Michael Kearns and Aaron Roth seated at a table in front of a large chalk board.
Michael Kearns, left, and Aaron Roth, right, are the co-authors ofThe Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns and Roth are leading researchers in machine learning, University of Pennsylvania computer science professors, and Amazon Scholars.
University of Pennsylvania

Amazon Scholars Michael Kearns and Aaron Roth discuss the ethics of machine learning

Two of the world’s leading experts on algorithmic bias look back at the events of the past year and reflect on what we’ve learned, what we’re still grappling with, and how far we have to go.

In November of 2019, University of Pennsylvania computer science professors Michael Kearns and Aaron Roth released The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns is the founding director of the Warren Center for Network and Data Sciences, and the faculty founder and former director of Penn Engineering’s Networked and Social Systems Engineering program. Roth is the co-director of Penn’s program in Networked and Social Systems Engineering and co-authored The Algorithmic Foundations of Differential Privacy with Cynthia Dwork. Kearns and Roth are leading researchers in machine learning, focusing on both the design and real-world application of algorithms.

Their book’s central thesis, which involves “the science of designing algorithms that embed social norms such as fairness and privacy into their code,” was already pertinent when the book was released. Fast forward one year, and the book’s themes have taken on even greater significance.

Amazon Science sat down with Kearns and Roth, both of whom recently became Amazon Scholars, to find out whether the events of the past year have influenced their outlook. We talked about what it means to define and pursue fairness, how differential privacy is being applied in the real world and what it can achieve, the challenges faced by regulators, what advice the two University of Pennsylvania professors would give to students studying artificial intelligence and machine learning, and much more.

Q. How has the narrative around designing socially aware algorithms evolved in the past year, and have the events of the past year altered your outlooks in any way?

Aaron Roth: The main thesis of our book, which is that in any particular problem you have to start by thinking carefully about what you want in terms of fairness or privacy or some other social desideratum, and then how you relatively value things like that compared to other things you might care about, such as accuracy—that fundamental thesis hasn't really changed.

Now with the coronavirus pandemic, what we have seen are application areas where how you want to manage the trade-off between accuracy and privacy, for example, is more extreme than we usually see. So, for example, in the midst of an outbreak, contact tracing might be really important, even though you can't really do contact tracing while protecting individual privacy. Because of the urgency of the situation, you might decide to trade off privacy for accuracy. But because the message of our book really is about thinking things through on a case-by-case basis, the thesis itself hasn't changed.

Michael Kearns: The events of the last year, in particular coronavirus, the resulting restrictions on society and the tensions around these restrictions, and all of the recent social upheaval in the United States, clearly has made the topics of our book much more relevant. The book has focused a lot of attention on the use of algorithms for both good and bad purposes, including things like contact tracing or releasing statistics about people's movements or health data, as well as the use of machine learning, AI, and algorithms more generally for applications like surveillance.

Since our book, at a high level, is about the tensions that arise when there's a battle between social norms like equality or privacy and the use of algorithms for optimizing things like performance or error, I don't think anything in the last year has changed our thinking about the technical aspects of these problems. It's clear that society has been forced to face these problems in a very direct way because of the events of the last year, in a way that we really haven't before. In that sense, our timing was very fortunate because the things we're talking about are more relevant now than ever.

Q. How does that affect your ability to define fairness? Is that something that can ever be a fixed definition, or does it need to be adjusted as events or specific use cases dictate?

Kearns: There's not one correct definition of fairness. In every application you have to think about who the parties are that you're trying to protect, and what the harms are that you're trying to protect them from. That changes both over time and in different scenarios.

Roth: Even before the events of the last year, fairness was always a very context- and beholder- dependent notion. One society might be primarily concerned about fairness by race, and another might be primarily concerned about fairness by gender, and a different community might have other norms. The events of the last year have highlighted cases in which not only will things vary over space or communities, but also over time.

People's attitudes about relatively invasive technologies like contact tracing might be quite different now than they were a year ago. If a year ago I told you, “Suppose there was some disease that some people were catching and the most effective way of tamping it down was to do contact tracing.” Many people might have said, “That sounds really invasive to me”, but now that we've all been through one of the alternatives—being on lock down for six months—people's minds might be changed. We’ve definitely seen norms around privacy for health-related data change.

Q. Standard setting bodies have a significant challenge when it comes to auditing algorithms. Given the scope of that challenge, what needs to happen to allow those groups to do that effectively?

Roth: Although it hasn't happened yet, regulatory agencies are thinking about this, and are reaching out to people like us to help them think about doing this in the right way. I don't know of any regulatory agency that is ready yet to audit algorithms at-scale in sensible ways of the technical sort we discuss in the book. But there are regulatory agencies that have gotten the idea that they should be gearing up to do this, and those agencies have started preliminary movements in that direction.

Kearns: Many of the conversations we've had with standard setting bodies make it clear they're realizing that, collectively, they've technologically fallen behind the industries that they regulate. They don't have the right resources or personnel to do some of the more technological types of auditing. But in these conversations, it's also become clear to us that, even if you could snap your fingers and get the right people and the right resources, it will only be part of a broader framework.

Other important pieces involve becoming more precise about best practices, and also thinking carefully about what those specifications should look like. Let me give a concrete example: One of the things that we argue in our book is that there are many laws and regulations in areas like consumer finance, for instance, that try to get at fairness by restricting what kinds of inputs an algorithm can use. These laws and regulations say, “In order to make sure that your model isn't racially discriminatory, you must not use race as a variable.” But, in fact, not using race as a variable is no guarantee that you won't build a model that's discriminatory by race. In fact, it can actually exacerbate that problem. What we advocate in the book is, rather than restricting the inputs, you should specify the behavior you want as outputs. So instead of saying, “Don't use race”, say instead, “The outputs of the models shouldn't be discriminatory by race.”

Q. Differential privacy has progressed from theoretical to applied science in significant ways in the past few years. How is differential privacy being utilized? How does that help balance the trade-off between privacy and accuracy?

Roth: In the last five years or so, differential privacy has gone from an academic topic to a real technology. For example, the 2020 US Decennial Census is going to release all of its statistical products for the first time, subject to the protections of differential privacy. This is because, by law, the Census is required to protect the privacy of the people it is surveying. The ad hoc techniques used in previous decades to protect the statistics have been shown not to work.

I think that what we will see is that the statistics that the Census releases this year will be more protective of the privacy of Americans. However, in the theme of trade off, using rigorous privacy protections is not without cost. Certain kinds of analyses, such as detailed demographic studies that rely on having highly granular Census data, might now be unavailable under differential privacy. We've seen this play out in the public sphere between downstream users of the data and folks at Census who actually have to hammer out the details.

We've seen other interesting uses of differential privacy during the pandemic too. Some tech companies have utilized differential privacy when releasing statistics about personal mobility data gathered during the pandemic. What differential privacy is best at is releasing those kinds of population level statistics: It's exactly designed to prevent you from learning too much about any particular individual. If you want to know how much less people are moving around different cities because of coronavirus restrictions, these data sets let you answer that question without giving up too much privacy for individuals whose mobile devices were providing the data at the most granular level.

Q. So how does differential privacy help protect individual information?

Roth: Oftentimes the things that you will most naturally want to know about a data set are not facts about particular people, but are population level aggregates like, how many people are crowded into my supermarket at 6 a.m. when it opens. If you tell me sufficiently many aggregate statistics, I can do some math and back out particular people's data from that. The fact that aggregate statistics can be disclosive about individual people's data is an unfortunate accident that actually doesn't have too much to do with what you really wanted to learn.

At its most basic level, differential privacy does things like add little bits of noise to the statistics that you're releasing so that what you're telling me is not the exact number of people who were in my local supermarket at 6 a.m., but roughly the number of people who were in the supermarket plus or minus some small number of people. The fortunate mathematical fact is that you can add amounts of noise that are relatively small that still allow you to get good estimates, but are sufficient to wash out the contributions of particular people, making it impossible to learn too much about any particular individual. It lets you get access to these population level questions that you were curious about without incidentally or accidentally learning about particular people, which is the dangerous side.

"We are bullish about algorithms"
Michael Kearns and Aaron Roth talked to Oxford Academic about the future of AI.

Kearns: To make this slightly more concrete, say what I want to do is each day tell everybody how many people were in the supermarket a couple blocks from me at 1 p.m. If you happened to be at that supermarket at one o’clock, then your GPS data is one of the data points that goes into the count. You may consider your presence at supermarket at 1 p.m. to be the kind of private information that you don't want the whole world to know. So then let's say that, on a typical day, there might be a couple hundred people at the supermarket, but that I add a number which is an order of magnitude, plus or minus 25. The addition of that random number mathematically and provably obscures any individual’s contributions to that count. I won't be able to look at that count and try to figure out any particular person who was present. If I add a number that's between minus 25 and 25, I can't affect the overall count by 100. I'll still have an accurate count up to some resolution, but I will have provided privacy to everybody who was present at the supermarket and, actually, all the people who weren't present as well.

Q. How are topics like fairness, accountability, transparency, interpretability, and privacy showing up in computer science curriculum at Penn and elsewhere within higher education?

Kearns: When Aaron and I first started working on the technical aspects of fairness in machine learning and related topics, it was pretty sparsely populated. This was maybe six or seven years ago, and there weren't many papers on the topics. There were some older ones, more from the statistics literature, but there wasn't really a community of any size within machine learning that thought about these problems. On the research side, the opposite is now true. All of the major machine learning conferences have significant numbers of papers and workshops on these topics; they have workshops devoted to these topics. There are now standalone conferences about fairness, accountability, and explainability in machine learning that are growing every year. It's a very vibrant, active research community now. Additionally, even though it's still early, it's an important enough topic that there are now starting to be efforts to teach this even at the undergraduate level.

The last two years at Penn, for example, I have piloted a course called The Science of Data Ethics. It’s deliberately called that and not The Ethics of Data Science. What that represents is that it’s about the science of making algorithms that are more ethical by different norms, like fairness and privacy. It's not your typical engineering ethics course, which at some level is meant to teach you to be a good, responsible person in that you look at case studies where things went wrong and you talk about what you would do differently. This class is a science class. It says: Here are the standard principles of machine learning, here's how those standard principles can lead to discriminatory behavior in my predictive models, and here are alternate principles, or modifications of those principles and the algorithms that implement them, that avoid or mitigate that behavior.

Q. Is there a more multidisciplinary approach to this set of challenges?

Roth: It's definitely a multidisciplinary area. At Penn, we've been actively collaborating with interested folks in the law school and the criminology department. So far, we don't really have interdisciplinary undergraduate courses on these topics. Those courses would be good in the long run, but at the research and graduate level we've been having interdisciplinary conversations for a number of years.

In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline.
Michael Kearns

Kearns: Not just at the teaching level, but even in the research community, there's a real melting pot of viewpoints on these topics. Even though our book is focused on the scientific aspects of these issues, we do spend some time mentioning the fact that the science will only take us so far. In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline. Machine learning begins with data and ends with a model. But upstream from the data is the entire manner in which the data was collected and the conditions under which it was collected.

One of the things that's very interesting, exciting, and necessary about the dialogue around these kinds of issues is that, even when there's quite a bit to say on them scientifically, you don't want to just put your head down and look at the science. You want to talk to people who are upstream and downstream from the machine learning part of this pipeline because they bring very different perspectives, and can often point out perspectives which can help you change the way you look at things scientifically in a positive way.

Q. If I were a student exploring AI or ML and I wanted to influence this particular conversation, beyond technical skills, what kind of skills should I be developing?

Kearns: What I would very strongly advocate is: think widely, think broadly, think big. Yes, you're going to be doing technical work in particular models and frameworks, and you know you want to get results in those frameworks. But also read what people who are from very, very different fields think about these problems. Go to their conferences, don't just go to the machine learning conferences and to the sub-track on fairness and machine learning. Go to the interdisciplinary conferences and workshops that are deliberately meant to bring together scientists, legal scholars, philosophers, sociologists, and regulators. Hear their views on these problems, keep an ear out for whether they even think you're working on a problem that's relevant or even has a solution.

That's the way I have approached my career: focus on what I'm good at and what I think is interesting from a scientific standpoint, but not in a scientific vacuum. I deliberately expose myself whenever possible to what people from a completely different perspective are thinking about the same set of topics. The good news is that there's a lot of opportunity for that right now. If you work in some branch of material science, it may not be possible to wander out in the world and get diverse perspectives, but everybody has an opinion on AI and machine learning ethics these days, so there is no shortage of sources from which this hypothetical student could go out and find their own technical views challenged or broadened.

Roth: One trap that is very easy for a new PhD student, or even an established researcher, to fall into is to write the introductions to your papers motivated by some kind of fairness problem, but then find yourself solving some narrow technical problem that ultimately has little connection to the world. I am sometimes guilty of this myself, but this is an area where there really are lots of important problems to solve. It's an area where theoretical approaches, if wielded correctly, can be extremely valuable. The thing that’s valuable is to be, sort of, multilingual. It can be difficult to talk to people from other fields because those fields have different vocabularies and a different world view. However, it's important to understand the perspective of these different communities. There are interdisciplinary groups looking at fairness, accountability, and transparency, which bring people together from all sorts of backgrounds to actively work on developing, at the very least, a shared vocabulary—and hopefully a shared world view.

Q. You've become Amazon Scholars fairly recently. What inspired you to take on this role?

Roth: I've spent most of my career as a theorist, so the ways I've been primarily thinking about privacy and fairness are in the abstract. I've had fun thinking about questions like: What kinds of things are, and are not, possible in principle with differential privacy? Or what kinds of semantic fairness promises can you make to people in a way that is still consistent with trying to learn something from the data? The attraction of Amazon and AWS is that it's where the rubber meets the road. Here we are deploying real machine learning products, and the privacy and the fairness concerns are real and pressing.

My hope is that by having a foot in the practice of these problems, not just their theory, not only will I have some effect on how consequential products actually work, but I’ll learn things that will be helpful in developing new theory that is grounded in the real world.

Kearns: I've had a kind of second life in the quantitative finance industry up until I joined Amazon. While I spent time doing practical things in the world of finance, it was more just using my general knowledge in machine learning. The opportunity to come to Amazon and really think about the topics we've been discussing in a practical technological setting seemed like a great opportunity. I'm also a long-term fan and observer of the company. I’ve known people here for many years, and have had great conversations with them. So I’ve watched with great interest over the last decade plus as Amazon grew its machine learning effort from scratch and gradually grew it to have wider and wider applications. It’s now at a point where not only is machine learning used widely within the company to optimize all kinds of processes and recommendations and the like, but it’s also used by customers worldwide in the form of services like Amazon SageMaker.

I have watched this with great interest because when I was studying machine learning in graduate school back in the late 80s, trust me, it was an obscure corner of AI that people kind of raised their eyebrows at. I never would have thought we would reach the point where not only does The Wall Street Journal expect everyone to know what they mean when they write about machine learning, but that it would actually be a product sold at scale.

I've watched these developments from academia and from the world of finance.  It seemed like a great opportunity to combine my very specific current research and other interests with an inside look at one of the great technology companies. Like Aaron, my expectations, which were high, have only been exceeded in the time I've spent here.

Research areas

Related content

US, WA, Bellevue
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Diego
We are seeking an exceptional Applied Scientist to join a team of experts in the field of machine learning, and work together to tackle challenging problems across diverse compliance domains. We leverage and train state-of-the-art multi-modal and large-language-models (LLMs) to detect illegal and unsafe products across the Amazon catalog. We work on machine learning problems for multi-modal classification, intent detection, information retrieval, anomaly and fraud detection, and generative AI. This is an exciting and challenging position to deliver scientific innovations into production systems at Amazon-scale to make immediate, meaningful customer impacts while also pursuing ambitious, long-term research. You will work in a highly collaborative environment where you can analyze and process large amounts of image, text and tabular data. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. There will be something new to learn every day as we work in an environment with rapidly evolving regulations and adversarial actors looking to outwit your best ideas. Key job responsibilities • Design and evaluate state-of-the-art algorithms and approaches in multi-modal classification, large language models (LLMs), intent detection, information retrieval, anomaly and fraud detection, and generative AI • Translate product and CX requirements into measurable science problems and metrics. • Collaborate with product and tech partners and customers to validate hypothesis, drive adoption, and increase business impact • Key author in writing high quality scientific papers in internal and external peer-reviewed conferences. A day in the life - Understanding customer problems, project timelines, and team/project mechanisms - Proposing science formulations and brainstorming ideas with team to solve business problems - Writing code, and running experiments with re-usable science libraries - Reviewing labels and audit results with investigators and operations associates - Sharing science results with science, product and tech partners and customers - Writing science papers for submission to peer-review venues, and reviewing science papers from other scientists in the team. - Contributing to team retrospectives for continuous improvements - Driving science research collaborations and attending study groups with scientists across Amazon About the team We are a team of applied scientists building AI/ML solutions to make Amazon Earth’s most trusted shopping destination for safe and compliant products.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.