Michael Kearns and Aaron Roth seated at a table in front of a large chalk board.
Michael Kearns, left, and Aaron Roth, right, are the co-authors ofThe Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns and Roth are leading researchers in machine learning, University of Pennsylvania computer science professors, and Amazon Scholars.
University of Pennsylvania

Amazon Scholars Michael Kearns and Aaron Roth discuss the ethics of machine learning

Two of the world’s leading experts on algorithmic bias look back at the events of the past year and reflect on what we’ve learned, what we’re still grappling with, and how far we have to go.

In November of 2019, University of Pennsylvania computer science professors Michael Kearns and Aaron Roth released The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns is the founding director of the Warren Center for Network and Data Sciences, and the faculty founder and former director of Penn Engineering’s Networked and Social Systems Engineering program. Roth is the co-director of Penn’s program in Networked and Social Systems Engineering and co-authored The Algorithmic Foundations of Differential Privacy with Cynthia Dwork. Kearns and Roth are leading researchers in machine learning, focusing on both the design and real-world application of algorithms.

Their book’s central thesis, which involves “the science of designing algorithms that embed social norms such as fairness and privacy into their code,” was already pertinent when the book was released. Fast forward one year, and the book’s themes have taken on even greater significance.

Amazon Science sat down with Kearns and Roth, both of whom recently became Amazon Scholars, to find out whether the events of the past year have influenced their outlook. We talked about what it means to define and pursue fairness, how differential privacy is being applied in the real world and what it can achieve, the challenges faced by regulators, what advice the two University of Pennsylvania professors would give to students studying artificial intelligence and machine learning, and much more.

Q. How has the narrative around designing socially aware algorithms evolved in the past year, and have the events of the past year altered your outlooks in any way?

Aaron Roth: The main thesis of our book, which is that in any particular problem you have to start by thinking carefully about what you want in terms of fairness or privacy or some other social desideratum, and then how you relatively value things like that compared to other things you might care about, such as accuracy—that fundamental thesis hasn't really changed.

Now with the coronavirus pandemic, what we have seen are application areas where how you want to manage the trade-off between accuracy and privacy, for example, is more extreme than we usually see. So, for example, in the midst of an outbreak, contact tracing might be really important, even though you can't really do contact tracing while protecting individual privacy. Because of the urgency of the situation, you might decide to trade off privacy for accuracy. But because the message of our book really is about thinking things through on a case-by-case basis, the thesis itself hasn't changed.

Michael Kearns: The events of the last year, in particular coronavirus, the resulting restrictions on society and the tensions around these restrictions, and all of the recent social upheaval in the United States, clearly has made the topics of our book much more relevant. The book has focused a lot of attention on the use of algorithms for both good and bad purposes, including things like contact tracing or releasing statistics about people's movements or health data, as well as the use of machine learning, AI, and algorithms more generally for applications like surveillance.

Since our book, at a high level, is about the tensions that arise when there's a battle between social norms like equality or privacy and the use of algorithms for optimizing things like performance or error, I don't think anything in the last year has changed our thinking about the technical aspects of these problems. It's clear that society has been forced to face these problems in a very direct way because of the events of the last year, in a way that we really haven't before. In that sense, our timing was very fortunate because the things we're talking about are more relevant now than ever.

Q. How does that affect your ability to define fairness? Is that something that can ever be a fixed definition, or does it need to be adjusted as events or specific use cases dictate?

Kearns: There's not one correct definition of fairness. In every application you have to think about who the parties are that you're trying to protect, and what the harms are that you're trying to protect them from. That changes both over time and in different scenarios.

Roth: Even before the events of the last year, fairness was always a very context- and beholder- dependent notion. One society might be primarily concerned about fairness by race, and another might be primarily concerned about fairness by gender, and a different community might have other norms. The events of the last year have highlighted cases in which not only will things vary over space or communities, but also over time.

People's attitudes about relatively invasive technologies like contact tracing might be quite different now than they were a year ago. If a year ago I told you, “Suppose there was some disease that some people were catching and the most effective way of tamping it down was to do contact tracing.” Many people might have said, “That sounds really invasive to me”, but now that we've all been through one of the alternatives—being on lock down for six months—people's minds might be changed. We’ve definitely seen norms around privacy for health-related data change.

Q. Standard setting bodies have a significant challenge when it comes to auditing algorithms. Given the scope of that challenge, what needs to happen to allow those groups to do that effectively?

Roth: Although it hasn't happened yet, regulatory agencies are thinking about this, and are reaching out to people like us to help them think about doing this in the right way. I don't know of any regulatory agency that is ready yet to audit algorithms at-scale in sensible ways of the technical sort we discuss in the book. But there are regulatory agencies that have gotten the idea that they should be gearing up to do this, and those agencies have started preliminary movements in that direction.

Kearns: Many of the conversations we've had with standard setting bodies make it clear they're realizing that, collectively, they've technologically fallen behind the industries that they regulate. They don't have the right resources or personnel to do some of the more technological types of auditing. But in these conversations, it's also become clear to us that, even if you could snap your fingers and get the right people and the right resources, it will only be part of a broader framework.

Other important pieces involve becoming more precise about best practices, and also thinking carefully about what those specifications should look like. Let me give a concrete example: One of the things that we argue in our book is that there are many laws and regulations in areas like consumer finance, for instance, that try to get at fairness by restricting what kinds of inputs an algorithm can use. These laws and regulations say, “In order to make sure that your model isn't racially discriminatory, you must not use race as a variable.” But, in fact, not using race as a variable is no guarantee that you won't build a model that's discriminatory by race. In fact, it can actually exacerbate that problem. What we advocate in the book is, rather than restricting the inputs, you should specify the behavior you want as outputs. So instead of saying, “Don't use race”, say instead, “The outputs of the models shouldn't be discriminatory by race.”

Q. Differential privacy has progressed from theoretical to applied science in significant ways in the past few years. How is differential privacy being utilized? How does that help balance the trade-off between privacy and accuracy?

Roth: In the last five years or so, differential privacy has gone from an academic topic to a real technology. For example, the 2020 US Decennial Census is going to release all of its statistical products for the first time, subject to the protections of differential privacy. This is because, by law, the Census is required to protect the privacy of the people it is surveying. The ad hoc techniques used in previous decades to protect the statistics have been shown not to work.

I think that what we will see is that the statistics that the Census releases this year will be more protective of the privacy of Americans. However, in the theme of trade off, using rigorous privacy protections is not without cost. Certain kinds of analyses, such as detailed demographic studies that rely on having highly granular Census data, might now be unavailable under differential privacy. We've seen this play out in the public sphere between downstream users of the data and folks at Census who actually have to hammer out the details.

We've seen other interesting uses of differential privacy during the pandemic too. Some tech companies have utilized differential privacy when releasing statistics about personal mobility data gathered during the pandemic. What differential privacy is best at is releasing those kinds of population level statistics: It's exactly designed to prevent you from learning too much about any particular individual. If you want to know how much less people are moving around different cities because of coronavirus restrictions, these data sets let you answer that question without giving up too much privacy for individuals whose mobile devices were providing the data at the most granular level.

Q. So how does differential privacy help protect individual information?

Roth: Oftentimes the things that you will most naturally want to know about a data set are not facts about particular people, but are population level aggregates like, how many people are crowded into my supermarket at 6 a.m. when it opens. If you tell me sufficiently many aggregate statistics, I can do some math and back out particular people's data from that. The fact that aggregate statistics can be disclosive about individual people's data is an unfortunate accident that actually doesn't have too much to do with what you really wanted to learn.

At its most basic level, differential privacy does things like add little bits of noise to the statistics that you're releasing so that what you're telling me is not the exact number of people who were in my local supermarket at 6 a.m., but roughly the number of people who were in the supermarket plus or minus some small number of people. The fortunate mathematical fact is that you can add amounts of noise that are relatively small that still allow you to get good estimates, but are sufficient to wash out the contributions of particular people, making it impossible to learn too much about any particular individual. It lets you get access to these population level questions that you were curious about without incidentally or accidentally learning about particular people, which is the dangerous side.

"We are bullish about algorithms"
Michael Kearns and Aaron Roth talked to Oxford Academic about the future of AI.

Kearns: To make this slightly more concrete, say what I want to do is each day tell everybody how many people were in the supermarket a couple blocks from me at 1 p.m. If you happened to be at that supermarket at one o’clock, then your GPS data is one of the data points that goes into the count. You may consider your presence at supermarket at 1 p.m. to be the kind of private information that you don't want the whole world to know. So then let's say that, on a typical day, there might be a couple hundred people at the supermarket, but that I add a number which is an order of magnitude, plus or minus 25. The addition of that random number mathematically and provably obscures any individual’s contributions to that count. I won't be able to look at that count and try to figure out any particular person who was present. If I add a number that's between minus 25 and 25, I can't affect the overall count by 100. I'll still have an accurate count up to some resolution, but I will have provided privacy to everybody who was present at the supermarket and, actually, all the people who weren't present as well.

Q. How are topics like fairness, accountability, transparency, interpretability, and privacy showing up in computer science curriculum at Penn and elsewhere within higher education?

Kearns: When Aaron and I first started working on the technical aspects of fairness in machine learning and related topics, it was pretty sparsely populated. This was maybe six or seven years ago, and there weren't many papers on the topics. There were some older ones, more from the statistics literature, but there wasn't really a community of any size within machine learning that thought about these problems. On the research side, the opposite is now true. All of the major machine learning conferences have significant numbers of papers and workshops on these topics; they have workshops devoted to these topics. There are now standalone conferences about fairness, accountability, and explainability in machine learning that are growing every year. It's a very vibrant, active research community now. Additionally, even though it's still early, it's an important enough topic that there are now starting to be efforts to teach this even at the undergraduate level.

The last two years at Penn, for example, I have piloted a course called The Science of Data Ethics. It’s deliberately called that and not The Ethics of Data Science. What that represents is that it’s about the science of making algorithms that are more ethical by different norms, like fairness and privacy. It's not your typical engineering ethics course, which at some level is meant to teach you to be a good, responsible person in that you look at case studies where things went wrong and you talk about what you would do differently. This class is a science class. It says: Here are the standard principles of machine learning, here's how those standard principles can lead to discriminatory behavior in my predictive models, and here are alternate principles, or modifications of those principles and the algorithms that implement them, that avoid or mitigate that behavior.

Q. Is there a more multidisciplinary approach to this set of challenges?

Roth: It's definitely a multidisciplinary area. At Penn, we've been actively collaborating with interested folks in the law school and the criminology department. So far, we don't really have interdisciplinary undergraduate courses on these topics. Those courses would be good in the long run, but at the research and graduate level we've been having interdisciplinary conversations for a number of years.

In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline.
Michael Kearns

Kearns: Not just at the teaching level, but even in the research community, there's a real melting pot of viewpoints on these topics. Even though our book is focused on the scientific aspects of these issues, we do spend some time mentioning the fact that the science will only take us so far. In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline. Machine learning begins with data and ends with a model. But upstream from the data is the entire manner in which the data was collected and the conditions under which it was collected.

One of the things that's very interesting, exciting, and necessary about the dialogue around these kinds of issues is that, even when there's quite a bit to say on them scientifically, you don't want to just put your head down and look at the science. You want to talk to people who are upstream and downstream from the machine learning part of this pipeline because they bring very different perspectives, and can often point out perspectives which can help you change the way you look at things scientifically in a positive way.

Q. If I were a student exploring AI or ML and I wanted to influence this particular conversation, beyond technical skills, what kind of skills should I be developing?

Kearns: What I would very strongly advocate is: think widely, think broadly, think big. Yes, you're going to be doing technical work in particular models and frameworks, and you know you want to get results in those frameworks. But also read what people who are from very, very different fields think about these problems. Go to their conferences, don't just go to the machine learning conferences and to the sub-track on fairness and machine learning. Go to the interdisciplinary conferences and workshops that are deliberately meant to bring together scientists, legal scholars, philosophers, sociologists, and regulators. Hear their views on these problems, keep an ear out for whether they even think you're working on a problem that's relevant or even has a solution.

That's the way I have approached my career: focus on what I'm good at and what I think is interesting from a scientific standpoint, but not in a scientific vacuum. I deliberately expose myself whenever possible to what people from a completely different perspective are thinking about the same set of topics. The good news is that there's a lot of opportunity for that right now. If you work in some branch of material science, it may not be possible to wander out in the world and get diverse perspectives, but everybody has an opinion on AI and machine learning ethics these days, so there is no shortage of sources from which this hypothetical student could go out and find their own technical views challenged or broadened.

Roth: One trap that is very easy for a new PhD student, or even an established researcher, to fall into is to write the introductions to your papers motivated by some kind of fairness problem, but then find yourself solving some narrow technical problem that ultimately has little connection to the world. I am sometimes guilty of this myself, but this is an area where there really are lots of important problems to solve. It's an area where theoretical approaches, if wielded correctly, can be extremely valuable. The thing that’s valuable is to be, sort of, multilingual. It can be difficult to talk to people from other fields because those fields have different vocabularies and a different world view. However, it's important to understand the perspective of these different communities. There are interdisciplinary groups looking at fairness, accountability, and transparency, which bring people together from all sorts of backgrounds to actively work on developing, at the very least, a shared vocabulary—and hopefully a shared world view.

Q. You've become Amazon Scholars fairly recently. What inspired you to take on this role?

Roth: I've spent most of my career as a theorist, so the ways I've been primarily thinking about privacy and fairness are in the abstract. I've had fun thinking about questions like: What kinds of things are, and are not, possible in principle with differential privacy? Or what kinds of semantic fairness promises can you make to people in a way that is still consistent with trying to learn something from the data? The attraction of Amazon and AWS is that it's where the rubber meets the road. Here we are deploying real machine learning products, and the privacy and the fairness concerns are real and pressing.

My hope is that by having a foot in the practice of these problems, not just their theory, not only will I have some effect on how consequential products actually work, but I’ll learn things that will be helpful in developing new theory that is grounded in the real world.

Kearns: I've had a kind of second life in the quantitative finance industry up until I joined Amazon. While I spent time doing practical things in the world of finance, it was more just using my general knowledge in machine learning. The opportunity to come to Amazon and really think about the topics we've been discussing in a practical technological setting seemed like a great opportunity. I'm also a long-term fan and observer of the company. I’ve known people here for many years, and have had great conversations with them. So I’ve watched with great interest over the last decade plus as Amazon grew its machine learning effort from scratch and gradually grew it to have wider and wider applications. It’s now at a point where not only is machine learning used widely within the company to optimize all kinds of processes and recommendations and the like, but it’s also used by customers worldwide in the form of services like Amazon SageMaker.

I have watched this with great interest because when I was studying machine learning in graduate school back in the late 80s, trust me, it was an obscure corner of AI that people kind of raised their eyebrows at. I never would have thought we would reach the point where not only does The Wall Street Journal expect everyone to know what they mean when they write about machine learning, but that it would actually be a product sold at scale.

I've watched these developments from academia and from the world of finance.  It seemed like a great opportunity to combine my very specific current research and other interests with an inside look at one of the great technology companies. Like Aaron, my expectations, which were high, have only been exceeded in the time I've spent here.

Research areas

Related content

US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Supply team (within Sponsored Products) is looking for an Applied Scientist to join a fast-growing team with the mandate of creating new ad experiences that elevate the shopping experience for hundreds of millions customers worldwide. The Applied Scientist will take end-to-end ownership of driving new product/feature innovation by applying advanced statistical and machine learning models. The role will handle petabytes of unstructured data (images, text, videos) to extract insights into what metadata can be useful for us to highlight to simplify purchase decisions, and propose new experiences that increase shopper engagement. Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Key job responsibilities As an Applied Scientist on this team you will: Build machine learning models and perform data analysis to deliver scalable solutions to business problems. Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. Research new predictive learning approaches for the sponsored products business. Write production code to bring models into production. A day in the life You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We are seeking a Principal Scientist with deep expertise in Search. Your responsibility will be to advance the state-of-the-art for search science that leads to world-class products that impact Amazon's customers. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team This is a position on Core Ranking and Experimentation team in Palo Alto, CA. The team works on a variety of topics in search ranking and relevance, such as multi-objective optimization, personalization, and fast online experimentation. We work closely with teams in various parts of the stack to ensure that our science is translated to customer facing products.
US, WA, Bellevue
Amazon is looking for a passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Automatic Speech Recognition (ASR), Machine Translation (MT), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use of speech and language technology. You will gain hands on experience with Amazon’s heterogeneous speech, text, and structured data sources, and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in all areas of human language technology: ASR, MT, NLU, text-to-speech (TTS), and Dialog Management, in addition to Computer Vision.
IN, KA, Bangalore
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. The ATT team, based in Bangalore, is responsible for ensuring that ads are compliant to world-wide advertising policies and are of high quality, leading to higher conversion for the advertisers and providing a great experience for the shoppers. Machine learning, particularly multi-modal data understanding, is fundamental to the way we drive our business, meet our goals and satisfy our customers. ATT team invests in researching and developing state of art models that analyze various type of ad assets – text, audio, images and videos - to ensure compliance to advertising policies. We also help advertisers create more successful ads by creating ML models to assist ad generation as well as to provide data-driven interpretable insights. Key job responsibilities Major responsibilities · Deliver key goals to enhance advertiser experience and protect shopper trust by innovative use of computer vision, NLP and statistical techniques · Drive core business analytics and data science explorations to inform key business decisions and algorithm roadmap · Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation · Hire and develop top talent in machine learning and data science and accelerate the pace of innovation in the group · Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production
US, WA, Seattle
We are seeking a talented applied researcher to join the Search team responsible for developing reinforcement learning systems for Amazon's shopping experience and delivering it to millions of customers. We believe that shopping on Amazon should be simple, delightful, and full of "wow" moments for everyone.
US, NY, New York
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team Amazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. Lead marketplace design and development based on economic theory and data analysis. Provide technical and scientific guidance to team members. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. Collaborate with business and software teams across Amazon Ads. Stay up to date with recent scientific publications relevant to the team. Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. Amazon’s large scale brings with it unique problems to solve in designing, testing, and deploying relevance models. We are seeking a strong applied Scientist to join the Experimentation Infrastructure and Methods team. This team’s charter is to innovate and evaluate ranking at Amazon Search. In practice, we aim to create infrastructure and metrics, enable new experimental methods, and do proof-of-concept experiments, that enable Search Relevance teams to introduce new features faster, reduce the cost of experimentation, and deliver faster against Search goals. Key job responsibilities You will build search ranking systems and evaluation framework that extend to Amazon scale -- thousands of product types, billions of queries, and hundreds of millions of customers spread around the world. As a Senior Applied Scientist you will find the next set of big improvements to ranking evaluation, get your hands dirty by building models to help understand complexities of customer behavior, and mentor junior engineers and scientists. In addition to typical topics in ranking, we are particularly interested in evaluation, feature selection, explainability. A day in the life Our primary focus is improving search ranking systems. On a day-to-day this means building ML models, analyzing data from your recent A/B tests, and guiding teams on best practices. You will also find yourself in meetings with business and tech leaders at Amazon communicating your next big initiative. About the team We are a team consisting of software engineers and applied scientists. Our interests and activities span machine learning for better ranking, experimentation, statistics for better decision making, and infrastructure to make it all happen efficiently at scale.