Responsible AI in the wild: Lessons learned at AWS

Real-world deployment requires notions of fairness that are task relevant and responsive to the available data, recognition of unforeseen variation in the “last mile” of AI delivery, and collaboration with AI activists.

When we first joined AWS AI/ML as Amazon Scholars over three years ago, we had already been doing scientific research in the area now known as responsible AI for a while. We had authored a number of papers proposing mathematical definitions of fairness and machine learning (ML) training algorithms enforcing them, as well as methods for ensuring strong notions of privacy in trained models. We were well versed in adjacent subjects like explainability and robustness and were generally denizens of the emerging responsible-AI research community. We even wrote a general-audience book on these topics to try to explain their importance to a broader audience.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

So we were excited to come to AWS in 2020 to apply our expertise and methodologies to the ongoing responsible-AI efforts here — or at least, that was our mindset on arrival. But our journey has taken us somewhere quite different, somewhere more consequential and interesting than we expected. It’s not that the definitions and algorithms we knew from the research world aren’t relevant — they are — but rather that they are only one component of a complex AI workstream comprising data, models, services, enterprise customers, and end-users. It’s also a workstream in which AWS is uniquely situated due to its pioneering role in cloud computing generally and cloud AI services specifically.

Our time here has revealed to us some practical challenges of which we were previously unaware. These include diverse data modalities, “last mile” effects with customers and end-users, and the recent emergence of AI activism. Like many good interactions between industry and academia, what we’ve learned at AWS has altered our research agenda in healthy ways. In case it’s useful to anyone else trying to parse the burgeoning responsible-AI landscape (especially in the generative-AI era), we thought we’d detail some of our experiences here.

Modality matters

One of our first important practical lessons might be paraphrased as “modality matters”. By this we mean that the particular medium in which an AI service operates (such as visual images or spoken or written language) matters greatly in how we analyze and understand it from both performance and responsible-AI perspectives.

Consider specifically the desire for trained models be “fair”, or free of significant demographic bias. Much of the scientific literature on ML fairness assumes that the features used to compare performance across groups (which might include gender, race, age, and other attributes) are readily available, or can be accurately estimated, in both training and test datasets.

Related content
Two of the world’s leading experts on algorithmic bias look back at the events of the past year and reflect on what we’ve learned, what we’re still grappling with, and how far we have to go.

If this is indeed the case (as it might be for some spreadsheet-like “tabular” datasets recording things like medical or financial records, in which a person’s age and gender might be explicit columns), we can more easily test a trained model for bias. For instance, in a medical diagnosis application we might evaluate the model to make sure the error rates are approximately the same across genders. If these rates aren’t close enough, we can augment our data or retrain the model in various ways until the evaluation is passed to satisfaction.

But many cloud AI/ML services operate on data that simply does not contain explicit demographic information. Rather, these services live in entirely different modalities such as speech, natural language, and vision. Applications such as our speech recognition and transcription services take as input time series of frequencies that capture spoken utterances. Consequently, there are not direct annotations in the data of things like gender, race, or age.

But what can be more readily detected from speech data, and are also more directly related to performance, are regional dialects and accents — of which there are dozens in North American English alone. English-language speech can also feature non-native accents, influenced more by the first languages of the speakers than by the regions in which they currently live. This presents an even more diverse landscape, given the large number of first languages and the international mobility of speakers. And while spoken accents may be weakly correlated or associated with one or more ancestry groups, they are usually uninformative on things like age and gender (speakers with a Philadelphia accent may be young or old; male, female or nonbinary; etc.). Finally, the speech of even a particular person may exhibit many other sources of variation, such as situational stress and fatigue.

Regional dialects.jpeg
Data — such as regional variations in word choice and accents — may lead toward alternative notions of fairness that are more task-relevant, as with word error rates across dialects and accents.

What is the responsible-AI practitioner to do when confronted with so many different accents and other moving parts, in a task as complex as speech transcription? At AWS, our answer is to meet the task and data on their own terms, which in this case involves some heavy lifting: meticulously gathering samples from large populations of representative speakers with different accents and carefully transcribing each word. The “representative” is important here: while it might be more expedient to (for instance) gather this data from professional actors trained in diction, such data would not be typical of spoken language in the wild.

Related content
Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

We also gather speech data that exhibits variability along other important dimensions, including the acoustic conditions during recording (varying amounts and types of background noise, recordings made via different mobile-phone handsets, whose microphones may vary in quality, etc.). The sheer number of combinations makes obtaining sufficient coverage challenging. (In some domains such as computer vision, coverage issues that are similar — variability across visual properties such as skin tone, lighting conditions, indoor vs. outdoor settings, and so on — have led to increased interest in synthetic data to augment human-generated data, including for fairness testing here at AWS.)

Once curated, such datasets can be used for training a transcription model that is not only good overall but also roughly equally performant across accents. And “performant” here means something more complex than in a simple prediction task; speech recognition typically uses a measure like the word error rate. On top of all the curation and annotations above, we also annotate some data by self-reported speaker demographics to make sure we’re fair not just by accent but by race and gender as well, as detailed in the service’s accompanying service card.

Our overarching point here is twofold. First, while as a society we tend to focus on dimensions such as race and gender when speaking about and assessing fairness, sometimes the data simply doesn’t permit such assessments, and it may not be a good idea to impute such dimensions to the data (for instance, by trying to infer race from speech signals). And second, in such cases the data may lead us toward alternative notions of fairness that might be more task-relevant, as with word error rates across dialects and accents.

The last mile of responsible AI

The specific properties of individuals that can or cannot (or should not) be gleaned from a particular dataset or modality are not the only things that may be out of the direct control of AI developers — especially in the era of cloud computing. As we have seen above, it’s challenging work to get coverage of everything you can anticipate. It’s even harder to anticipate everything.

The supply chain phrase “the last mile” refers to the fact that “upstream” providers of goods and products may have limited control over the “downstream” suppliers that directly connect to end-users or consumers. The emergence of cloud providers like AWS has created an AI service supply chain with its own last-mile challenges.

Related content
The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

AWS AI/ML provides enterprise customers with API access to services like speech transcription because many want to integrate such services into their own workflows but don’t have the resources, expertise, or interest to build them from scratch. These enterprise customers sit between the general-purpose services of a cloud provider like AWS and the final end-users of the technology. For example, a health care system might want to provide cloud speech transcription services optimized for medical vocabulary to allow doctors to take verbal notes during their patient rounds.

As diligent as we are at AWS at battle-testing our services and underlying models for state-of-the-art performance, fairness, and other responsible-AI dimensions, it is obviously impossible to anticipate all possible downstream use cases and conditions. Continuing our health care example, perhaps there is a floor of a particular hospital that has new and specialized imaging equipment that emits background noise at a specific regularity and acoustic frequency. In the likely event that these exact conditions were not represented in either the training or test data, it’s possible that overall word error rates will not only be higher but may be so differentially across accents and dialects.

Such last-mile effects can be as diverse as the enterprise customers themselves. With time and awareness of such conditions, we can use targeted training data and customer-side testing to improve downstream performance. But due to the proliferation of new use cases, it is an ever-evolving process, not one that is ever “finished”.

AI activism: from bugs to bias

It’s not only cloud customers whose last miles may present conditions that differ from those during training and testing. We live in a (healthy) era of what might be called AI activism, in which not only enterprises but individual citizens — including scientists, journalists, and members of nonprofit organizations — can obtain API or open-source access to ML services and models and perform their own evaluations on their own curated datasets. Such tests are often done to highlight weaknesses of the technology, including shortfalls in overall performance and fairness but also potential security and privacy vulnerabilities. As such, they are typically performed without the AI developer’s knowledge and may be first publicized in both research and mainstream media outlets. Indeed, we have been on the receiving end of such critical publicity in the past.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

To date, the dynamic between AI developers and activists has been somewhat adversarial: activists design and conduct a private experimental evaluation of a deployed AI model and report their findings in open forums, and developers are left to evaluate the claims and make any needed improvements to their technology. It is a dynamic that is somewhat reminiscent of the historical tensions between more traditional software and security developers and the ethical and unethical hacker communities, in which external parties probe software, operating systems, and other platforms for vulnerabilities and either expose them for the public good or exploit them privately for profit.

Over time the software community has developed mechanisms to alter these dynamics to be more productive than adversarial, in particular in the form of bug bounty programs. These are formal events or competitions in which software developers invite the hacker community to deliberately find vulnerabilities in their technology and offer financial or other rewards for reporting and describing them to the developers.

Bias bounties.png
In a fair-ML (“bias bounty”) competition, different teams (x-axis) focus on different demographic features (y-axis) in the dataset, indicating that crowdsourced bias mitigation can help contend with the breadth of possible sources of bias. (The darker the blue, the greater the use of the feature.)

In the last couple of years, the ideas and motivations behind bug bounties have been adopted and adapted by the AI development community, in the form of “bias bounties”. Rather than finding bugs in traditional software, participants are invited to help identify demographic or other biases in trained ML models and systems. Early versions of this idea were informal hackathons of short duration focused on finding subsets of a dataset on which a model underperformed. But more recent proposals incubated at AWS and elsewhere include variants that are more formal and algorithmic in nature. The explosion of models, interest in, and concerns about generative AI have also led to more codified and institutionalized responsible-AI methodologies such as the HELM framework for evaluating large language models.

We view these recent developments — AI developers opening up their technology and its evaluation to a wider community of stakeholders than just enterprise customers, and those stakeholders playing an active role in identifying necessary improvements in both technical and nontechnical ways — as healthy and organic, a natural outcome of the complex and evolving AI industry. Indeed, such collaborations are in keeping with our recent White House commitments to external testing and model red-teaming.

Responsible AI is neither a problem to be “solved” once and for all, nor a problem that can be isolated to a single location in the pipeline stretching from developers to their customers to end-users and society at large. Developers are certainly the first line where best practices must be established and implemented and responsible-AI principles defended. But the keys to the long-term success of the AI industry lie in community, communication, and cooperation among all those affected by it.

Related content

US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: 1 Washington Street, Newark, NJ 07102 Duties: Independently own, design, and implement scalable and reliable solutions to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the approach is unclear. Acquire data by building the necessary SQL/ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3/edX storage systems. Deliver artifacts on medium size projects that affect important business decisions. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products and product features. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, large language models and/or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports to Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s degree in Statistics, Computer Science, Computer Engineering, Data Science, Machine Learning, Applied Math, Operations Research, or a related field plus two (2) years of experience as a Data Scientist or other occupation involving data processing and predictive Machine Learning modeling at scale. Experience may be gained concurrently and must include: Two (2) years in each of the following: - Utilizing specialized modelling software including Python or R - Building statistical models and machine learning models using large datasets from multiple resources - Building non-linear models including Neural Nets, Deep Learning, or Gradient Boosting. One (1) year in each of the following: - Building production-ready solutions or applications relying on Large Language Models (LLM), accessed programmatically and beyond just prompting - Evaluating LLM results at scale or fine-tuning LLMs - Building production-ready recommendation systems - Using database technologies including SQL or ETL. Alternatively, will accept a Bachelor’s degree and five (5) years of experience. Salary: $169,550 - 207,500 /year. Multiple positions. Apply online: www.amazon.jobs Job Code: ADBL175.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a frontend engineer on the team, you will build the platform and tooling that power data creation, evaluation, and experimentation across the lab. Your work will be used daily by annotators, engineers, and researchers. This is a hands-on technical leadership role. You will ship a lot of code while defining frontend architecture, shared abstractions, and UI systems across the platform. We are looking for someone with strong engineering fundamentals, sound product judgment, and the ability to build polished UIs in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Define and evolve architecture for a research tooling platform with multiple independently evolving tools. - Design and implement reusable UI components, frontend infrastructure, and APIs. - Collaborate directly with Research, Human -Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through implementation, rollout, and long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a backend engineer on the team, you will build and operate core services that ingest, process, and distribute large-scale, multi-modal datasets to internal tools and data pipelines across the lab. This is a hands-on technical leadership role. You will ship a lot of code while defining backend architecture and operational standards across the platform. The platform is built primarily in TypeScript today, with plans to introduce Python services in the future. We are looking for someone who can balance rapid experimentation with operational rigor to build reliable services in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Design and evolve backend architecture and interfaces for core services. - Define and own standards for production health, performance, and observability. - Collaborate directly with Research, Human Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
FR, Courbevoie
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Amazon's Pricing & Promotions Science is seeking a driven Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing and Promotions Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning and reinforcement learning modeling expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. The Price Optimization science team drives cross-domain and cross-system improvements through: - invent and deliver price optimization, simulation, and competitiveness tools for Sellers. - shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. - Promotion optimization initiatives exploring CX, discount amount, and cross-product optimization opportunities. - Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into many partner-team architectures, and is highly relevant to the customer, therefore this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication. About the team About the team: the Pricing Discovery and Optimization team within P2 Science owns price quality, discovery and discount optimization initiatives, including criteria for internal price matching, price discovery into search, p13N and SP, pricing bandits, and Promotion type optimization. We leverage planet scale data on billions of Amazon and external competitor products to build advanced optimization models for pricing, elasticity estimation, product substitutability, and optimization. We preserve long term customer trust by ensuring Amazon's prices are always competitive and error free.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
US, WA, Seattle
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities Key job responsibilities include: * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research