Active learning: Algorithmically selecting training data to improve Alexa’s natural-language understanding

Alexa’s ability to respond to customer requests is largely the result of machine learning models trained on annotated data. The models are fed sample texts such as “Play the Prince song 1999” or “Play River by Joni Mitchell”. In each text, labels are attached to particular words — SongName for “1999” and “River”, for instance, and ArtistName for Prince and Joni Mitchell. By analyzing annotated data, the system learns to classify unannotated data on its own.

Regularly retraining Alexa’s models on new data improves their performance. But annotation is expensive, so we would like to annotate only the most informative training examples — the ones that will yield the greatest reduction in Alexa’s error rate. Selecting those examples automatically is known as active learning.

Last week, at the annual meeting of the North American Chapter of the Association for Computational Linguistics (NAACL), we presented a new approach to active learning that, in experiments, improved the accuracy of machine learning models by 7% to 9%, relative to training on randomly selected examples.

We compared our technique to four other active-learning strategies and showed gains across the board. Our new approach is 1% to 3.5% better than the best-performing approach previously reported. In addition to extensive testing with previously annotated data (in which the labels were suppressed to simulate unannotated data), we conducted a smaller trial with unlabeled data and human annotators and found that our results held, with improvements of 4% to 9% relative to the baseline machine learning models.

The goal of active learning is to canvass as many candidate examples as possible to find those with the most informational value. Consequently, the selection mechanism must be efficient. The classical way to select examples is to use a simple linear classifier, which assigns every word in a sentence a weight. The sum of the weights yields a score, and a score greater than zero indicates that the sentence belongs to a particular category.

For instance, if the classifier is trying to determine whether a sentence belongs to the category music, it would probably assign the word “play” a positive weight, because music requests frequently begin with the word “play”. But it might assign the word “video” a negative weight, because that’s a word that frequently denotes the customer’s desire to play a video, and the video category is distinct from the music category.

Such weights are learned from training examples. During training, the linear classifier is optimized using a loss function, which measures the distance between its performance and perfect classification of the training data.

Typically, in active learning, examples are selected for annotation if they receive scores close to zero — whether positive or negative — which means that they are near the decision boundary of the linear classifier. The hypothesis is that hard-to-classify examples are the ones that a model will profit from most.

Researchers have also investigated committee-based methods, in which linear models are learned using several different loss functions. Some loss functions emphasize getting the aggregate statistics right across training examples; others emphasize getting the right binary classification for any given example; still others impose particularly harsh penalties for giving the wrong answer with high confidence; and so on.

active_learning.jpg._CB443745932_.jpg
A graph showing how different loss functions (black lines) divide training data in different ways. Easily classified examples (red and green X’s) are less informative than examples that fall closer to classification boundaries (grey X’s).

Traditional committee-based methods also select low-scoring examples, but they add another criterion: at least one of the models must disagree with the others in its classification. Again, the assumption is that hard-to-classify examples will be the most informative.

In our experiments, we explored a variant on the committee-based approach. First, we tried selecting low-scoring examples on which the majority of linear models have scores greater than zero. Because this majority positive filter includes examples with all-positive scores, it yields a larger pool of candidates than the filter that enforces dissent. To select the most informative examples from that pool, we experimented with several different re-ranking strategies.

Most importantly, we used a conditional-random-field (CRF) model to do the re-ranking. Where the linear models classify requests only according to domain — such as music, weather, smart home, and so on — the CRF models classify the individual words of the request as belonging to categories such as ArtistName or SongName.

If the CRF easily classifies the words of a request, the score increases; if the CRF struggles, the score decreases. (Again, low-scoring requests are preferentially selected for annotation.) Adding the CRF classifier does not significantly reduce the efficiency of the algorithm because we execute the re-ranking only on examples where the majority of models agreed.

For re-ranking, we add the committee scores and then take the absolute value of the sum. This permits individual models on the committee to provide high-confidence classifications, so long as strong positive scores are offset by strong negative scores.

The committee approaches reported in the literature enforced dissent among the models; interestingly, using the criterion of majority scores greater than zero yielded better results, even without the CRF. With the CRF, however, the error rate shrank by an additional 1% to 2%.

Acknowledgments: John Kearney, Abhyuday Jagannatha, Imre Kiss, Spyros Matsoukas

Related content

JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA
ES, M, Madrid
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Madrid, ESP | Madrid, M, ESP
US, CA, San Diego
The Private Brands team is looking for an Applied Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights. We are an interdisciplinary team of Scientists, Engineers, and Economists and primary focus on building optimization and machine learning solutions in supply chain domain with specific focus on Amazon private brand products. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in predictive and machine learning models and working with distributed systems. Academic and/or practical background in Machine Learning are particularly relevant for this position. Familiarity and experience in applying Operations Research techniques to supply chain problems is a plus. To know more about Amazon science, Please visit https://www.amazon.science We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | Seattle, WA, USA
LU, Luxembourg
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
GB, London
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis Basic Qualifications -Masters in Computer Science, Machine Learning, Robotics or equivalent with a focus on Computer Vision. -2+ years of experience of building machine learning models for business application -Broad knowledge of fundamentals and state of the art in computer vision and machine learning -Strong coding skills in two or more programming languages such as Python or C/C++ -Knowledge of fundamentals in optimization, supervised and reinforcement learning -Excellent problem-solving ability Preferred Qualifications -PhD and 4+ years of industry or academic applied research experience applying Computer Vision techniques and developing Computer vision algorithms -Depth and breadth in state-of-the-art computer vision and machine learning technologies and experience designing and building computer vision solutions -Industry experience in sensor systems and the development of production computer vision and machine learning applications built to use them -Experience developing software interfacing to AWS services -Excellent written and verbal communication skills with the ability to present complex technical information in a clear and concise manner to a variety of audiences -Ability to work on a diverse team or with a diverse range of coworkers -Experience in publishing at major Computer Vision, ML or Robotics conferences or Journals (CVPR, ICCV, ECCV, NeurIPS, ICML, IJCV, ICRA, IROS, RSS,...) We are open to hiring candidates to work out of one of the following locations: London, GBR
US, WA, Seattle
Want to work in a start-up environment with the resources of Amazon behind you? Do you want to have direct and immediate impact on millions of customers every day? If you are a self-starter, passionate about machine learning, deep learning, big data systems, enjoy designing and implementing new features and machine learned models, and intrigued by ambiguous problems, look no further. Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital display advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers of all types to reach Amazon customers on Amazon.com, across our other owned and operated sites, on other high quality sites across the web, and on millions of Kindles, tablets, and mobile devices. We start with the customer and work backwards in everything we do, including advertising. If you’re interested in joining a rapidly growing team working to build a unique, world-class advertising group with a relentless focus on the customer, you’ve come to the right place. About Our Team: Our team is responsible for building a new advertising product for non-endemic advertisers. We are tasked with taking this start-up offering to market, with the goal of empowering over one million non-endemic advertisers to independently plan and execute campaigns. “Non-endemic” brands offer products and services that are not sold/available in Amazon’s retail marketplace, including restaurants, hotels, airlines, insurance, telecom, and automobiles. We are embarking on a multi-year vision to democratize display advertising for non-endemic advertisers at self-service scale. This will open up Amazon Ads to self-service non-endemic demand— whether they sell on the Amazon store or not— to activate Amazon Ads first-party audiences built from shopping and streaming signals and access unique ad inventory to help grow their business. Open to hire in NYC or Seattle. Key job responsibilities - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Train and fine-tune neural models including transformers and language models. - Recruit Applied Scientists to the team and provide mentorship. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problem in the Amazon scale? Are you excited by developing and productizing machine learning, deep learning algorithms and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring Applied Scientist who has a solid background in applied Machine Learning and a proven record of solving customer-facing problems via scalable ML solutions, and is motivated to grow professionally as an ML scientist. Key job responsibilities - Tackle ambiguous problems in Machine Learning and drive full life-cycle Machine Learning projects. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. - Run A/B experiments, gather data, and perform statistical tests. - Establish scalable, efficient, automated processes for large-scale data mining, machine-learning model development, model validation and serving. - Work closely with software engineers and product managers to assist in productizing your ML models. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA