Advances in trustworthy machine learning at Alexa AI

The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

At Amazon, we take the protection of customer data very seriously. We are also committed to eliminating the biases that can exist in off-the-shelf language models — such as GPT-3 and RoBERTa — that are the basis of most modern natural-language processing. Trained on public texts, these language models are known to reflect the biases implicit in those texts.

Related content
Calibrating noise addition to word density in the embedding space improves utility of privacy-protected text.

These two topics — privacy protection and fairness — are at the core of trustworthy machine learning, an important area of research at Alexa AI. In 2021, we made contributions in the following areas:

  • Privacy-preserving machine learningDifferential privacy provides a rigorous way to quantify the privacy of machine learning models. We investigated vulnerabilities presented in the differential-privacy literature and propose computationally efficient mechanisms for protecting against them.
  • Federated learning: Federated learning (FL) is a distributed-training technique that keeps customer data on-device. Devices send only model parameter updates to the cloud, not raw data. We studied several FL challenges arising in an industrial setting.
  • Fairness in machine learning: Machine learning (ML) models should perform equally well regardless of who’s using them. But even knowing how to quantify fairness is a challenge. We introduced measures of fairness and methods to mitigate bias in ML models.
Counterfactuals.png
To reduce binary-gender disparity in a distilled GPT-2 language model, we introduce counterfactual examples, in which binary genders in real-world training examples are swapped.

Below, we summarize our research in these areas, which will be presented at ACL and ICASSP later this year. We also invite readers to participate in workshops and sessions we are organizing at NAACL 2022 and Interspeech 2022.

1. Privacy-preserving ML

The intuition behind differential privacy (DP) is that access to the outputs of a model should not provide any hint about what inputs were used to train the model. DP quantifies that intuition as a difference (in probabilities) between the outputs of a model trained on a given dataset and the outputs of the same model trained on the same dataset after a single input is removed.

One way to meet a DP privacy guarantee is to add some noise to the model parameters during training in order to obfuscate their relationship to training data. But this can compromise accuracy. The so-called privacy/utility tradeoff appears in every DP application.

Another side effect of adding a DP mechanism is increased training time. Given that training natural-language-understanding (NLU) models with large volumes of data can be prohibitively slow and that industry standards require fast training and deployment — e.g., when new features are being released — we developed a training method that meets DP requirements but remains efficient. We describe the method in a paper we’re presenting at this year’s ICASSP, “An efficient DP-SGD mechanism for large scale NLP models”.

In this work, we study the most popular DP mechanism for deep neural networks, DP-SGD, and build a computationally efficient alternative, eDP-SGD, in which we use a batch-processing scheme that leverages the GPU architecture and automates part of the hyperparameter-tuning process. While both DP-SGD and eDP-SGD provide the same privacy guarantees, we show that the training time for our mechanism is very similar to its non-DP counterpart’s. The original DP-SGD extends training time as much as 130-fold.

Related content
ADePT model transforms the texts used to train natural-language-understanding models while preserving semantic coherence.

Since we did our study, researchers have developed methods with stronger theoretical DP guarantees than the ones we impose in our paper, but our approach is consistent with those methods. Overall, this work makes DP more generally accessible and helps us integrate NLU models with DP guarantees into our production systems, where new models are frequently released, and a significant increase in training time is prohibitive.

While DP provides theoretical privacy guarantees, we are also interested in practical guarantees, i.e., measuring the amount of information that could potentially leak from a given model. In addition to the performance and training time of eDP-SGD, we also studied the correlation between theoretical and practical privacy guarantees. We measured practical privacy leakage using the most common method in the field, the success rate of membership inference attacks on a given model. Our experiments provide a general picture of how to optimize the privacy/utility trade-off using DP techniques for NLU models.

We also expanded the set of mechanisms for protecting NLU models against other types of attacks. In “Canary extraction in natural language understanding models”, which we will present at ACL 2022, we study the vulnerability of text classification models to a certain kind of white-box attack called a model inversion attack (ModIvA), where a fictional attack has access to the entire set of model parameters and intends to retrieve examples used during training. Existing model inversion techniques are applied to models with either continuous inputs or continuous outputs. In our work, we adopt a similar approach to text classification tasks where both inputs and outputs are discrete.

As new model architectures are developed that might display new types of vulnerabilities, we will continue innovating efficient ways of protecting our customers’ privacy.

Upcoming activities

2. Federated Learning

The idea behind federated learning (FL) is that, during the training of an ML model, part of the computation is delegated to customers’ devices, leveraging the processing power of those devices while avoiding the centralization of privacy-sensitive datasets. Each device modifies a common, shared model according to locally stored data, then sends an updated model to a central server that aggregates model updates and sends a new shared model to all the devices. At each round, the central server randomly selects a subset of active devices and requests that they perform updates.

Federated Learning Animation.gif
With federated learning, devices send model updates, not data, to a central server.

In the past year, we have made progress toward more-efficient FL and adapted common FL techniques to the industrial setting. For instance, in “Learnings from federated learning in the real world”, which we will present at ICASSP this year, we explore device selection strategies that differ from the standard uniform selection. In particular, we present the first study of device selection based on device “activity” — i.e., the number of available training samples.

These simple selection strategies are lightweight compared to existing methods, which require heavy computation from all the devices. They are thus more suitable to industrial applications, where millions of devices are involved. We study two different settings: the standard “static” setting, where all the data are available at once, and the more realistic “continual” setting, where customers generate new data over time, and past examples might have to be deleted to save storage space. Our experiments on training a language model with FL show that non-uniform sampling outperforms uniform sampling when applied to real-world data, for both the static and continual settings.

Related content
Amazon researchers optimize the distributed-training tool to run efficiently on the Elastic Fabric Adapter network interface.

We also expanded our understanding of FL for natural-language processing (NLP) and, in the process, made FL more accessible to the NLP community. In “FedNLP: A research platform for federated learning in natural language processing”, which will be presented later this year at NAACL, we and our colleagues at the University of Southern California and FedML systematically compare the most popular FL algorithms for four mainstream NLP tasks. We also present different methods to generate dataset partitions that are not independent and identically distributed (IID), as real-world FL methods must be robust against shifts in the distributions of the data used to train ML models.

Our analysis reveals that there is still a large gap between centralized and decentralized training under various settings, and we highlight several directions in which FL for NLP can advance. The paper represents Amazon’s contribution to the open-source framework FedNLP, which is capable of evaluating, analyzing, and developing FL methods for NLP. The codebase contains non-IID partitioning methods, enabling easy experimentation to advance the state of FL research for NLP.

We also designed methods to account for the naturally heterogeneous character of customer-generated data and applied FL to a wide variety of NLP tasks. We are aware that FL still presents many challenges, such as how to do evaluation when access to data is removed, on-device label generation for supervised tasks, and privacy-preserving communication between the server and the different devices. We are actively addressing each of these and plan to leverage our findings to improve FL-based model training and enhance associated capabilities such as analytics and model evaluation.

Upcoming activities

3. Fairness in ML

Natural-language-processing applications’ increased reliance on large language models trained on intrinsically biased web-scale corpora has amplified the importance of accurate fairness metrics and procedures for building more robust models.

In “On the intrinsic and extrinsic fairness evaluation metrics for contextualized language representations”, which we are presenting at ACL 2022, we compare two families of fairness metrics — namely extrinsic and intrinsic — that are widely used for language models. Intrinsic metrics directly probe into the fairness of language models, while extrinsic metrics evaluate the fairness of a whole system through predictions on downstream tasks.

Related content
Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

For example, the contextualized embedding association test (CEAT), an intrinsic metric, measures bias through word embedding distances in semantic vector spaces, and the extrinsic metric HateXPlain measures the bias in a downstream hate speech detection system.

Our experiments show that inconsistencies between intrinsic and extrinsic metrics often reflect inconsistencies between the datasets used to evaluate them, and a clear understanding of bias in ML models requires more careful alignment of evaluation data. The results we report in the paper can help guide the NLP community as to how to best conduct fairness evaluations.

We have also designed new measures of fairness that are adapted to language-processing applications. In “Measuring fairness of text classifiers via prediction sensitivity”, which we will present at ACL 2022, we looked at sensitivity to perturbations of input as a way to measure fairness in ML models. The metric attempts to quantify the extent to which a single prediction depends on an input feature that encodes membership in an underrepresented group.

Accumulated prediction sensitivity.png
Our new bias measure, accumulated prediction sensitivity, combines the outputs of tow models, a task classifier (TC) and a protected status model (PSM).

We provide a theoretical analysis of our formulation and show a statistically significant difference between our metric’s correlation with the human notion of fairness and the existing counterfactual fairness metric’s.

Finally, we proposed a method to mitigate the biases of large language models during knowledge distillation, in which a smaller, more efficient model is trained to match the language model’s output on a particular task. Because large language models are trained on public texts, they can be biased in multiple ways, including the unfounded association of male or female genders with gender-neutral professions.

Distillation examples.png
Examples of texts generated by language models in response to gendered prompts before and after the application of our distillation method.

In another ACL paper, “Mitigating gender bias in distilled language models via counterfactual role reversal”, we introduce two modifications to the standard distillation mechanisms: data augmentation and teacher prediction perturbation.

We use our method to distill a GPT-2 language model for a text-generation task and demonstrate a substantial reduction in gender disparity, with only a minor reduction in utility. Interestingly, we find that reduced disparity in open-ended text generation may not necessarily lead to fairness on other downstream tasks. This finding underscores the importance of evaluating language model fairness along multiple metrics and tasks.

Our work on fairness in ML for NLP applications should help enable models that are more robust against the inherent biases of text datasets. There remain plenty of challenges in this field, but we strive to build models that offer the same experience to any customer, wherever and however they choose to interact with Alexa.

Upcoming activities

Related content

IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Fabrication group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of device fabrication techniques. Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities In this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data through automation, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, VA, Herndon
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. AWS Infrastructure Services Science (AISS) researches and builds machine learning models that influence the power utilization at our data centers to ensure the health of our thermal and electrical infrastructure at high infrastructure utilization. As a Data Scientist, you will work on our Science team and partner closely with other scientists and data engineers as well as Business Intelligence, Technical Program Management, and Software teams to accurately model and optimize our power infrastructure. Outputs from your models will directly influence our data center topology and will drive exceptional cost savings. You will be responsible for building data science prototypes that optimize our power and thermal infrastructure, working across AWS to solve data mapping and quality issues (e.g. predicting when we might have bad sensor readings), and contribute to our Science team vision. You are skeptical. When someone gives you a data source, you pepper them with questions about sampling biases, accuracy, and coverage. When you’re told a model can make assumptions, you actively try to break those assumptions. You have passion for excellence. The wrong choice of data could cost the business dearly. You maintain rigorous standards and take ownership of the outcome of your data pipelines and code. You do whatever it takes to add value. You don’t care whether you’re building complex ML models, writing blazing fast code, integrating multiple disparate data-sets, or creating baseline models - you care passionately about stakeholders and know that as a curator of data insight you can unlock massive cost savings and preserve customer availability. You have a limitless curiosity. You constantly ask questions about the technologies and approaches we are taking and are constantly learning about industry best practices you can bring to our team. You have excellent business and communication skills to be able to work with product owners to understand key business questions and earn the trust of senior leaders. You will need to learn Data Center architecture and components of electrical engineering to build your models. You are comfortable juggling competing priorities and handling ambiguity. You thrive in an agile and fast-paced environment on highly visible projects and initiatives. The tradeoffs of cost savings and customer availability are constantly up for debate among senior leadership - you will help drive this conversation. Key job responsibilities - Proactively seek to identify opportunities and insights through analysis and provide solutions to automate and optimize power utilization based on a broad and deep knowledge of AWS data center systems and infrastructure. - Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult customer or business problems and cases in which the solution approach is unclear. - Collaborate with Engineering teams to obtain useful data by accessing data sources and building the necessary SQL/ETL queries or scripts. - Build models and automated tools using statistical modeling, econometric modeling, network modeling, machine learning algorithms and neural networks. - Validate these models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. - Collaborate with Engineering teams to implement these models in a manner which complies with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. About the team Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Why AWS* Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Diverse Experiences* Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. *Work/Life Balance* We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. *Inclusive Team Culture* Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) conferences, inspire us to never stop embracing our uniqueness. *Mentorship and Career Growth* We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team seeks an experienced Principal Data Scientist to join our ProServe Shared Delivery Team (SDT). In this role, you will serve as a technical leader and strategic advisor to AWS enterprise customers, partners, and internal AWS teams on transformative AI/ML projects. You will leverage your deep technical expertise to architect and implement innovative machine learning and generative AI solutions that drive significant business outcomes. As a Principal Data Scientist, you will lead complex, high-impact AI/ML initiatives across multiple customer engagements. You will collaborate with Director and C-level executives to translate business challenges into technical solutions. You will drive innovation through thought leadership, establish technical standards, and develop reusable solution frameworks that accelerate customer adoption of AWS AI/ML services. Your work will directly influence the strategic direction of AWS Professional Services AI/ML offerings and delivery approaches. Your extensive experience in designing and implementing sophisticated AI/ML solutions will enable you to tackle the most challenging customer problems. You will provide technical mentorship to other data scientists, establish best practices, and represent AWS as a subject matter expert in customer-facing engagements. You will build trusted advisor relationships with customers and partners, helping them achieve their business outcomes through innovative applications of AWS AI/ML services. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities Architecting and implementing complex, enterprise-scale AI/ML solutions that solve critical customer business challenges Providing technical leadership across multiple customer engagements, establishing best practices and driving innovation Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to design and deploy AI/ML solutions Developing reusable solution frameworks, reference architectures, and technical assets that accelerate customer adoption of AWS AI/ML services Representing AWS as a subject matter expert in customer-facing engagements, including executive briefings and technical workshops Identifying and driving new business opportunities through technical innovation and thought leadership Mentoring junior data scientists and contributing to the growth of AI/ML capabilities within AWS Professional Services
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X team within Amazon Advertising time aims to democratize access to high-quality creatives (audio, images, videos, text) by building AI-driven solutions for advertisers. To accomplish this, we are investing in understanding how best users can leverage Generative AI methods such as latent-diffusion models, large language models (LLM), generative audio (music and speech synthesis), computer vision (CV), reinforced learning (RL) and related. As an Applied Scientist you will be part of a close-knit team of other applied scientists and product managers, UX and engineers who are highly collaborative and at the top of their respective fields. We are looking for talented Applied Scientists who are adept at a variety of skills, especially at the development and use of multi-modal Generative AI and can use state-of-the-art generative music and audio, computer vision, latent diffusion or related foundational models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. Every member of the team is expected to build customer (advertiser) facing features, contribute to the collaborative spirit within the team, publish, patent, and bring SOTA research to raise the bar within the team. As an Applied Scientist on this team, you will: - Drive the invention and development of novel multi-modal agentic architectures and models for the use of Generative AI methods in advertising. - Work closely and integrate end-to-end proof-of-concept Machine Learning projects that have a high degree of ambiguity, scale and complexity. - Build interface-oriented systems that use Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Curate relevant multi-modal datasets. - Perform hands-on analysis and modeling of experiments with human-in-the-loop that eg increase traffic monetization and merchandise sales, without compromising the shopper experience. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Mentor and help recruit Applied Scientists to the team. - Present results and explain methods to senior leadership. - Willingness to publish research at internal and external top scientific venues. - Write and pursue IP submissions. Key job responsibilities This role is focused on developing new multi-modal Generative AI methods to augment generative imagery and videos. You will develop new multi-modal paradigms, models, datasets and agentic architectures that will be at the core of advertising-facing tools that we are launching. You may also work on development of ML and GenAI models suitable for advertising. You will conduct literature reviews to stay on the SOTA of the field. You will regularly engage with product managers, UX designers and engineers who will partner with you to productize your work. For reference see our products: Enhanced Video Generator, Creative Agent and Creative Studio. A day in the life On a day-to-day basis, you will be doing your independent research and work to develop models, you will participate in sprint planning, collaborative sessions with your peers, and demo new models and share results with peers, other partner teams and leadership. About the team The team is a dynamic team of applied scientists, UX researchers, engineers and product leaders. We reside in the Creative X organization, which focuses on creating products for advertisers that will improve the quality of the creatives within Amazon Ads. We are open to hiring candidates to work out of one of the following locations: UK (London), USA (Seattle).
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We tackle a wide range of challenges throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. Our mission is to develop innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run optimally and continuously (from every few minutes to every few hours) across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions that directly impact process efficiency and associate experience in the fulfillment network. Your key responsibilities include: - Develop deep understanding and domain knowledge of operational processes, system architecture, and business requirements - Dive deep into data and code to identify opportunities for continuous improvement and disruptive new approaches - Design and develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and emerging challenges - Create prototypes and simulations for agile experimentation of proposed solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with software engineers to integrate prototypes into production systems - Design and execute experiments to test new or incremental solutions launched in production - Build and monitor metrics to track solution performance and business impact About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team brings expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM, combined with deep domain knowledge of operational processes within FCs and their unique challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Our production systems rely on a diverse set of technologies, and our teams invest in multiple specialties as the needs of each focus area evolve.
US, WA, Seattle
Have you ever wondered what it takes to transform millions of manual network planning decisions into AI-powered precision? Network Planning Solutions is looking for scientific innovators obsessed with building the AI/ML intelligence that makes orchestrating complex global operations feel effortless. Here, you'll do more than just build models; you'll create 'delight' by discovering and deploying the science that delivers exactly what our customers need, right when they need it. If you're ready to transform complex data patterns into breakthrough AI capabilities that power intuitive human experiences, you've found your team. Network Planning Solutions architects and orchestrates Amazon's customer service network of the future. By building AI-native solutions that continuously learn, predict and optimize, we deliver seamless customer experiences and empower associates with high-value work—driving measurable business impact at a global scale. As a Sr. Manager, Applied Science, you will own the scientific innovation and research initiatives that make this vision possible. You will lead a team of applied scientists and collaborate with cross-functional partners to develop and implement breakthrough scientific solutions that redefine our global network. Key job responsibilities Lead AI/ML Innovation for Network Planning Solutions: - Develop and deploy production-ready demand forecasting algorithms that continuously sense and predict customer demand using real-time signals - Build network optimization algorithms that automatically adjust staffing as conditions evolve across the service network - Architect scalable AI/ML infrastructure supporting automated forecasting and network optimization capabilities across the system Drive Scientific Excellence: - Build and mentor a team of applied scientists to deliver breakthrough AI/ML solutions - Design rigorous experiments to validate hypotheses and quantify business impact - Establish scientific excellence mechanisms including evaluation metrics and peer review processes Enable Strategic Transformation: - Drive scientific innovation from research to production - Design and validate next-generation AI-native models while ensuring robust performance, explainability, and seamless integration with existing systems. - Partner with Engineering, Product, and Operations teams to translate AI/ML capabilities into measurable business outcomes - Navigate ambiguity through experimentation while balancing innovation with operational constraints - Influence senior leadership through scientific rigor, translating complex algorithms into clear business value A day in the life Your day will be a dynamic blend of scientific innovation and strategic problem-solving. You'll collaborate with cross-functional teams, design AI algorithms, and translate complex data patterns into intuitive solutions that drive meaningful business impact. About the team We are Network Planning Solutions, a team of scientific innovators dedicated to reshaping how global service networks operate. Our mission is to create AI-native solutions that continuously learn, predict, and optimize customer experiences. We empower our associates to tackle high-value challenges and drive transformative change at a global scale.
US, CA, Palo Alto
Sponsored Products and Brands (SPB) is at the heart of Amazon Advertising, helping millions of advertisers—from small businesses to global brands—connect with customers at the moments that matter most. Our advertising solutions enable sellers, vendors, and brand owners to grow their businesses by reaching shoppers with relevant, engaging ads across Amazon's store and beyond. We're obsessed with delivering measurable results for advertisers while creating a delightful shopping experience for customers. Are you interested in defining the science behind the future of advertising? Sponsored Products and Brands science teams are pioneering breakthrough agentic AI systems—pushing the boundaries of large language models, autonomous reasoning, planning, and decision-making to build intelligent agents that fundamentally transform how advertisers succeed on Amazon. As an SPB applied science leader, you'll have end-to-end ownership of the product and scientific vision, research agenda, model architectures, and evaluation frameworks required to deliver state-of-the-art agentic AI solutions for our advertising customers. You'll get to work on problems that are fast-paced, scientifically rich, and deeply consequential. You'll also be able to explore novel research directions, take bold bets, and collaborate with remarkable scientists, engineers, and product leaders. We'll look for you to bring your diverse perspectives, deep technical expertise, and scientific rigor to make Amazon Advertising even better for our advertisers and customers. With global opportunities for talented scientists and science leaders, you can decide where a career in Amazon Ads Science takes you! We are kicking off a new initiative within SPB to leverage agentic AI solutions to revolutionize how advertisers create, manage, and optimize their advertising campaigns. This is a unique opportunity to lead a business-critical applied science initiative from its inception—defining the scientific charter, establishing foundational research pillars, and building a multi-year science roadmap for transformative impact. As the single-threaded applied science leader, you will build and guide a dedicated team of applied scientists, research scientists, and machine learning engineers, working closely with cross-functional engineering and product partners, to research, develop, and deploy agentic AI systems that fundamentally reimagine the advertiser journey. Your charter will begin with advancing the science behind intelligent agents that simplify campaign creation, automate optimization decisions through autonomous reasoning and planning, and deliver personalized advertising strategies at scale. You will pioneer novel approaches in areas such as LLM-based agent architectures, multi-step planning and tool use, retrieval-augmented generation, reinforcement learning from human and business feedback, and robust evaluation methodologies for agentic systems. You will expand to proactively identify and tackle the next generation of AI-powered advertising experiences across the entire SPB portfolio. This high-visibility role places you as the science leader driving our strategy to democratize advertising success—making it effortless for advertisers of all sizes to achieve their business goals while delivering relevant experiences for Amazon customers. Key job responsibilities Build, mentor, and lead a new, high-performing applied science organization of applied scientists, research scientists, and engineers, fostering a culture of scientific excellence, innovation, customer obsession, and ownership. Define, own, and drive the long-term scientific and product vision and research strategy for agentic AI-powered advertising experiences across Sponsored Products and Brands—identifying the highest-impact research problems and charting a path from exploration to production. Lead the research, design, and development of novel agentic AI models and systems—including LLM-based agent architectures, multi-agent orchestration, planning and reasoning frameworks, tool-use mechanisms, and retrieval-augmented generation pipelines—that deliver measurable value for advertisers and create delightful, intuitive experiences. Establish rigorous scientific methodology and evaluation frameworks for assessing agent performance, reliability, safety, and advertiser outcomes, setting a high bar for experimentation, reproducibility, and offline-to-online consistency. Partner closely with senior business, engineering, and product leaders across Amazon Advertising to translate advertiser pain points and business opportunities into well-defined science problems, and deliver cohesive, production-ready solutions that drive advertiser success. Drive execution from research to production at scale, ensuring models and agentic systems meet high standards for quality, robustness, latency, safety, and reliability for mission-critical advertising services operating at Amazon scale. Champion a culture of scientific inquiry and technical depth that encourages bold experimentation, publication of novel research, relentless simplification, and continuous improvement. Communicate your team's scientific vision, research breakthroughs, strategy, and progress to senior leadership and key stakeholders, ensuring alignment with broader Amazon Advertising objectives and contributing to Amazon's position at the forefront of applied AI. Develop a science roadmap directly tied to advertiser outcomes, revenue growth, and business plans, delivering on commitments for high-impact research and modeling initiatives that shape the future of AI-powered digital advertising.