Responsible AI in the wild: Lessons learned at AWS

Real-world deployment requires notions of fairness that are task relevant and responsive to the available data, recognition of unforeseen variation in the “last mile” of AI delivery, and collaboration with AI activists.

When we first joined AWS AI/ML as Amazon Scholars over three years ago, we had already been doing scientific research in the area now known as responsible AI for a while. We had authored a number of papers proposing mathematical definitions of fairness and machine learning (ML) training algorithms enforcing them, as well as methods for ensuring strong notions of privacy in trained models. We were well versed in adjacent subjects like explainability and robustness and were generally denizens of the emerging responsible-AI research community. We even wrote a general-audience book on these topics to try to explain their importance to a broader audience.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

So we were excited to come to AWS in 2020 to apply our expertise and methodologies to the ongoing responsible-AI efforts here — or at least, that was our mindset on arrival. But our journey has taken us somewhere quite different, somewhere more consequential and interesting than we expected. It’s not that the definitions and algorithms we knew from the research world aren’t relevant — they are — but rather that they are only one component of a complex AI workstream comprising data, models, services, enterprise customers, and end-users. It’s also a workstream in which AWS is uniquely situated due to its pioneering role in cloud computing generally and cloud AI services specifically.

Our time here has revealed to us some practical challenges of which we were previously unaware. These include diverse data modalities, “last mile” effects with customers and end-users, and the recent emergence of AI activism. Like many good interactions between industry and academia, what we’ve learned at AWS has altered our research agenda in healthy ways. In case it’s useful to anyone else trying to parse the burgeoning responsible-AI landscape (especially in the generative-AI era), we thought we’d detail some of our experiences here.

Modality matters

One of our first important practical lessons might be paraphrased as “modality matters”. By this we mean that the particular medium in which an AI service operates (such as visual images or spoken or written language) matters greatly in how we analyze and understand it from both performance and responsible-AI perspectives.

Consider specifically the desire for trained models be “fair”, or free of significant demographic bias. Much of the scientific literature on ML fairness assumes that the features used to compare performance across groups (which might include gender, race, age, and other attributes) are readily available, or can be accurately estimated, in both training and test datasets.

Related content
Two of the world’s leading experts on algorithmic bias look back at the events of the past year and reflect on what we’ve learned, what we’re still grappling with, and how far we have to go.

If this is indeed the case (as it might be for some spreadsheet-like “tabular” datasets recording things like medical or financial records, in which a person’s age and gender might be explicit columns), we can more easily test a trained model for bias. For instance, in a medical diagnosis application we might evaluate the model to make sure the error rates are approximately the same across genders. If these rates aren’t close enough, we can augment our data or retrain the model in various ways until the evaluation is passed to satisfaction.

But many cloud AI/ML services operate on data that simply does not contain explicit demographic information. Rather, these services live in entirely different modalities such as speech, natural language, and vision. Applications such as our speech recognition and transcription services take as input time series of frequencies that capture spoken utterances. Consequently, there are not direct annotations in the data of things like gender, race, or age.

But what can be more readily detected from speech data, and are also more directly related to performance, are regional dialects and accents — of which there are dozens in North American English alone. English-language speech can also feature non-native accents, influenced more by the first languages of the speakers than by the regions in which they currently live. This presents an even more diverse landscape, given the large number of first languages and the international mobility of speakers. And while spoken accents may be weakly correlated or associated with one or more ancestry groups, they are usually uninformative on things like age and gender (speakers with a Philadelphia accent may be young or old; male, female or nonbinary; etc.). Finally, the speech of even a particular person may exhibit many other sources of variation, such as situational stress and fatigue.

Regional dialects.jpeg
Data — such as regional variations in word choice and accents — may lead toward alternative notions of fairness that are more task-relevant, as with word error rates across dialects and accents.

What is the responsible-AI practitioner to do when confronted with so many different accents and other moving parts, in a task as complex as speech transcription? At AWS, our answer is to meet the task and data on their own terms, which in this case involves some heavy lifting: meticulously gathering samples from large populations of representative speakers with different accents and carefully transcribing each word. The “representative” is important here: while it might be more expedient to (for instance) gather this data from professional actors trained in diction, such data would not be typical of spoken language in the wild.

Related content
Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

We also gather speech data that exhibits variability along other important dimensions, including the acoustic conditions during recording (varying amounts and types of background noise, recordings made via different mobile-phone handsets, whose microphones may vary in quality, etc.). The sheer number of combinations makes obtaining sufficient coverage challenging. (In some domains such as computer vision, coverage issues that are similar — variability across visual properties such as skin tone, lighting conditions, indoor vs. outdoor settings, and so on — have led to increased interest in synthetic data to augment human-generated data, including for fairness testing here at AWS.)

Once curated, such datasets can be used for training a transcription model that is not only good overall but also roughly equally performant across accents. And “performant” here means something more complex than in a simple prediction task; speech recognition typically uses a measure like the word error rate. On top of all the curation and annotations above, we also annotate some data by self-reported speaker demographics to make sure we’re fair not just by accent but by race and gender as well, as detailed in the service’s accompanying service card.

Our overarching point here is twofold. First, while as a society we tend to focus on dimensions such as race and gender when speaking about and assessing fairness, sometimes the data simply doesn’t permit such assessments, and it may not be a good idea to impute such dimensions to the data (for instance, by trying to infer race from speech signals). And second, in such cases the data may lead us toward alternative notions of fairness that might be more task-relevant, as with word error rates across dialects and accents.

The last mile of responsible AI

The specific properties of individuals that can or cannot (or should not) be gleaned from a particular dataset or modality are not the only things that may be out of the direct control of AI developers — especially in the era of cloud computing. As we have seen above, it’s challenging work to get coverage of everything you can anticipate. It’s even harder to anticipate everything.

The supply chain phrase “the last mile” refers to the fact that “upstream” providers of goods and products may have limited control over the “downstream” suppliers that directly connect to end-users or consumers. The emergence of cloud providers like AWS has created an AI service supply chain with its own last-mile challenges.

Related content
The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

AWS AI/ML provides enterprise customers with API access to services like speech transcription because many want to integrate such services into their own workflows but don’t have the resources, expertise, or interest to build them from scratch. These enterprise customers sit between the general-purpose services of a cloud provider like AWS and the final end-users of the technology. For example, a health care system might want to provide cloud speech transcription services optimized for medical vocabulary to allow doctors to take verbal notes during their patient rounds.

As diligent as we are at AWS at battle-testing our services and underlying models for state-of-the-art performance, fairness, and other responsible-AI dimensions, it is obviously impossible to anticipate all possible downstream use cases and conditions. Continuing our health care example, perhaps there is a floor of a particular hospital that has new and specialized imaging equipment that emits background noise at a specific regularity and acoustic frequency. In the likely event that these exact conditions were not represented in either the training or test data, it’s possible that overall word error rates will not only be higher but may be so differentially across accents and dialects.

Such last-mile effects can be as diverse as the enterprise customers themselves. With time and awareness of such conditions, we can use targeted training data and customer-side testing to improve downstream performance. But due to the proliferation of new use cases, it is an ever-evolving process, not one that is ever “finished”.

AI activism: from bugs to bias

It’s not only cloud customers whose last miles may present conditions that differ from those during training and testing. We live in a (healthy) era of what might be called AI activism, in which not only enterprises but individual citizens — including scientists, journalists, and members of nonprofit organizations — can obtain API or open-source access to ML services and models and perform their own evaluations on their own curated datasets. Such tests are often done to highlight weaknesses of the technology, including shortfalls in overall performance and fairness but also potential security and privacy vulnerabilities. As such, they are typically performed without the AI developer’s knowledge and may be first publicized in both research and mainstream media outlets. Indeed, we have been on the receiving end of such critical publicity in the past.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

To date, the dynamic between AI developers and activists has been somewhat adversarial: activists design and conduct a private experimental evaluation of a deployed AI model and report their findings in open forums, and developers are left to evaluate the claims and make any needed improvements to their technology. It is a dynamic that is somewhat reminiscent of the historical tensions between more traditional software and security developers and the ethical and unethical hacker communities, in which external parties probe software, operating systems, and other platforms for vulnerabilities and either expose them for the public good or exploit them privately for profit.

Over time the software community has developed mechanisms to alter these dynamics to be more productive than adversarial, in particular in the form of bug bounty programs. These are formal events or competitions in which software developers invite the hacker community to deliberately find vulnerabilities in their technology and offer financial or other rewards for reporting and describing them to the developers.

Bias bounties.png
In a fair-ML (“bias bounty”) competition, different teams (x-axis) focus on different demographic features (y-axis) in the dataset, indicating that crowdsourced bias mitigation can help contend with the breadth of possible sources of bias. (The darker the blue, the greater the use of the feature.)

In the last couple of years, the ideas and motivations behind bug bounties have been adopted and adapted by the AI development community, in the form of “bias bounties”. Rather than finding bugs in traditional software, participants are invited to help identify demographic or other biases in trained ML models and systems. Early versions of this idea were informal hackathons of short duration focused on finding subsets of a dataset on which a model underperformed. But more recent proposals incubated at AWS and elsewhere include variants that are more formal and algorithmic in nature. The explosion of models, interest in, and concerns about generative AI have also led to more codified and institutionalized responsible-AI methodologies such as the HELM framework for evaluating large language models.

We view these recent developments — AI developers opening up their technology and its evaluation to a wider community of stakeholders than just enterprise customers, and those stakeholders playing an active role in identifying necessary improvements in both technical and nontechnical ways — as healthy and organic, a natural outcome of the complex and evolving AI industry. Indeed, such collaborations are in keeping with our recent White House commitments to external testing and model red-teaming.

Responsible AI is neither a problem to be “solved” once and for all, nor a problem that can be isolated to a single location in the pipeline stretching from developers to their customers to end-users and society at large. Developers are certainly the first line where best practices must be established and implemented and responsible-AI principles defended. But the keys to the long-term success of the AI industry lie in community, communication, and cooperation among all those affected by it.

Related content

US, VA, Arlington
Device Economics is looking for an economist experienced in causal inference, empirical industrial organization, forecasting, and scaled systems to work on business problems to advance critical resource allocation and pricing decisions in the Amazon Devices org. Output will be included in scaled systems to automate existing processes and to maximize business and customer objectives. Amazon Devices designs and builds Amazon first-party consumer electronics products to delight and engage customers. Amazon Devices represents a highly complex space with 100+ products across several product categories (e-readers [Kindle], tablets [Fire Tablets], smart speakers and audio assistants [Echo], wifi routers [eero], and video doorbells and cameras [Ring and Blink]), for sale both online and in offline retailers in several regions. The space becomes more complex with dynamic product offering with new product launches and new marketplace launches. The Device Economics team leads in analyzing these complex marketplace dynamics to enable science-driven decision making in the Devices org. Device Economics achieves this by combining economic expertise with macroeconomic trends, and including both in scientific applications for use by internal analysts, to provide deep understanding of customer preferences. Our team’s outputs inform product development decisions, investments in future product categories, product pricing and promotion, and bundling across complementary product lines. We have achieved substantial impact on the Devices business, and will achieve more. Device Economics seeks an economist adept in measuring customer preferences and behaviors with proven capacity to innovate, scale measurement, and drive rigor. The candidate must be passionate about advancing science for business and customer impact.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for a Senior Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for a Senior Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
HK, Causeway Bay
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. The Generative Artificial Intelligence (AI) Innovation Center team at AWS provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies leveraging cutting-edge generative AI algorithms. As an Applied Scientist, you'll partner with technology and business teams to build solutions that surprise and delight our customers. We’re looking for Applied Scientists capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities Key job responsibilities - Collaborate with scientists and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges - Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction. A day in the life Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. About the team AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. AWS Professional Services engage in a wide variety of projects for customers and partners, providing collective AWS customer experience, best practices, and obsessing about strong success for the Customer. Our team collaborates across the entire AWS organization to bring access to product, service, and training teams, to deliver the right solutions and drive feature innovations for our customers across all industries. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental measurement techniques. Candidates with a track record of original scientific contributions in experimental device physics will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities As a research scientist you will be responsible for building experiments that encompass the integrated stack: design, fabrication, cryogenics, signal chain, and control stack software. Based on your tests you will provide recommendations that improve our next-generation quantum processors. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Seattle
Amazon's Sponsored Products advertising business is one of the fastest growing areas in the company. Have you ever wondered what happens behind that “Sponsored” label you see on Amazon? The Sponsored Products Marketplace team creates and optimizes the systems that match advertiser demand (ads) with page supply (placements) using a combination of data-driven product innovation, machine learning, big data analytics, and low latency/high-volume engineering. By the time organic search results are ready, we've processed all of the candidate ads and determined which ones are delivered to the page. We do that billions of times per day, resulting in millions of engagements with products that otherwise might not have been seen by shoppers. The business and technical challenges are significant. Fortunately, we have a broad mandate to experiment and innovate, and a seemingly endless range of new opportunities to build a big, sustainable business that helps Amazon continuously delight all of our customers. We're looking for an innovative and customer-obsessed Sr. Applied Scientist who can help us take our products to the next level of quality and performance by creating state-of-the-art models to improve our ability to optimize performance, forecast the impact of advertiser actions, and enable advertisers to scale through impactful features. We embrace leaders with a startup mentality -- those who have a disruptive yet clear mission and purpose, an unambiguous owner's mindset, and a relentless obsession for delivering amazing products. As Sr. Applied Scientist on the Scalable Controls team, you will work alongside business leaders, other scientists, and software engineers to deliver rules that algorithmically manage ads using ML, DL, and R techniques. You will be responsible for bridging the experimental domain with the production domain by building robust and efficient computational pipelines to scale up models, keeping the models fresh, and ensuring that real-world corner cases are handled correctly. You'll own significant products and features from inception through launch, and will work with Product Managers, other Scientists, and Engineers to make your efforts wildly successful. You will lead the science program for our team, providing input to strategic decision making on topics such as program direction/vision, roadmap, and staffing. If this sounds like your sort of challenge, read on. Characteristics indicative of success in this role: * Highly analytical: You solve problems in ways that can be backed up with verifiable data. You focus on driving processes, tools, and statistical methods which support rational decision-making. * Technically fearless: You aren't satisfied by performing 'as expected' and push the limits past conventional boundaries. Your dial goes to '11'. * Engaged by ambiguity: You're able to explore new problem spaces with unique constraints and non-obvious solutions. * Team obsessed individual contributor: You help grow your team members to achieve outstanding results. You've learned that big plans generally involve collaboration and great communications. * Quality obsessed: You recognize that professional scientists build high quality model development and evaluation frameworks to ensure that their models can provably meet launch criteria, or efficiently iterate in the framework until they do. * Humbitious: You’re ambitious, yet humble. You recognize that there’s always opportunity for improvement. You use introspection and feedback from teammates and peers to raise the bar. Key job responsibilities * Apply machine learning and analytical techniques to create scalable solutions for business problems * Work closely with software engineering and product teams across the organization to drive model implementations and new feature creations * Work closely with business stakeholders to identify opportunities for current model improvements and new models to significantly benefit the business bottom-line * Collaborate with scientists within the Ads organization as well as other parts of Amazon to share learnings move the state-of-the-art forward * Establish scalable, efficient, automated processes for data analyses, model development, model validation and model implementation * Research and implement novel machine learning and statistical approaches
US, CA, Santa Clara
The AWS AI team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists develops the algorithms and models that have powered AWS SageMaker, SageMaker JumpStart, SageMaker Clarify, AWS Bedrock, AWS Ground Truth, Amazon Rekognition, Amazon Textract, and Amazon Lookout for Vision. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
IN, KA, Bangalore
Are you excited about delighting millions of customers by driving the most relevant marketing initiatives? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? Amazon is seeking a Data Scientist . This team is focused on driving key priorities of a)core shopping that elevates the shopping CX for all shoppers in all lifecycle stages, b) developing ways to accelerate lifecycle progression and build foundational capabilities to address the shopper needs and c)Alternate shopping models We are looking for a Data Scientist to join our efforts to support the next generation of analytics systems for measuring consumer behavior using machine learning and econometrics at big data scale at Amazon. You will work machine learning and statistical algorithms across multiple platforms to harness enormous volumes of online data at scale to define customer facing products and measure customer responses to various marketing initiatives. The Data Scientist will be a technical player in a team working to build custom science solutions to drive new customers, engage existing customers and drive marketing efficiencies by leveraging approaches that optimize Amazon’s systems using cutting edge quantitative techniques. The right candidate needs to be fluid in: · Data warehousing and EMR (Hive, Pig, R, Python). · Feature extraction, feature engineering and feature selection. · Machine learning, causal inference, statistical algorithms and recommenders. · Model evaluation, validation and deployment. · Experimental design and testing.
US, WA, Bellevue
AMZL Global Fleet and Products (GFP) organization is responsible for fleet programs and capacity for Last Mile deliveries. The Fleet Planning team is looking for a Data Scientist to drive the most efficient use of fleet. Last Mile fleet planning is a complex resource allocation problem. The goal of fleet allocation planning is to optimize the size and mix of fleet allocated to DSPs through various programs to improve branded fleet utilization. Changes in routes, last mile network, exiting DSPs and new DSP onboarding create continuous need for re-allocation of fleet to maintain an efficient network capacity. This requires allocation to adhere to various operational limits (repair network, EV range, Station Charging capability) and also match route’s cube need to vehicles capacity. As a Data Scientist on the Fleet Planning team (GFP), you will be responsible for building new science models (linear programs, statistical and ML models) and enhancing existing models for changing business needs. You would work with program managers in planning, procurement, redeployment, deployment, remarketing, variable fleet and infrastructure programs to build models that would support the requirements of all programs in a coherent plan. Key job responsibilities • Build models and automation for planners for generating vehicle allocation plans • Partner with program teams to test and measure success of implemented model • Lead reviews with senior leadership, deep dive model outputs and explain implications of model recommendations.
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse problems and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. Key job responsibilities The primary responsibilities of this role are to: - Design, develop, and evaluate innovative ML models to solve diverse problems and opportunities across industries - Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them - Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
We are seeking a senior scientist to develop new and enhanced statistical models for A/B testing large experiments at scale. Our team owns "causal inference as a service" for the Pricing and Promotions organization; we run A/B tests on new pricing, promotions, and pricing/promotions CX algorithms and, where experimentation is impractical, conduct observational causal studies. The scientist for this role will help explore new randomization methodologies (e.g. cluster and stratified strategies, as well as switchback or crossover designs) as well as build cutting-edge solutions to newer paradigms such as bipartite experimentation. Research opportunities also exist for intra-experiment and inter-experiment spillover effect measurement. Key job responsibilities We are seeking a senior scientist to help envision, design, and build the next generation of pricing, promotions, and pricing/promotions CX for Amazon. On our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design and implement in production new statistical methods for measuring causal effects of an extensive array of business policies. This position is perfect for someone who has a deep and broad analytic background, is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis and have experience coding with engineers to put projects into production. We are particularly interested in candidates with research background in experimental statistics. A day in the life - Discuss with business problems with business partners, product managers, and tech leaders - Brainstorm with other scientists to design the right model for the problem at hand - Present the results and new ideas for existing or forward looking problems to leadership - Dive deep into the data - Build working prototypes of models - Work with engineers to implement prototypes in production - Analyze the results and review with partners About the team We are a team of scientists who design and implement the econometrics and statistics powering pricing, promotions, and pricing/promotions CX.