build solutions that surprise and delight our customers. We’re looking for Applied Scientists capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. #aws-jp-proserv-ap #AWSJapan Key job responsibilities - Collaborate with scientists and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges - Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction. A day in the life Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. What if I don’t meet all the requirements? That’s okay! We hire people who have a passion for learning and are curious. You will be supported in your career development here at AWS. You will have plenty of opportunities to build your technical, leadership, business and consulting skills. Your onboarding will set you up for success, including a combination of formal and informal training. You’ll also have a chance to gain AWS certifications and access mentorship programs. You will learn from and collaborate with some of the brightest technical minds in the industry today.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an Data Scientist, you will - Collaborate with AI/ML scientists and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction A day in the life About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.