Science innovations power Alexa Conversations dialogue management

Dialogue simulator and conversations-first modeling architecture provide ability for customers to interact with Alexa in a natural and conversational manner.

Today we announced the public beta launch of Alexa Conversations dialogue management. Alexa developers can now leverage a state-of-the-art dialogue manager powered by deep learning to create complex, nonlinear experiences — conversations that go well beyond today's typical one-shot interactions, such as "Alexa, what's the weather forecast for today?" or "Alexa, set a ten-minute pasta timer".

Alexa’s natural-language-understanding models classify requests according to domain, or the particular service that should handle the intent that the customer wants executed. The models also identify the slot types of the entities named in the requests, or the roles those entities play in fulfilling the request. In the request “Play ‘Rise Up’ by Andra Day”, the domain is Music, the intent is PlayMusic, and the names “Rise Up” and “Andra Day” fill the slots SongName and ArtistName.

Also at today's Alexa Live event, Nedim Fresko, vice president of Alexa Devices and Developers, announced that Amazon scientists have begun applying deep neural networks to custom skills and are seeing increases in accuracy. Read more here.

Natural conversations don’t follow these kinds of predetermined dialogue paths and often include anaphoric references (such as referring to a previously mentioned song by saying “play it”), contextual carryover of entities, customer revisions of requests, and many other types of interactions.

Alexa Conversations enables customers to interact with Alexa in a natural and conversational manner. At the same time, it relieves developers of the effort they would typically need to expend in authoring complex dialogue management rules, which are hard to maintain and often result in brittle customer experiences. Our dialogue augmentation algorithms and deep-learning models address the challenge of designing flexible and robust conversational experiences.

Dialogue management for Alexa Conversations is powered by two major science innovations: a dialogue simulator for data augmentation that generalizes a small number of sample dialogues provided by a developer into tens of thousands of annotated dialogues, and a conversations-first modeling architecture that leverages the generated dialogues to train deep-learning-based models to support dialogues beyond just the happy paths provided by the sample dialogues.

The Alexa Conversations dialogue simulator

Building high-performing deep-learning models requires large and diverse data sets, which are costly to acquire. With Alexa Conversations, the dialogue simulator automatically generates diversity from a few developer-provided sample dialogues that cover skill functionality, and it also generates difficult or uncommon exchanges that could occur.

The inputs to the dialogue simulator include developer application programming interfaces (APIs), slots and associated catalogues for slot values (e.g. city, state), and response templates (Alexa’s responses in different situations, such as requesting a slot value from the customer). These inputs together with their input arguments and output values define the skill-specific schema of actions and slots that the dialogue manager will predict.

Alexa Conversations dialogue simulator
The Alexa Conversations dialogue simulator generates tens of thousands of annotated dialogue examples that are used to train conversational models.

The dialogue simulator uses these inputs to generate additional sample dialogues in two steps.

In the first step, the simulator generates dialogue variations that represent different paths a conversation can take, such as different sequences of slot values and divergent paths that arise when a customer changes her mind.

More specifically, we conceive a conversation as a collaborative, goal-oriented interaction between two agents, a customer and Alexa. In this setting, the customer has a goal she wants to achieve, such as booking an airplane flight, and Alexa has access to resources, such as APIs for searching flight information or booking flights, that can help the customer reach her goal.

The simulated dialogues are generated through the interaction of two agent simulators, one for the customer, the other for Alexa. From the sample dialogues provided by the developer, the simulator first samples several plausible goals that customers interacting with the skill may want to achieve.

Conditioned on a sample goal, we generate synthetic interactions between the two simulator agents. The customer agent progressively reveals its goal to the Alexa agent, while the Alexa agent gathers the customer agent’s information, confirms information, and asks follow-up questions about missing information, guiding the interaction toward goal completion.

In the second step, the simulator injects language variations into the dialogue paths. The variations include alternate expressions of the same customer intention, such as “recommend me a movie” versus “I want to watch a movie”. Some of these alternatives are provided by the sample conversations and Alexa response templates, while others are generated through paraphrasing.

The variations also include alternate slot values (such as “Andra Day” or “Alicia Keys” for the slot ArtistName), which are sampled from slot catalogues provided by the developer. Through these two steps, the simulator generates tens of thousands of annotated dialogue examples that are used for training the conversational models.

The Alexa Conversations modeling architecture

A natural conversational experience could follow any one of a wide range of nonlinear dialogue patterns. Our conversations-first modeling architecture leverages dialogue-simulator and conversational-modeling components to support dialogue patterns that include carryover of entities, anaphora, confirmation of slots and APIs, and proactively offering related functionality, as well as robust support for a customer changing her mind midway through a conversation.

We follow an end-to-end dialogue-modeling approach, where the models take into account the current customer utterance and context from the entire conversation history to predict the optimal next actions for Alexa. Those actions might include calling a developer-provided API to retrieve information and relaying that information to the customer; asking for more information from the customer; or any number of other possibilities.

The modeling architecture is built using state-of-the-art deep-learning technology and consists of three models: a named-entity-recognition (NER) model, an action prediction (AP) model, and an argument-filling (AF) model. The models are built by combining supervised training techniques on the annotated synthetic dialogues generated by the dialogue simulator and unsupervised pretraining of large Transformer-based components on text corpora.

Alexa Conversations modeling architecture
The Alexa Conversations modeling architecture uses state-of-the-art deep-learning technology and consists of three models: a named-entity-recognition model, an action prediction model, and an argument-filling model. The models are built by combining supervised training techniques on the annotated synthetic dialogues generated by the dialogue simulator and unsupervised pretraining of large Transformer-based components on text corpora.

First, the NER model identifies slots in each of the customer utterances, selecting from slots the developer defined as part of the build-time assets (date, city, etc.). For example, for the request “search for flights to Seattle tomorrow”, the NER model will identify “Seattle” as a city slot and “tomorrow” as a date slot.

The NER model is a sequence-tagging model built using a bidirectional LSTM layer on top of a Transformer-based pretrained sentence encoder. In addition to the current sentence, NER also takes dialogue context as input, which is encoded through a hierarchical LSTM architecture that captures the conversational history, including past slots and Alexa actions.

Next, the AP model predicts the optimal next action for Alexa to take, such as calling an API or responding to the customer to either elicit more information or complete a request. The action space is defined by the APIs and Alexa response templates that the developer provides during the skill-authoring process.

The AP model is a classification model that, like the NER model, uses a hierarchical LSTM architecture to encode the current utterance and past dialogue context, which ultimately passes to a feed-forward network to generate the action prediction.

Finally, the AF model fills in the argument values for the API and response templates by looking at the entire dialogue for context. Using an attention-based pointing mechanism over the dialogue context, the AF model selects compatible slots from all slot values that the NER model recognized earlier.

For example, suppose slot values “Seattle” and “tomorrow” exist in the dialogue context for city and date slots respectively, and the AP model predicted the SearchFlight API as the optimal next action. The AF model will fill in the API arguments with the appropriate values, generating a complete API call: SearchFlight (city=“Seattle”, date="tomorrow").

The AP and AF models may also predict and generate more than one action after a customer utterance. For example, they may decide to first call an API to retrieve flight information and then call an Alexa response template to communicate this information to the customer. Therefore, the AP and AF models can make sequential predictions of actions, including the decision to stop predicting more actions and wait for the next customer request.

The finer points

Consistency check logic ensures that the resulting predictions are all valid actions, consistent with developer-provided information about their APIs. For example, the system would not generate an API call with an empty input argument, if that input argument is required by the developer.

The inputs include the entire dialogue history, as well as the latest customer request, and the resulting model predictions are contextual, relevant, and not repetitive. For example, if a customer has already provided the date of a trip while searching for a flight, Alexa will not ask for the date when booking the flight. Instead, the date provided earlier will contextually carry over and pass to the appropriate API.

We leveraged large pretrained Transformer components (BERT) that encode current and past requests in the conversation. To ensure state-of-the-art model build-time and runtime latency, we performed inference architecture optimizations such as accelerating embedding computation on GPUs, implementing efficient caching, and leveraging both data- and model-level parallelism.

We are excited about the advances that enable Alexa developers to build flexible and robust conversational experiences that allow customers to have natural interactions with their devices. Developers interested in learning more about the "how" of building these conversational experiences should read our accompanying developer blog.

For more information about the technical advances behind Alexa Conversations, at right are relevant publications related to our work in dialogue systems, dialogue state tracking, and data augmentation.

Acknowledgments: The entire Alexa Conversations team for making the innovations highlighted here possible.

Related content

US, CA, Santa Clara
About Amazon Health Amazon Health’s mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we (Health Storefront and Shared Tech) are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. Job summary We are seeking an exceptional Applied Scientist to join a team of experts in the field of machine learning, and work together to break new ground in the world of healthcare to make personalized and empathetic care accessible, convenient, and cost-effective. We leverage and train state-of-the-art large-language-models (LLMs) and develop entirely new experiences to help customers find the right products and services to address their health needs. We work on machine learning problems for intent detection, dialogue systems, and information retrieval. You will work in a highly collaborative environment where you can pursue both near-term productization opportunities to make immediate, meaningful customer impacts while pursuing ambitious, long-term research. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. You will get the opportunity to pursue work that makes people's lives better and pushes the envelop of science. Key job responsibilities - Translate product and CX requirements into science metrics and rigorous testing methodologies. - Invent and develop scalable methodologies to evaluate LLM outputs against metrics and guardrails. - Design and implement the best-in-class semantic retrieval system by creating high-quality knowledge base and optimizing embedding models and similarity measures. - Conduct tuning, training, and optimization of LLMs to achieve a compelling CX while reducing operational cost to be scalable. A day in the life In a fast-paced innovation environment, you work closely with product, UX, and business teams to understand customer's challenges. You translate product and business requirements into science problems. You dive deep into challenging science problems, enabling entirely new ML and LLM-driven customer experiences. You identify hypothesis and conduct rapid prototyping to learn quickly. You develop and deploy models at scale to pursue productizations. You mentor junior science team members and help influence our org in scientific best practices. About the team We are the ML Science and Engineering team, with a strong focus on Generative AI. The team consists of top-notch ML Scientists with diverse background in healthcare, robotics, customer analytics, and communication. We are committed to building and deploying the most advanced scientific capabilities and solutions for the products and services at Amazon Health. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, WA, Seattle
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and senior Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
This single-threaded leader will focus on designing experiences and optimizations to monetize Amazon Detail Pages, while improving shopper experience and returns for our advertising customers. This leader will own generating different widgets (thematic, blended, interactive prompt, hybrid merchandising), and the science, tech and signaling systems to enable them for the different category and BuyX teams. This leader will also own science and systems for bidding into ranking systems like Percolate, and for operating the marketplace through allocation and pricing methods. They will own identifying operating points for WW marketplaces in terms of entitlement, RoAS impact and other benchmarks, plus invent ways to operationalize this thinking, all while experimenting to learn from the marketplace. The leader will also own AI generation of shopping pages for monetization (these shopping pages are built on DP content). We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Santa Monica
Amazon Advertising is looking for a motivated and analytical self-starter to help pave the way for the next generation of insights and advertising products. You will use large-scale data, advertising effectiveness knowledge and business information needs of our advertising clients to envision new advertising measurement products and tools. You will facilitate innovation on behalf of our customers through end-to-end delivery of measurement solutions leveraging experiments, machine learning and causal inference. You will partner with our engineering teams to develop and scale successful solutions to production. This role requires strong hands-on skills in terms of effectively working with data, coding, and MLOps. However, the ideal candidate will also bring strong interpersonal and communication skills to engage with cross-functional partners, as well as to stay connected to insights needs of account teams and advertisers. This is a truly exciting and versatile position in that it allows you to apply and develop your hands-on data modeling and coding skills, to work with other scientists on research in new measurement solutions while at the same time partner with cross-functional stakeholders to deliver product impact. Key job responsibilities As an Applied Scientist on the Advertising Incrementality Measurement team you will: - Create new analytical products from conception to prototyping and scaling the product end-to-end through to production. - Scope and define new business problems in the realm of advertising effectiveness. Use machine learning and experiments to develop effective and scalable solutions. - Partner closely with the Engineering team. - Partner with Economists, Data Scientists, and other Applied Scientists to conduct research on advertising effectiveness using machine learning and causal inference. Make findings available via white papers. - Act as a liaison to product teams to help productize new measurement solutions. About the team Advertising Incrementality Measurement combines experiments with econometric analysis and machine learning to provide rigorous causal measurement of advertising effectiveness to internal and external customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Boulder, CO, USA | New York, NY, USA | Santa Monica, CA, USA
US, CA, Santa Clara
Amazon launched the Generative AI Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As an Applied Science Manager in GAIIC, you'll partner with technology and business teams to build new GenAI solutions that delight our customers. You will be responsible for directing a team of data/research/applied scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems. Your team will be working with terabytes of text, images, and other types of data to address real-world problems. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners, as well as the technical background that enables them to interact with and give guidance to data/research/applied scientists and software developers. The ideal candidate will also have a demonstrated ability to think strategically about business, product, and technical issues. Finally, and of critical importance, the candidate will be an excellent technical team manager, someone who knows how to hire, develop, and retain high quality technical talent. About the team Here at AWS, it’s in our nature to learn and be curious about diverse perspectives. Our employee-led affinity groups foster a culture of inclusion that empower employees to feel proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. We have a career path for you no matter what stage you’re in when you start here. We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career- advancing resources here to help you develop into a better-rounded professional. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | San Jose, CA, USA | Santa Clara, CA, USA
GB, London
Amazon Advertising is looking for a Data Scientist to join its brand new initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety, Contextual data processing and classification. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Data Scientist to work on data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you an experienced user of sophisticated analytical techniques that can be applied to answer business questions and chart a sustainable vision? Are you exited by the prospect of communicating insights and recommendations to audiences of varying levels of technical sophistication? Above all, are you an innovator at heart and have a track record of resolving ambiguity to deliver result? As a data scientist, you help our data science team build cutting edge models and measurement solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, define metrics, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Define a long-term science vision for contextual-classification tech, driven fundamentally from the needs of our advertisers and publishers, translating that direction into specific plans for the science team. Interpret complex and interrelated data points and anecdotes to build and communicate this vision. * Collaborate with software engineering teams to Identify and implement elegant statistical and machine learning solutions * Oversee the design, development, and implementation of production level code that handles billions of ad requests. Own the full development cycle: idea, design, prototype, impact assessment, A/B testing (including interpretation of results) and production deployment. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA