Michael Kearns and Aaron Roth seated at a table in front of a large chalk board.
Michael Kearns, left, and Aaron Roth, right, are the co-authors ofThe Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns and Roth are leading researchers in machine learning, University of Pennsylvania computer science professors, and Amazon Scholars.
University of Pennsylvania

Amazon Scholars Michael Kearns and Aaron Roth discuss the ethics of machine learning

Two of the world’s leading experts on algorithmic bias look back at the events of the past year and reflect on what we’ve learned, what we’re still grappling with, and how far we have to go.

In November of 2019, University of Pennsylvania computer science professors Michael Kearns and Aaron Roth released The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns is the founding director of the Warren Center for Network and Data Sciences, and the faculty founder and former director of Penn Engineering’s Networked and Social Systems Engineering program. Roth is the co-director of Penn’s program in Networked and Social Systems Engineering and co-authored The Algorithmic Foundations of Differential Privacy with Cynthia Dwork. Kearns and Roth are leading researchers in machine learning, focusing on both the design and real-world application of algorithms.

Their book’s central thesis, which involves “the science of designing algorithms that embed social norms such as fairness and privacy into their code,” was already pertinent when the book was released. Fast forward one year, and the book’s themes have taken on even greater significance.

Amazon Science sat down with Kearns and Roth, both of whom recently became Amazon Scholars, to find out whether the events of the past year have influenced their outlook. We talked about what it means to define and pursue fairness, how differential privacy is being applied in the real world and what it can achieve, the challenges faced by regulators, what advice the two University of Pennsylvania professors would give to students studying artificial intelligence and machine learning, and much more.

Q. How has the narrative around designing socially aware algorithms evolved in the past year, and have the events of the past year altered your outlooks in any way?

Aaron Roth: The main thesis of our book, which is that in any particular problem you have to start by thinking carefully about what you want in terms of fairness or privacy or some other social desideratum, and then how you relatively value things like that compared to other things you might care about, such as accuracy—that fundamental thesis hasn't really changed.

Now with the coronavirus pandemic, what we have seen are application areas where how you want to manage the trade-off between accuracy and privacy, for example, is more extreme than we usually see. So, for example, in the midst of an outbreak, contact tracing might be really important, even though you can't really do contact tracing while protecting individual privacy. Because of the urgency of the situation, you might decide to trade off privacy for accuracy. But because the message of our book really is about thinking things through on a case-by-case basis, the thesis itself hasn't changed.

Michael Kearns: The events of the last year, in particular coronavirus, the resulting restrictions on society and the tensions around these restrictions, and all of the recent social upheaval in the United States, clearly has made the topics of our book much more relevant. The book has focused a lot of attention on the use of algorithms for both good and bad purposes, including things like contact tracing or releasing statistics about people's movements or health data, as well as the use of machine learning, AI, and algorithms more generally for applications like surveillance.

Since our book, at a high level, is about the tensions that arise when there's a battle between social norms like equality or privacy and the use of algorithms for optimizing things like performance or error, I don't think anything in the last year has changed our thinking about the technical aspects of these problems. It's clear that society has been forced to face these problems in a very direct way because of the events of the last year, in a way that we really haven't before. In that sense, our timing was very fortunate because the things we're talking about are more relevant now than ever.

Q. How does that affect your ability to define fairness? Is that something that can ever be a fixed definition, or does it need to be adjusted as events or specific use cases dictate?

Kearns: There's not one correct definition of fairness. In every application you have to think about who the parties are that you're trying to protect, and what the harms are that you're trying to protect them from. That changes both over time and in different scenarios.

Roth: Even before the events of the last year, fairness was always a very context- and beholder- dependent notion. One society might be primarily concerned about fairness by race, and another might be primarily concerned about fairness by gender, and a different community might have other norms. The events of the last year have highlighted cases in which not only will things vary over space or communities, but also over time.

People's attitudes about relatively invasive technologies like contact tracing might be quite different now than they were a year ago. If a year ago I told you, “Suppose there was some disease that some people were catching and the most effective way of tamping it down was to do contact tracing.” Many people might have said, “That sounds really invasive to me”, but now that we've all been through one of the alternatives—being on lock down for six months—people's minds might be changed. We’ve definitely seen norms around privacy for health-related data change.

Q. Standard setting bodies have a significant challenge when it comes to auditing algorithms. Given the scope of that challenge, what needs to happen to allow those groups to do that effectively?

Roth: Although it hasn't happened yet, regulatory agencies are thinking about this, and are reaching out to people like us to help them think about doing this in the right way. I don't know of any regulatory agency that is ready yet to audit algorithms at-scale in sensible ways of the technical sort we discuss in the book. But there are regulatory agencies that have gotten the idea that they should be gearing up to do this, and those agencies have started preliminary movements in that direction.

Kearns: Many of the conversations we've had with standard setting bodies make it clear they're realizing that, collectively, they've technologically fallen behind the industries that they regulate. They don't have the right resources or personnel to do some of the more technological types of auditing. But in these conversations, it's also become clear to us that, even if you could snap your fingers and get the right people and the right resources, it will only be part of a broader framework.

Other important pieces involve becoming more precise about best practices, and also thinking carefully about what those specifications should look like. Let me give a concrete example: One of the things that we argue in our book is that there are many laws and regulations in areas like consumer finance, for instance, that try to get at fairness by restricting what kinds of inputs an algorithm can use. These laws and regulations say, “In order to make sure that your model isn't racially discriminatory, you must not use race as a variable.” But, in fact, not using race as a variable is no guarantee that you won't build a model that's discriminatory by race. In fact, it can actually exacerbate that problem. What we advocate in the book is, rather than restricting the inputs, you should specify the behavior you want as outputs. So instead of saying, “Don't use race”, say instead, “The outputs of the models shouldn't be discriminatory by race.”

Q. Differential privacy has progressed from theoretical to applied science in significant ways in the past few years. How is differential privacy being utilized? How does that help balance the trade-off between privacy and accuracy?

Roth: In the last five years or so, differential privacy has gone from an academic topic to a real technology. For example, the 2020 US Decennial Census is going to release all of its statistical products for the first time, subject to the protections of differential privacy. This is because, by law, the Census is required to protect the privacy of the people it is surveying. The ad hoc techniques used in previous decades to protect the statistics have been shown not to work.

I think that what we will see is that the statistics that the Census releases this year will be more protective of the privacy of Americans. However, in the theme of trade off, using rigorous privacy protections is not without cost. Certain kinds of analyses, such as detailed demographic studies that rely on having highly granular Census data, might now be unavailable under differential privacy. We've seen this play out in the public sphere between downstream users of the data and folks at Census who actually have to hammer out the details.

We've seen other interesting uses of differential privacy during the pandemic too. Some tech companies have utilized differential privacy when releasing statistics about personal mobility data gathered during the pandemic. What differential privacy is best at is releasing those kinds of population level statistics: It's exactly designed to prevent you from learning too much about any particular individual. If you want to know how much less people are moving around different cities because of coronavirus restrictions, these data sets let you answer that question without giving up too much privacy for individuals whose mobile devices were providing the data at the most granular level.

Q. So how does differential privacy help protect individual information?

Roth: Oftentimes the things that you will most naturally want to know about a data set are not facts about particular people, but are population level aggregates like, how many people are crowded into my supermarket at 6 a.m. when it opens. If you tell me sufficiently many aggregate statistics, I can do some math and back out particular people's data from that. The fact that aggregate statistics can be disclosive about individual people's data is an unfortunate accident that actually doesn't have too much to do with what you really wanted to learn.

At its most basic level, differential privacy does things like add little bits of noise to the statistics that you're releasing so that what you're telling me is not the exact number of people who were in my local supermarket at 6 a.m., but roughly the number of people who were in the supermarket plus or minus some small number of people. The fortunate mathematical fact is that you can add amounts of noise that are relatively small that still allow you to get good estimates, but are sufficient to wash out the contributions of particular people, making it impossible to learn too much about any particular individual. It lets you get access to these population level questions that you were curious about without incidentally or accidentally learning about particular people, which is the dangerous side.

"We are bullish about algorithms"
Michael Kearns and Aaron Roth talked to Oxford Academic about the future of AI.

Kearns: To make this slightly more concrete, say what I want to do is each day tell everybody how many people were in the supermarket a couple blocks from me at 1 p.m. If you happened to be at that supermarket at one o’clock, then your GPS data is one of the data points that goes into the count. You may consider your presence at supermarket at 1 p.m. to be the kind of private information that you don't want the whole world to know. So then let's say that, on a typical day, there might be a couple hundred people at the supermarket, but that I add a number which is an order of magnitude, plus or minus 25. The addition of that random number mathematically and provably obscures any individual’s contributions to that count. I won't be able to look at that count and try to figure out any particular person who was present. If I add a number that's between minus 25 and 25, I can't affect the overall count by 100. I'll still have an accurate count up to some resolution, but I will have provided privacy to everybody who was present at the supermarket and, actually, all the people who weren't present as well.

Q. How are topics like fairness, accountability, transparency, interpretability, and privacy showing up in computer science curriculum at Penn and elsewhere within higher education?

Kearns: When Aaron and I first started working on the technical aspects of fairness in machine learning and related topics, it was pretty sparsely populated. This was maybe six or seven years ago, and there weren't many papers on the topics. There were some older ones, more from the statistics literature, but there wasn't really a community of any size within machine learning that thought about these problems. On the research side, the opposite is now true. All of the major machine learning conferences have significant numbers of papers and workshops on these topics; they have workshops devoted to these topics. There are now standalone conferences about fairness, accountability, and explainability in machine learning that are growing every year. It's a very vibrant, active research community now. Additionally, even though it's still early, it's an important enough topic that there are now starting to be efforts to teach this even at the undergraduate level.

The last two years at Penn, for example, I have piloted a course called The Science of Data Ethics. It’s deliberately called that and not The Ethics of Data Science. What that represents is that it’s about the science of making algorithms that are more ethical by different norms, like fairness and privacy. It's not your typical engineering ethics course, which at some level is meant to teach you to be a good, responsible person in that you look at case studies where things went wrong and you talk about what you would do differently. This class is a science class. It says: Here are the standard principles of machine learning, here's how those standard principles can lead to discriminatory behavior in my predictive models, and here are alternate principles, or modifications of those principles and the algorithms that implement them, that avoid or mitigate that behavior.

Q. Is there a more multidisciplinary approach to this set of challenges?

Roth: It's definitely a multidisciplinary area. At Penn, we've been actively collaborating with interested folks in the law school and the criminology department. So far, we don't really have interdisciplinary undergraduate courses on these topics. Those courses would be good in the long run, but at the research and graduate level we've been having interdisciplinary conversations for a number of years.

In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline.
Michael Kearns

Kearns: Not just at the teaching level, but even in the research community, there's a real melting pot of viewpoints on these topics. Even though our book is focused on the scientific aspects of these issues, we do spend some time mentioning the fact that the science will only take us so far. In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline. Machine learning begins with data and ends with a model. But upstream from the data is the entire manner in which the data was collected and the conditions under which it was collected.

One of the things that's very interesting, exciting, and necessary about the dialogue around these kinds of issues is that, even when there's quite a bit to say on them scientifically, you don't want to just put your head down and look at the science. You want to talk to people who are upstream and downstream from the machine learning part of this pipeline because they bring very different perspectives, and can often point out perspectives which can help you change the way you look at things scientifically in a positive way.

Q. If I were a student exploring AI or ML and I wanted to influence this particular conversation, beyond technical skills, what kind of skills should I be developing?

Kearns: What I would very strongly advocate is: think widely, think broadly, think big. Yes, you're going to be doing technical work in particular models and frameworks, and you know you want to get results in those frameworks. But also read what people who are from very, very different fields think about these problems. Go to their conferences, don't just go to the machine learning conferences and to the sub-track on fairness and machine learning. Go to the interdisciplinary conferences and workshops that are deliberately meant to bring together scientists, legal scholars, philosophers, sociologists, and regulators. Hear their views on these problems, keep an ear out for whether they even think you're working on a problem that's relevant or even has a solution.

That's the way I have approached my career: focus on what I'm good at and what I think is interesting from a scientific standpoint, but not in a scientific vacuum. I deliberately expose myself whenever possible to what people from a completely different perspective are thinking about the same set of topics. The good news is that there's a lot of opportunity for that right now. If you work in some branch of material science, it may not be possible to wander out in the world and get diverse perspectives, but everybody has an opinion on AI and machine learning ethics these days, so there is no shortage of sources from which this hypothetical student could go out and find their own technical views challenged or broadened.

Roth: One trap that is very easy for a new PhD student, or even an established researcher, to fall into is to write the introductions to your papers motivated by some kind of fairness problem, but then find yourself solving some narrow technical problem that ultimately has little connection to the world. I am sometimes guilty of this myself, but this is an area where there really are lots of important problems to solve. It's an area where theoretical approaches, if wielded correctly, can be extremely valuable. The thing that’s valuable is to be, sort of, multilingual. It can be difficult to talk to people from other fields because those fields have different vocabularies and a different world view. However, it's important to understand the perspective of these different communities. There are interdisciplinary groups looking at fairness, accountability, and transparency, which bring people together from all sorts of backgrounds to actively work on developing, at the very least, a shared vocabulary—and hopefully a shared world view.

Q. You've become Amazon Scholars fairly recently. What inspired you to take on this role?

Roth: I've spent most of my career as a theorist, so the ways I've been primarily thinking about privacy and fairness are in the abstract. I've had fun thinking about questions like: What kinds of things are, and are not, possible in principle with differential privacy? Or what kinds of semantic fairness promises can you make to people in a way that is still consistent with trying to learn something from the data? The attraction of Amazon and AWS is that it's where the rubber meets the road. Here we are deploying real machine learning products, and the privacy and the fairness concerns are real and pressing.

My hope is that by having a foot in the practice of these problems, not just their theory, not only will I have some effect on how consequential products actually work, but I’ll learn things that will be helpful in developing new theory that is grounded in the real world.

Kearns: I've had a kind of second life in the quantitative finance industry up until I joined Amazon. While I spent time doing practical things in the world of finance, it was more just using my general knowledge in machine learning. The opportunity to come to Amazon and really think about the topics we've been discussing in a practical technological setting seemed like a great opportunity. I'm also a long-term fan and observer of the company. I’ve known people here for many years, and have had great conversations with them. So I’ve watched with great interest over the last decade plus as Amazon grew its machine learning effort from scratch and gradually grew it to have wider and wider applications. It’s now at a point where not only is machine learning used widely within the company to optimize all kinds of processes and recommendations and the like, but it’s also used by customers worldwide in the form of services like Amazon SageMaker.

I have watched this with great interest because when I was studying machine learning in graduate school back in the late 80s, trust me, it was an obscure corner of AI that people kind of raised their eyebrows at. I never would have thought we would reach the point where not only does The Wall Street Journal expect everyone to know what they mean when they write about machine learning, but that it would actually be a product sold at scale.

I've watched these developments from academia and from the world of finance.  It seemed like a great opportunity to combine my very specific current research and other interests with an inside look at one of the great technology companies. Like Aaron, my expectations, which were high, have only been exceeded in the time I've spent here.

Research areas

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, NY, New York
Job summary**This job is also open for New York and Palo Alto**This position will be part of the Marketplace Intelligence organization within Sponsored Products. Our team focuses on determining operating points of Sponsored Products to provide efficient and customized shopping experience for shoppers and increased discoverability and business growth for selling partners by developing new measurements, economics methodology, and state-of-the art machine learnt optimization technologies. Our systems, algorithms and strategies operates on one of the most sophisticated advertising marketplaces that evolves from impression to impression and changes from one marketplace to another, across segments of traffic and demand. Key job responsibilitiesAs a seasoned leader, you will build and manage an inter-disciplinary team with scientists, economists, and engineers to develop and manage monetization controls for SP marketplace. The leader will set the vision of pricing strategy, build engineering system and large scale machine learning and optimization models. These models will continuously change operating points based on the feedback of marketplace, shopper and advertisers.This is a rare and exciting opportunity to be a trailblazer at the intersection of cutting edge science, economics, game theory and engineering to impact millions of advertisers. As a hands-on leader of this team, you will be responsible for defining long term business strategies, answer key research questions, discover investment opportunities, develop and deploy innovative machine learning solutions and deliver business results. You will also participate in organizational planning, hiring, mentoring and leadership development. You will be technically fearless and build scalable science and engineering solutions.
US, WA, Seattle
Job summaryThe Amazon Product Classification and Inference Services team is seeking a Sr. Applied Science Manager for leading initiatives for understanding, classifying and inferring product information. Our vision is simple: build AI systems that are capable of a deep product understanding, so we can organize and merchandise products across the Amazon e-commerce catalog worldwide. You will lead a team of experienced Applied Scientists (direct reports) and also a Manager of Applied Science to create models and deliver them into the Amazon production ecosystem. Your efforts will build a robust ensemble of ML techniques that can drive classification of products with a high precision and scale to new countries and languages. The leader will drive investments in cutting edge machine learning: natural language processing, computer vision and artificial intelligence techniques to solve real world problems at scale. We develop Deep Neural Networks as our your daily job and use the team's output to affect the product discovery of the biggest e-tailer in the world. The research findings are directly related to Amazon’s Browse experience and impact million of customers. The team builds solutions ranging from automatic detection of misclassified product information in the ever growing Amazon Catalog, applications for inferring and backfilling product attributes (processing images, text and all the unstructured attributes) in the Amazon catalog to drive true understanding of products at scale. We are looking for an entrepreneurial, experienced Sr. Applied Science Manager who can turn a group of Machine Learning Scientists and Managers (PhD's in NLP, CV) to produce best in class solutions. The ideal candidate has deep expertise in one or several of the following fields: Web search, Applied/Theoretical Machine Learning, Deep Neural Networks, Classification Systems, Clustering, Label Propagation, Natural Language Processing, Computer Vision. S/he has a strong publication record at top relevant academic venues and experience in launching products/features in the industry.Key job responsibilitiesIn this team, you will:Manage business and technical requirements, design, be responsible for the overall coordination, quality, productivity and will be the primary point of contact for world-wide stakeholders of programs and goals that you lead.Partner with scientists, economists, and engineers to help deliver scalable ML scaled models, while building mechanisms to help our customers gain and apply insights, and build road maps for the projects you own.Track service levels and schedule adherence, and ensure the individual stakeholder teams meet and exceed their performance targets.Be expected to discover, define, and apply scientific, engineering, and business best practices.Manage and develop Scientists (direct reports and a Science Manager with a respective team).A day in the lifeYou will lead an Amazon team that builds creative solutions to real world problems. Your team will own devising the strategy and execution plans that power initiatives ranging from: classifying all Amazon products, fact extraction, automatic detection of missing product information, active learning mechanisms for scaling human tasks, building applications for understanding what type of information is critical, building mechanisms to analyze product composition, ingest images, text, and unstructured data to drive deep understanding of products at scale. About the teamThe team's mission is to infer knowledge, understand, classify, derive product facts for all Amazon products entering the Catalog. The work is critical to power the Amazon Taxonomy, Search, Navigation and Detail Page experiences, impacting million of customers. This is an already formed team with experience leading programs spanning services and ML initiatives supporting all countries and languages. The leader collaborates closely with Software Managers, Sr. Leaders, and has exposure to multiple peer teams at Amazon who rely on this team's developments.
US, MA, Westborough
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 3-month internship to join AR full-time (40 hours/week) from May 22, 2023 to August 25, 2023. This Amazon Robotics internship opportunities will be Hybrid (2- 3 days onsite) and based out of the Greater Boston Area in Westborough, MA. The campus provides a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.About the teamWe are seeking data scientist interns to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.
US, WA, Seattle
Job summaryDo you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day.Major responsibilities Use statistical and machine learning techniques to create scalable risk management systemsLearning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trendsDesign, development and evaluation of highly innovative models for risk managementWorking closely with software engineering teams to drive real-time model implementations and new feature creationsWorking closely with operations staff to optimize risk management operations,Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationTracking general business activity and providing clear, compelling management reporting on a regular basisResearch and implement novel machine learning and statistical approaches